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Summary

The wave propagation problem in a taut cable, or string, resting
on a piecewise linear foundation is investigated;

nonlinear traveling waves have been studied in the literature
mainly for transport or diffusive systems or transport equations,
the wave equation or beams, always with a regular (smooth)
nonlinearity;
the piecewise constant nature of the problem permits a closed
form solution both for the wave phase velocity and the wave form;
some numerical simulations, based on a finite difference method,
are performed to confirm the analytical findings;
the stability of the proposed waves is discussed theoretically and
numerically, also by using return maps in phase space.
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Model

Governing equation (Klein-Gordon equation)

∂2w

∂t2
− v2

∂2w

∂x2
+ γ(w)w = 0

Traveling wave solutions

With w(x, t) = W (s) = W (x− ĉ t) we have (with ξ = s/L and c = ĉ/v)

(c2 − 1)W ′′(ξ) + k(W )W (ξ) = 0 (c propagation speed)

Piecewise constant stiffness

k(W ) = k1, W ≤ 0 (compression)

k(W ) = k2, W > 0 (tension)
α ξ0 1

d2W1

dξ2
(ξ) + a2W1(ξ) = 0, W1(ξ) ≤ 0

d2W2

dξ2
(ξ) + b2W2(ξ) = 0, W2(ξ) > 0.

a2 =
k1

c2 − 1

b2 =
k2

c2 − 1

We are interested in “simple waves”, i.e. waves which cross the zero baseline
within one wavelength. The problem is to find α and c, and the explicit wave form.
Note that if (W1,W2) is a solution, so is A (W1,W2), ∀A > 0.

L. Demeio - S. Lenci WMVC 2022 4 / 11



Model

Governing equation (Klein-Gordon equation)

∂2w

∂t2
− v2

∂2w

∂x2
+ γ(w)w = 0

Traveling wave solutions
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Solution procedure

Matching at endpoints

The solution is obtained by imposing continuity of W (ξ) and W ′(ξ) at the
boundaries and at the internal point ξ = α (i.e., W is a C1([0, 1]) function):

W1(0) = W1(α) = W2(α) = W2 (1) = 0

W ′
1(0) = W ′

2 (1) ; W ′
1(α) = W ′

2(α)

implying αa = π and (1− α) b = π.

Solution

α =

√
k2√

k1 +
√
k2

=
1

1 +
√
k1/k2

c2 = 1 +
1

π2

k1 k2

(
√
k1 +

√
k2)2

W1(ξ) = −A

√
k2

k1
sin

(
ξπ

α

)
, 0 ≤ ξ ≤ α

W2(ξ) = A sin

(
(ξ − α)π

1− α

)
, α ≤ ξ ≤ 1

For given k1 and k2, c and α are uniquely determined by the equations; the
amplitude remains undetermined.

L. Demeio - S. Lenci WMVC 2022 5 / 11



Solution procedure

Matching at endpoints

The solution is obtained by imposing continuity of W (ξ) and W ′(ξ) at the
boundaries and at the internal point ξ = α (i.e., W is a C1([0, 1]) function):

W1(0) = W1(α) = W2(α) = W2 (1) = 0

W ′
1(0) = W ′

2 (1) ; W ′
1(α) = W ′

2(α)

implying αa = π and (1− α) b = π.

Solution

α =

√
k2√

k1 +
√
k2

=
1

1 +
√
k1/k2

c2 = 1 +
1

π2

k1 k2

(
√
k1 +

√
k2)2

W1(ξ) = −A

√
k2

k1
sin

(
ξπ

α

)
, 0 ≤ ξ ≤ α

W2(ξ) = A sin

(
(ξ − α)π

1− α

)
, α ≤ ξ ≤ 1

For given k1 and k2, c and α are uniquely determined by the equations; the
amplitude remains undetermined.

L. Demeio - S. Lenci WMVC 2022 5 / 11



Numerical example

Numerical scheme

Numerical simulations were performed by an FFD algorithm, with the boundary
condition at x = 0 coinciding with the analytical solution and zero initial
condition on R+:

∂2u

∂t2
− v2

∂2u

∂x2
+ γ(u)u = 0, x ≥ 0,

u(0, t) = ϕ(t) = w(0, t), w(x, 0) = 0,
∂w

∂t
(x, 0) = 0

Progression of the wave train in time and as countour plot (k1 = 1, k2 = 5)
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Particular case

Unilateral substrate

When k2 → 0, the substrate becomes unilateral. In this limit α→ 0, c→ 1 and
W1(ξ)→ 0, which means that the wave propagates with the same speed as in the
absence of the substrate and the compression region reduces to one point (ξ = 0),
that is the solution remains in the tension part and the derivative has a jump.

ξ
0=α 1 2 x

w

0 10 20 30 40

(a)

The conclusion is that periodic waves with regular profile on a perfectly
unilateral substrate, crossing the region w < 0 (where k1 > 0) do not exist.

The same conclusion holds when k2 →∞ (with the sign reversed -
unilaterally rigid substrate)
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Stability of traveling waves

General considerations

The system of equations can be interpreted as a 2D map from
(W (0),W ′(0)) = (W0,W ′

0) at ξ = 0 to (W (1),W ′(1)) = (W1,W ′
1) at ξ = 1;

it follows that the fixed point of the map (which corresponds to the periodic
traveling waves) is a center, so it is a stable fixed point;

this can be seen also by looking at the Floquet multipliers, equal to ±1.

Numerical simulations

We have performed some numerical investigations by perturbing the boundary
condition at x = 0:

ϕ(t) = w(0, t) + ε sin(ω1 t)

Return map

(f(t), ḟ(t))→ (f(t+ τ), ḟ(t+ τ)) where f(t) = w(x0, t) with x0 > 0 a point on the
simulation domain and τ the period. The return maps are shown in the next
figures for k1 = 1, k2 = 1, k1 = 1, k2 = 5 and k1 = 0.001, k2 = 1.
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Stability of traveling waves

Simulation results
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Here k1 = k2 = 1, k1 = 1, k2 = 5, k1 = 0.001, k2 = 1,
ε = 0 (black dot), 0.001 (blue dots), 0.003 (red dots) and 0.005 (green dots).
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Conclusions

The wave propagation problem in a taut cable, or string, resting
on a piecewise linear foundation was investigated;

we have obtained a closed form solution for both the wave phase
velocity, the size of the compression and the tension intervals and
the wave form;
non differentiable points appear in the solution in the limits of
unilateral and unilaterally rigid substrate, implying that simple
regular waves do not propagate in those limiting cases;
the solution was obtained also in the presence of a uniformly
distributed transversal load (not shown);
the numerical simulations, based on a finite difference method,
confirm the analytical findings;
the waves’ stability is discussed theoretically and numerically,
also by using return maps in phase space; we found that the fixed
point of the return map is a center, implying stability of the
periodic traveling waves.

L. Demeio - S. Lenci WMVC 2022 10 / 11



Conclusions

The wave propagation problem in a taut cable, or string, resting
on a piecewise linear foundation was investigated;
we have obtained a closed form solution for both the wave phase
velocity, the size of the compression and the tension intervals and
the wave form;

non differentiable points appear in the solution in the limits of
unilateral and unilaterally rigid substrate, implying that simple
regular waves do not propagate in those limiting cases;
the solution was obtained also in the presence of a uniformly
distributed transversal load (not shown);
the numerical simulations, based on a finite difference method,
confirm the analytical findings;
the waves’ stability is discussed theoretically and numerically,
also by using return maps in phase space; we found that the fixed
point of the return map is a center, implying stability of the
periodic traveling waves.

L. Demeio - S. Lenci WMVC 2022 10 / 11



Conclusions

The wave propagation problem in a taut cable, or string, resting
on a piecewise linear foundation was investigated;
we have obtained a closed form solution for both the wave phase
velocity, the size of the compression and the tension intervals and
the wave form;
non differentiable points appear in the solution in the limits of
unilateral and unilaterally rigid substrate, implying that simple
regular waves do not propagate in those limiting cases;

the solution was obtained also in the presence of a uniformly
distributed transversal load (not shown);
the numerical simulations, based on a finite difference method,
confirm the analytical findings;
the waves’ stability is discussed theoretically and numerically,
also by using return maps in phase space; we found that the fixed
point of the return map is a center, implying stability of the
periodic traveling waves.

L. Demeio - S. Lenci WMVC 2022 10 / 11



Conclusions

The wave propagation problem in a taut cable, or string, resting
on a piecewise linear foundation was investigated;
we have obtained a closed form solution for both the wave phase
velocity, the size of the compression and the tension intervals and
the wave form;
non differentiable points appear in the solution in the limits of
unilateral and unilaterally rigid substrate, implying that simple
regular waves do not propagate in those limiting cases;
the solution was obtained also in the presence of a uniformly
distributed transversal load (not shown);

the numerical simulations, based on a finite difference method,
confirm the analytical findings;
the waves’ stability is discussed theoretically and numerically,
also by using return maps in phase space; we found that the fixed
point of the return map is a center, implying stability of the
periodic traveling waves.

L. Demeio - S. Lenci WMVC 2022 10 / 11



Conclusions

The wave propagation problem in a taut cable, or string, resting
on a piecewise linear foundation was investigated;
we have obtained a closed form solution for both the wave phase
velocity, the size of the compression and the tension intervals and
the wave form;
non differentiable points appear in the solution in the limits of
unilateral and unilaterally rigid substrate, implying that simple
regular waves do not propagate in those limiting cases;
the solution was obtained also in the presence of a uniformly
distributed transversal load (not shown);
the numerical simulations, based on a finite difference method,
confirm the analytical findings;

the waves’ stability is discussed theoretically and numerically,
also by using return maps in phase space; we found that the fixed
point of the return map is a center, implying stability of the
periodic traveling waves.

L. Demeio - S. Lenci WMVC 2022 10 / 11



Conclusions

The wave propagation problem in a taut cable, or string, resting
on a piecewise linear foundation was investigated;
we have obtained a closed form solution for both the wave phase
velocity, the size of the compression and the tension intervals and
the wave form;
non differentiable points appear in the solution in the limits of
unilateral and unilaterally rigid substrate, implying that simple
regular waves do not propagate in those limiting cases;
the solution was obtained also in the presence of a uniformly
distributed transversal load (not shown);
the numerical simulations, based on a finite difference method,
confirm the analytical findings;
the waves’ stability is discussed theoretically and numerically,
also by using return maps in phase space; we found that the fixed
point of the return map is a center, implying stability of the
periodic traveling waves.

L. Demeio - S. Lenci WMVC 2022 10 / 11



Farewell

THANK YOU
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