Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica (A) -20/12/2006

COGNOME	NOME
MATRICOLA	

1) Determinare

$$\lim_{x \to 0} \frac{3e^{-2x} + 3\sin(2x) - 3}{2\sqrt{1 + x^2} - 2}.$$

- a è uguale a 3c è uguale a 1

2) La funzione

$$f(x) = \begin{cases} \frac{e^{-3x} - e^{3x} + 6x}{x} & x < 0, \\ 0 & x = 0, \\ e^{-\frac{1}{x}} & x > 0 \end{cases}$$

- $\boxed{\mathbf{a}}$ è derivabile su $I\!\!R$
- \overline{c} presenta un punto angoloso in x=0

3) Determinare il numero di soluzioni dell'equazione

$$(x-5)^2 e^{(x-5)} = 1.$$

- a una sola soluzione
- c nessuna soluzione

- b due soluzioni d nessuna delle precedenti

Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica (B) – 20/12/2006

COGNOME	NOME
MATRICOLA	

1) Determinare

$$\lim_{x \to 0} \frac{2e^{-3x} + 2\sin(3x) - 2}{3\sqrt{1 + x^2} - 3}.$$

- a è uguale a 3c è uguale a 1

2) La funzione

$$f(x) = \begin{cases} \frac{e^{-2x} - e^{2x} + 4x}{x} & x < 0, \\ 0 & x = 0, \\ e^{-\frac{1}{x}} & x > 0 \end{cases}$$

- $\boxed{\mathbf{a}}$ è derivabile su $I\!\!R$
- \overline{c} presenta un punto angoloso in x=0

3) Determinare il numero di soluzioni dell'equazione

$$(x-7)^2 e^{(x-7)} = 1.$$

- a una sola soluzione
- c nessuna soluzione

- b due soluzioni d nessuna delle precedenti

Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica (C) – 20/12/2006

COGNOME	NOM	ſE
MATRICOLA		
1) Determinare		4.
	$\lim_{x \to 0} \frac{2\log(1-x) + 2x \cot (-x^2)}{\arctan(-x^2)}$	$\frac{\operatorname{os}(x)}{x}$.
a è uguale a 3		b è uguale a 0 d nessuna delle precedenti
c è uguale a 1		d nessuna delle precedenti
2) La funzione	$3x\cos(x) - \sin(3x)$	c)
	$f(x) = \begin{cases} \frac{3x\cos(x) - \sin(3x)}{x} \\ 0 \\ x^{\frac{3}{2}}\log(x) \end{cases}$	x < 0, $x = 0$
	$\int_{0}^{3} x^{\frac{3}{2}} \log(x)$	x > 0
a è derivabile su $I\!\!R$		$\boxed{\mathrm{b}}$ non è continua in $x = 0$
c presenta un punto	o angoloso in $x = 0$	d nessuna delle precedenti

 $4x^2e^{-2x} = 1.$

b due soluzioni d nessuna delle precedenti

3) Determinare il numero di soluzioni dell'equazione

a una sola soluzione c nessuna soluzione

Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica (D) – 20/12/2006

COGNOME	NOME
MATRICOLA	-

1) Determinare

$$\lim_{x \to 0} \frac{2\log(1+x) - 2x\cos(x)}{\arctan(-x^2)}.$$

- a è uguale a 3 c è uguale a 1

- b è uguale a 0 d nessuna delle precedenti

2) La funzione

$$f(x) = \begin{cases} \frac{2x\cos(x) - \sin(2x)}{x} & x < 0, \\ 0 & x = 0, \\ x^{\frac{3}{2}}\log(x) & x > 0 \end{cases}$$

- $\boxed{\mathbf{a}}$ è derivabile su $I\!\!R$
- $\overline{\mathbf{c}}$ presenta un punto angoloso in x=0

3) Determinare il numero di soluzioni dell'equazione

$$9x^2e^{-3x} = 1.$$

- a una sola soluzione
- c nessuna soluzione

- d due soluzionid nessuna delle precedenti