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Summary

o The wave propagation problem in a taut cable, or string, resting
on a piecewise linear foundation is investigated;
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o nonlinear traveling waves have been studied in the literature
mainly for transport or diffusive systems or transport equations,
the wave equation or beams, always with a regular (smooth)
nonlinearity;

o the piecewise constant nature of the problem permits a closed
form solution both for the wave phase velocity and the wave form;

e some numerical simulations, based on a finite difference method,
are performed to confirm the analytical findings;

o the stability of the proposed waves is discussed theoretically and
numerically, also by using return maps in phase space.
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Model

Governing equation (Klein-Gordon equation)
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Model

Governing equation (Klein-Gordon equation)

Traveling wave solutions

With w(z,t) = W(s) = W(z — ét) we have (with £ = s/L and ¢ = ¢/v)

(2 —1)W"(E)+ k(W)W (E) =0 (c propagation speed)

Piecewise constant stiffness

k(W) =ki, W <0 (compression) 3 ¢ : oS
E(W) =Fka, W >0 (tension) M Eé%%%%‘%é%;

0 a1 ¢
2147
ddzzl (f) + (12"1/1 (f) =] 07 VVI(&) S 0 az 62]{711
d2W- N
s O +PWa© =0, Wa(®) > 0. e

We are interested in “simple waves”, i.e. waves which cross the zero baseline
within one wavelength. The problem is to find « and ¢, and the explicit wave form.
Note that if (W7, W2) is a solution, so is A (W, Wa), VA > 0.
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Solution procedure

Matching at endpoints

The solution is obtained by imposing continuity of W (£) and W' (&) at the
boundaries and at the internal point ¢ = « (i.e., W is a C''([0, 1]) function):

W1(0) = Wi (o) = Wa(a) = Wa (1) = 0
Wi(0) = W3 (1); Wi(e)=W5(a)

implying ca =7 and (1 — a) b= .
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The solution is obtained by imposing continuity of W (£) and W' (&) at the
boundaries and at the internal point ¢ = « (i.e., W is a C''([0, 1]) function):
W1(0) = Wi(a) = Wa(a) = Wa (1) =0
Wi(0) =W;(1); Wi(a) = Wy(a)

implying ca =7 and (1 — a) b= .
v

Solution

Vk2 1
o = =
Vk1 + Vs 1+ +/k1/k2
1 k1 k2
(;2 =14+ — —
72 (VE1 + Vk2)?

Wi©) = A1 2 sin (f—”> 0<t<a
k1 o

Wz(£)=Asin<w), a<e<1

—

For given k1 and k2, ¢ and o are uniquely determined by the equations; the
amplitude remains undetermined.
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Numerical example

Numerical scheme

Numerical simulations were performed by an FFD algorithm, with the boundary
condition at z = 0 coinciding with the analytical solution and zero initial
condition on Rt:
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condition on Rt:
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Progression of the wave train in time and as countour plot (k1 = 1, ko = 5)
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Particular case

Unilateral substrate

When ko — 0, the substrate becomes unilateral. In this limit & — 0, ¢ — 1 and
Wi (&) — 0, which means that the wave propagates with the same speed as in the
absence of the substrate and the compression region reduces to one point (£ = 0),
that is the solution remains in the tension part and the derivative has a jump.
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Wi (&) — 0, which means that the wave propagates with the same speed as in the
absence of the substrate and the compression region reduces to one point (£ = 0),
that is the solution remains in the tension part and the derivative has a jump.
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@ The conclusion is that periodic waves with regular profile on a perfectly
unilateral substrate, crossing the region w < 0 (where k1 > 0) do not exist.

@ The same conclusion holds when ko — oo (with the sign reversed -
unilaterally rigid substrate)
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Stability of traveling waves

General considerations

@ The system of equations can be interpreted as a 2D map from
(W(0), W’ (0)) = (Wo, W() at £ =0 to (W (1), W’'(1)) = (W1, W7) at £ = 1;
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General considerations

@ The system of equations can be interpreted as a 2D map from
(W(0),W’(0)) = (Wo, W{) at £ =0 to (W (1), W'(1)) = (W1, W]) at £ = 1;

@ it follows that the fixed point of the map (which corresponds to the periodic
traveling waves) is a center, so it is a stable fixed point;

@ this can be seen also by looking at the Floquet multipliers, equal to +1.

Numerical simulations

We have performed some numerical investigations by perturbing the boundary
condition at z = 0:
p(t) = w(0,t) + € sin(w; t)

Return map

| A\

(f@), f(©)) = (f(t+7), f(t+ 7)) where f(t) = w(zo,t) with £op > 0 a point on the
simulation domain and 7 the period. The return maps are shown in the next
figures for k1 = 1, ko =1, ky = 1,k2 =5 and k1 = 0.001, kg = 1.
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Stability of traveling waves

Simulation results

Here k1 = ko =1, k1 =1, ko =5, k1 = 0.001, ke = 1,
e =0 (black dot), 0.001 (blue dots), 0.003 (red dots) and 0.005 (green dots).
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Conclusions

o The wave propagation problem in a taut cable, or string, resting
on a piecewise linear foundation was investigated;

o we have obtained a closed form solution for both the wave phase
velocity, the size of the compression and the tension intervals and
the wave form,;

e non differentiable points appear in the solution in the limits of
unilateral and unilaterally rigid substrate, implying that simple
regular waves do not propagate in those limiting cases;

o the solution was obtained also in the presence of a uniformly
distributed transversal load (not shown);

e the numerical simulations, based on a finite difference method,
confirm the analytical findings;

o the waves’ stability is discussed theoretically and numerically,
also by using return maps in phase space; we found that the fixed
point of the return map is a center, implying stability of the
periodic traveling waves.
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