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Abstract. We consider the Ostrovsky and short pulse models in a symmetric spatial
interval, subject to periodic boundary conditions. For the Ostrovsky case, we revisit the
classical periodic traveling waves and for the short pulse model, we explicitly construct
traveling waves in terms of Jacobi elliptic functions. For both examples, we show spectral
stability, for all values of the parameters. This is achieved by studying the non-standard
eigenvalue problems in the form Lu = λu′, where L is a Hill operator.

1. Introduction

The (generalized) Korteweg-De Vries equation

(1) ut + βuxxx + (f(u))x = 0,

is a basic model in the theory of water waves. In fact, this is one of the most ubiquitous
models in the theory of partial differential equations, modeling the unidirectional motion
of waves in shallow water. Its Cauchy problem has been comprehensively studied in the
last 50 years. Our interest is in a related model, which takes into account the effect of a
(small) rotation force acting on the fluid. More specifically,

(2) (ut + βuxxx + (f(u))x)x = εu,−L ≤ x ≤ L.

Note that we consider (2) on a finite nterval, with periodic boundary conditions. The
problem on the whole line case certainly makes sense physically, as an approximation of
situations where the motion takes place on long intervals. We will however only consider
the periodic case henceforth.

We refer to (2) as the regularized short pulse equation (RSPE), when β 6= 0. In [12, 13]
the authors have constructed traveling wave solutions of (2) on the whole line by employing
variational methods. They have also studied the stability of such solutions by following
the Grillakis-Shatah-Strauss arguments. Further results on the stability of these traveling
waves were obtained in [14, 15]. In [2], the authors have constructed pulse solutions of
(2), for small values of ε, via singular perturbation theory. In [3], they have shown the
existence of multi-pulse solutions. The stability of these waves remains an interesting open
problem.
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An interesting special model occurs in the absence of a KdV regularization - in other
words, β = 0. This is referred to in the literature, depending on the form of the non-
linearity f , as the reduced Ostrovsky or Ostrovsky-Hunter or short pulse model1. Namely,
after scaling all parameters to one, we have

(3) (ut + (f(u))x)x = u.

The model (3), with various form of the nonlinearity has rich history, most of it unrelated
to the its connections to KdV. Ostrovsky, [19] in the late 70’s has introduced the first
model of this sort. In the early 90’s, Vakhnenko, [24] proposed an alternative derivation,
while Hunter, [11] proposed some numerical simulations. The well-posedness questions
were investigated by Boyd, [1]; Schaefer and Wayne, [21]; Stefanov-Shen-Kevrekidis, [22].
Liu, Pelinovsky and Sakovich, [16, 17] have studied wave breaking, which was later supple-
mented by the global regularity results for small, in appropriate sense data, of Grimshaw-
Pelinovsky, [7]. There are numerous works on explicit traveling wave solutions of these
models, [6, 18, 20, 23, 25, 26]. One should note that some of this solutions are not clas-
sical solutions, but rather a multi-valued ones, [20]. Several authors have also explored
the integrability of the Ostrovsky equation, [20, 26]. In particular, they have managed to
construct the traveling waves by means of the inverse scattering transform. In this regard,
it is worth mentioning the very recent work [10], where the authors study small periodic
waves of the quadratic and cubic models in the form (3). They show orbital stability of
such waves (with respect to all subharmonic perturbations!) by adapting the methods of
[4] for periodic waves of the defocussing cubic NLS. Their proof makes sense of a repre-
sentation of these waves as unconstrained minimizers of appropriate functionals. Another
recent development in the area is our recent paper, [8], which gives an explicit construction
of peakon type solutions and establishes their stability.

Our main interest in this paper is the stability of explicit traveling waves for the short
pulse equation (3). More precisely, we follow the recent work of [6], who construct the
solutions of (3), for f(u) = u2, in terms of Jacobi elliptic functions, after a (solution
dependent) change of variables. We consider these solutions and we show their spectral
stability with respect to co-periodic perturbations ( i.e. with respect of perturbations of
the same period). In addition, we construct a family of explicit solutions in the cubic case
as well. Their spectral stability for co-periodic perturbations is established as well. In all
our considerations, we consider the linearized problems after the change of variables, where
we get eigenvalue problems in the form

(4) Lu = µu′.

where L is a second order Hill operator, subject to periodic boundary conditions. Clearly,
(4) is a non-standard eigenvalue problem, for which we develop appropriate methods to
study its stability.

We now continue on to derive the profile equations and the linearized equations.

1Usually the models with quadratic non-linearities are referred to as Ostrovsky models, while cubic ones
are referred to as short pulse models. Unfortunately, there does not appear to be an uniformity in this
matter.
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1.1. Profile equation and the linearized problem. As we have alluded above, we
consider (3) with quadratic and cubic non-linearity. Even though, one can mostly proceed
to derive the profile equation with the general non-linearity f(u), we prefer to use the
explicit form in the two cases, since the specific, solution dependent transformation (see
[6]), depends in a significant way on the particular form of f .

1.1.1. The quadratic model. In order to derive the profile equations, we follow the approach
of [6]. Our first consideration is the quadratic model f(u) = u2

2
, the so-called Ostrovsky

equation. It reads

(5) (ut + uux)x = u, −L ≤ x ≤ L.

Using the traveling wave ansatz, u(t, x) = ϕ(x− ct), for an unknown periodic function ϕ,
we arrive at the ODE,

(6) ((ϕ− c)ϕξ)ξ = ϕ − L ≤ ξ ≤ L.

Clearly, (6), being a fully nonlinear equation, is not a very nice object to deal with. Thus,
we perform a (solution dependent) change of variables, namely

(7) ξ = Ξ(η) := η − Ψ(η)

c
, ϕ(ξ) = Φ(η) = Ψ′(η).

If ϕ is an even function, so is Φ and then naturally Ψ is an odd function. Compute

(8)
dΞ

dη
= 1− Ψ′(η)

c
= 1− ϕ(ξ)

c
,

so that

ϕξ =
Φη

dΞ
dη

=
cΦη

c− ϕ(ξ)
.

Thus, (ϕ− c)ϕξ = −cΦη. Taking another derivative in ξ,

Φ(η) = ϕ(ξ) = ((ϕ− c)ϕξ)ξ = − c2Φηη

c− ϕ(ξ)
= − c2Φηη

c− Φ(η)
.

We are thus lead to the profile equation

(9) c2Φ′′ = Φ(Φ− c).
Clearly, (9) is a standard Schrödinger equation, which is much easier to study. We do
so in Section 2 below, where an explicit2 expression for Φ is found. One has to keep in
mind however, that the solutions of (9) are equivalent3, so long as the transformation (7) is
invertible. This is clearly requiring that the function η → Ξ(η) is monotone or equivalently,
from (8), that either ϕ(ξ) > c for each ξ ∈ [−L,L] or ϕ(ξ) < c for each ξ ∈ [−L,L]. If
that is the case, we have an interval [−M,M ], so that Ξ : [−M,M ] → [−L,L] is a
diffeomorphism and the profile equation (9) has to be considered with periodic boundary
conditions on [−M,M ].

Our next task is to derive the linearized problem for such solutions ϕ - assuming that
they exist and the transformation (7) is invertible in the appropriate interval. To this end,

2in terms of Jacobi elliptic functions
3in appropriate sense, to be made throughout the article, in appropriate places
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we take the ansatz u(t, x) = ϕ(x− ct) + v(t, x− ct) in (5) and ignore all quadratic terms.
We obtain the following linearized equation

(10) (vt + ((ϕ− c)v)ξ)ξ = v − L < ξ < L.

Next, we turn (10) into an eigenvalue problem, by letting v(t, ξ) = eλtw(ξ), w ∈ H2[−L,L].
This results in

(11) (λw + ((ϕ− c)w)ξ)ξ = w − L < ξ < L.

Note that (11) guarantees that w is an exact derivative, which justifies our next change of

variables w = zξ. Here, we can assume that z ∈ H3(−L,L) :
∫ L
−L z(x)dx = 0. This can be

of course always be achieved and in fact, it fixes the function z. Thus, we reduce matters
to

(λzξ + ((ϕ− c)zξ)ξ)ξ = zξ − L < ξ < L.

An integration in ξ (and taking into account that
∫ L
−L z(x)dx = 0) allows us to transform

the last equation into the equivalent one

(12) λzξ + ((ϕ− c)zξ)ξ = z − L < ξ < L.

Indeed, in the last equation, the constant of integration is zero, since we have an exact
derivative on the left-hand side and a function of mean value zero on the right-hand side.

Now, assume that there is an interval [−M,M ], so that Ξ : [−M,M ] → [−L,L] is a
diffeomorphism. This appeared previously as a necessary condition for the wave ϕ to exists.
Denote the inverse function of Ξ by η(ξ), that is ξ = Ξ(η(ξ)). Introduce Z ∈ L2(−M,M),
so that z(ξ) = Z(η(ξ)). We have

zξ(ξ) =
Zη
dξ
dη

=
Zη

1− ϕ(ξ)
c

=
cZη

c− ϕ(ξ)
.

Thus, (c− ϕ(ξ))zξ = cZη and hence

[(c− ϕ)zξ]ξ = c
d

dξ
(Zη(η(ξ))) = c

Zηη
dξ
dη

=
c2Zηη
c− ϕ(ξ)

=
c2Zηη

c− Φ(η)

Plugging the result in (12), we obtain

c2Zηη
c− Φ(η)

= [(c− ϕ)zξ]ξ = λzξ − z = λ
cZη
c− Φ

− Z.

All in all, we obtain the eigenvalue problem,

(13) − c2Zηη − cZ + ΦZ = −λcZη, Z ∈ L2(−M,M).

1.1.2. The cubic model. For the cubic model, we follow an identical approach, with just a
slight changes to reflect the cubic nonlinearity. More precisely, let f(u) = u3

3
. The profile

equation for the traveling wave solution ϕ(x− ct) is

(14) ((ϕ2 − c)ϕξ)ξ = ϕ, −L < ξ < L.

Next, the change of variables is of course in the form

(15) Ξ(η) = η − Ψ(η)

c
, ϕ(ξ) = Φ(η),Ψ′(η) = Φ2(η) = ϕ2(ξ).
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Again, if ϕ and Φ are odd functions, then so is Ψ. Similar to the quadratic case, we have
(ϕ2 − c)ϕξ = −cΦη, whence

Φ(η) = ϕ(ξ) = ((ϕ2 − c)ϕξ)ξ = − c2Φηη

c− ϕ2(ξ)
= − c2Φηη

c− Φ2(η)
.

Thus, we have the profile equation in the form

(16) − c2Φηη − cΦ + Φ3 = 0.

Assuming that there is an interval [−M,M ], so that Ξ : [−M,M ] → [−L,L] is a diffeo-
morphism, we can consider the profile equation (16) with periodic boundary conditions on
[−M,M ].

We now discuss the linearization around the wave ϕ(x−ct) for the model (ut+u
2ux)x = u.

Following the same steps as in the quadratic case, with Ξ defined as in (15), we arrive at
the following linearized problem

(17) − c2Zηη − cZ + Φ2Z = −λcZη, Z ∈ L2(−M,M).

1.1.3. Definition of spectral stability and plan of the paper. Now that we have introduced
the profile equations and the linearized problems, it is time to formally introduce the
definition of stability. For instability we require that (12) has a non-trivial solution Z for
some λ : <λ > 0. One can easily see that if λ (and some Z) is a solution of (13) or (17),
then (−λ, Z(−·)) is also a solution. That is, there is the spectral invariance λ → −λ.
Thus, instability means that there is a solution of (13) (or (17)) with right hand-side
µ = −λc > 0. If such a solution does not exist, we say that we have stability. Formally,

Definition 1. Assume that the periodic wave ϕ is a solution of (6), with some c 6= 0.
Assume also that there exists a one-to-one mapping Ξ : (−M,M) → (−L,L),M ∈ (0,∞]
satisfying (7). We say the the wave is spectrally unstable, if there exists µ : <µ > 0 and a
function Z ∈ H2[−M,M ] ∩ C2(−M,M), so that

(18) L[Z] := −c2Zηη − cZ + ΦZ = µZ ′.

Similarly, the solution ϕ of (14) is unstable, if there is µ : <µ > 0 and Z ∈ H2[−M,M ]∩
C2(−M,M), so that

(19) L[Z] := −c2Zηη − cZ + Φ2Z = µZ ′.

The paper is organized as follows. In Section 2 we first revisit the construction of the even
traveling waves for the Ostrovsky model and the odd solutions for the short pulse equation.
Toward the end of Section 2, appropriate spectral information for the corresponding Hill
operators is supplied as well. In Section 3, we develop, for the purposes of the subsequent
sections, sufficient conditions for the positivity of a given self-adjoint operator (with finitely
many negative eigenvalues) on a subspace of finite co-dimension. In Section 4, we consider
the spectral stability of the waves in the quadratic (Ostrovsky) case. In Section 5, we
discuss the spectral stability in the cubic (short pulse) case. Finally, in Section 6, we
discuss the parabolic peakons for the Ostrovsky model, which can be seen as a limiting
case of the waves constructed previously. We show, that the corresponding eigenvalue
problem has smooth solutions inside the interval of consideration (which however do not
satisfy any periodic boundary conditions).
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2. Construction of the periodic waves and the spectral properties of the
Hill operators

We first discuss the construction of periodic solutions in the case of quadratic nonlin-
earities.

2.1. Quadratic nonlinearities. Integrating once the equation (9), we get

(20) Φ2
η =

2

3c2

[
Φ3 − 3c

2
Φ2 + A

]
= F (Φ),

where A is a constant of integration. For c < 0, in the phase plane (Φ,Φ′) equation (9)
has equilibra at (0, 0) which is saddle point and at (c, 0) which is a center. For c > 0,
in the phase plane (Φ,Φ′) equation (9) has equilibra at (c, 0) which is saddle point and at
(0, 0) which is a center.

Let Φ0 < Φ1 < Φ2 are roots of polynomial F (Φ). We have

(21)

∣∣∣∣∣∣
Φ0 + Φ1 + Φ2 = 3c

2

Φ0Φ1 + Φ0Φ2 + Φ1Φ2 = 0.

Introducing a new variable s ∈ (0, 1) via Φ = Φ0 + (Φ1 − Φ0)s2, we transform (20) into

s′2 = α2(1− s2)(1− k2s2)

where α and k are positive constants given by

(22) α2 =
3c
2
− Φ1 − 2Φ0

6c2
, k2 =

Φ1 − Φ0

3c
2
− Φ1 − 2Φ0

.

Therefore

(23) Φ = Φ0 + (Φ1 − Φ0)sn2(αx;κ).

From (21) and (22, we have

(24)

∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ1 − Φ0 = 6c2α2κ2

Φ0 = c
2
− 2c2α2(1 + κ2)

Φ1 = c
2

+ 2c2α2(2κ2 − 1)

16c2α4(1− κ2 + κ4) = 1.

For c > 0, from (23) and (24), and using that sn2(x) + cn2(x) = 1, we have

1− ϕ(ξ)

c
= 2α2c(1− 2κ2 +

√
1− κ2 + κ4 + 3cn2(αξ;κ)) > 0

With this we verified that the function defined in (7) is one-to-one.
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2.2. Cubic nonlinearities. Here we need periodic solutions of (16). Integrating once the
equation (16), we get

(25) Φ2
η =

1

2c2

[
Φ4 − 2cΦ2 + A

]
= F (Φ),

where A is a constant of integration. Suppose that the polynomial ρ4 − 2cρ2 + A has two
positive roots Φ1 > Φ2 > 0. Then, the equation (25) can be written in the form

(26) Φ2
η =

1

2c2
(Φ2 − Φ2

1)(Φ− Φ2
2).

Then the solution of the equation (26) is given by

(27) Φ(x) = Φ2sn(αx, κ),

where −Φ2 < Φ(x) < Φ2 and

(28)

∣∣∣∣∣∣∣∣∣∣

Φ2
1 + Φ2

2 = 2c

Φ2
1Φ2

2 = A

κ2 =
Φ2

2

Φ2
1
, α = Φ1√

2c
.

Note that from (28), 2c = Φ2
1 + Φ2

2 > 2Φ2
2, whence we have

(29) Φ2 − c < Φ2
2 − c2 < 0

2.3. Quadratic nonlinearities: spectral properties of the Hill operator. For the
operator

L = −c2∂2
x − c+ Φ,

we have the representation c = 1
4α2
√

1−κ2+κ4
> 0 and

(30) L = c2α2(−∂2
y + 6k2sn2(y, k)− 2(1 + k2 +

√
1− k2 + k4)).

It is well-known [9] that the first three eigenvalues of Λ1 = −∂2
y + 6k2sn2(y, k), with

periodic boundary conditions on [−K(k), K(k)] are simple. These eigenvalues and the
corresponding eigenfunctions are:

ν0 = 2 + 2k2 − 2
√

1− k2 + k4, φ0(y) = 1− (1 + k2 −
√

1− k2 + k4)sn2(y, k),(31)

ν1 = 4 + k2, φ1(y) = sn(y, k)cn(y, k) = −k−2dn′(y, k),(32)

ν2 = 2 + 2k2 + 2
√

1− k2 + k4, φ2(y) = 1− (1 + k2 +
√

1− k2 + k4)sn2(y, k).(33)

Since the eigenvalues of L and Λ1 are related by λn = α2c2(νn−2(1+k2 +
√

1− k2 + k4)
in the case c > 0 and λn = α2c2(νn−2(1+k2−

√
1− k2 + k4), it follows that the first three

eigenvalues of the operator L, equipped with periodic boundary condition on [−K(k), K(k)]
are simple and λ0 < 0, λ1 < 0, λ2 = 0 for c > 0.
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2.4. Cubic nonlinearities: spectral properties of the Hill operator. Here, we are
interested of the spectral properties of the operator

L = −c2∂2
x − c+ Φ2.

From (28), we have

(34) Φ2
1 =

2c

1 + κ2
, Φ2

2 =
2cκ2

1 + κ2
, α2 =

1

(1 + κ2)c
.

Using (34), we get the following representation

(35) L = c2α2[−∂2
y + 2κ2sn2(y, κ)− (1 + κ2)].

The spectrum of Λ2 = −∂2
y+2k2sn2(y, k) is formed by bands [k2, 1]∪[1+k2,+∞). The first

two eigenvalues and the corresponding eigenfunctions with periodic boundary conditions
on [−2K(κ), 2K(κ)] are simple and

ε0 = k2, θ0(y) = dn(y, k),

ε1 = 1, θ1(y) = cn(y, k),

ε2 = 1 + k2, θ2(y) = sn(y, k).

Since the eigenvalues of L and Λ2 are related by λn = α2c2(εn − (1 + k2)) , it follows that
the first three eigenvalues of the operator L, equipped with periodic boundary condition
on [−2K(κ), 2K(κ)] are simple and λ0 < λ1 < 0 = λ2.

3. Sufficient condition for the positivity of a self-adjoint operator
positive on a finite co-dimension subspace

In this section, we develop an abstract result for positivity of self-adjoint operators,
when acting on a finite co-dimension subspace of a Hilbert space. In the applications, we
would be interested in showing that a given Hill operator is positive, when restricted to
a subspace, with finite co-dimension. The question then is the following - how can one
characterize these subspaces or at least develop sufficient conditions for the positivity?

In a simple situation, we have the following setup. Assume that a self-adjoint operator
H, acting on a Hilbert space X has one simple negative eigenvalue, with an eigenvector,
say η0. Clearly, H|η⊥0 ≥ 0. This of course does not preclude the possibility that for some

other vector ξ0, we still have H|ξ⊥0 ≥ 0. It is reasonable to ask for some characterization

(or at least sufficient condition) of such vectors ξ0.
More generally, one may ask the same question for subspaces with arbitrary finite co-

dimension. Suppose that H has k, k ≥ 1 negative eigenvalues, counted with multiplicities,
with eigenvectors say {η1, . . . , ηk}, which form an orthonormal system. Denoting Z0 =
span{η1, . . . , ηk}, we have H|Z⊥0 ≥ 0. The question is again to come up with a description

or at least criteria to decide which subspaces Z have the property H|Z⊥ ≥ 0. A moment
thought reveals that such subspace Z must necessarily have dimension at least k, that is
dim(Z) ≥ k = dim(Z0).
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3.1. Positivity on a co-dimension one subspace. Our next result gives a sufficient
condition for ξ0, so that L|ξ⊥0 ≥ 0. We will apply this result to establish the stability of

the waves constructed Section 2, but the lemma is of independent interest4.

Lemma 1. Let (H, D(H)) be a self-adjoint operator on a Hilbert space X. Assume that

• H has exactly one negative eigenvalue counted with multiplicities. That is for some
σ > 0, η0 6= 0, η0 ∈ D(H),

Hη0 = −σ2η0,H|η⊥0 ≥ 0.

• There exists δ0 > 0, so that

(36) H|span{η0,Ker(H)}⊥ ≥ δ0Id.

Note that Ker(H) = {0} is allowed.
• There is ξ0 ∈ Ker(H)⊥, ξ0 6= 0, so that

(37) 〈H−1ξ0, ξ0〉 < 0.

Then,
H|ξ⊥0 ≥ 0.

Proof. (Lemma 1) Without loss of generality, we may assume that ‖ξ0‖ = ‖η0‖ = 1. Denote
the positive invariant subspace of H by X+. That is, X+ := span{η0, Ker(H)}⊥. Note
H|X+ ≥ δ0. We take z ∈ ξ⊥0 in the form

(38) z = η0 + ψ0 + ψ, ψ0 ∈ Ker(H), ψ ∈ X+.

Clearly, since ξ0 ∈ Ker(H)⊥,

0 = 〈z, ξ0〉 = 〈η0, ξ0〉+ 〈ψ0, ξ0〉+ 〈ψ, ξ0〉 = 〈η0, ξ0〉+ 〈ψ, ξ0〉
Denote α = 〈η0, ξ0〉, so that 〈ψ, ξ0〉 = −α. Note that α 6= 0, since otherwise, ξ0 ∈ η⊥0 and
hence 〈H−1ξ0, ξ0〉 ≥ 0, a contradiction with (37).

It clearly will suffice to prove that 〈Hz, z〉 ≥ 0, since z is normalized so that 〈z, η0〉 = 1,
but otherwise an arbitrary element of X+. We have

〈Hz, z〉 = 〈Hη0, η0〉+ 〈Hψ, ψ〉 = −σ2 + 〈Hψ, ψ〉.
Thus, it remains to prove that 〈Hψ, ψ〉 ≥ σ2, whenever ψ ∈ X+ : 〈ψ, ξ0〉 = −α. To this
end, consider the positive spectrum of H, that is σ+(H) := σ(H|X+). Note that by (36),
σ+(H) ⊂ [δ0,∞). Consider the spectral decomposition of H|X+ . We have a family of
projections EλinB(X+), so that for every f ∈ X+ and every measurable function χ on
σ+(H), we have

χ(H)f =

∫
σ+(H)

χ(λ)dEλf.

In particular,

ψ =

∫
σ+(H)

dEλψ.

4To the best of our knowledge, this is a new resultIt is possible that we are simply unaware of its
existence in the literature.
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It follows that

|α| = |〈ψ, ξ0〉| = |
∫
σ+(H)

d〈Eλψ, ξ0〉| ≤
∫
σ+(H)

d|〈Eλψ, ξ0〉|

Now, by Cauchy-Schwartz’s inequality and since Eλ = E2
λ, we have

|〈Eλψ, ξ0〉| = |〈Eλψ,Eλξ0〉| ≤ ‖Eλψ‖‖Eλξ0‖ =
√
〈Eλψ, ψ〉

√
〈Eλξ0, ξ0〉

Thus, by Cauchy-Schwartz and the properties of the spectral decomposition, we have

|α| ≤
(∫

σ+(H)

λd〈Eλψ, ψ〉
)1/2(∫

σ+(H)

1

λ
d〈Eλξ0, ξ0〉

)1/2

=

=
√
〈Hψ, ψ〉

√
〈H−1PX+ [ξ0], PX+ [ξ0]〉.

Note that since we required ξ0 ⊥ Ker(H), we have that

PX+ [ξ0] = Pη⊥0 ξ0 = ξ0 − 〈ξ0, η0〉η0 = ξ0 − ᾱη0

Thus,

〈H−1PX+ [ξ0], PX+ [ξ0]〉 = 〈H−1[ξ0 − ᾱη0], [ξ0 − ᾱη0]〉 =

= 〈H−1ξ0, ξ0〉 − 2<(α〈H−1ξ0, η0〉) + |α|2〈H−1η0, η0〉 ≤

= 2<(αᾱσ−2)− |α|2σ−2 =
|α|2

σ2
,

where we have used the crucial inequality (37). Plugging this result back in the inequality
for |α|, we have

|α| ≤
√
〈Hψ, ψ〉 |α|

σ
.

Taking into account that α 6= 0, we conclude 〈Hψ, ψ〉 ≥ σ2, as required.
�

3.2. Positivity on a finite co-dimension subspace. In this section, we generalize the
co-dimension one result to general co-dimensions.

Theorem 1. Let L has k, k ≥ 1 negative eigenvalues, with Z0 = span{η1, . . . , ηk}. Assume
that for some δ0 > 0 , we have

H|span{Z,Ker(H)} ≥ δ0

and for some subspace Z : dim(Z) ≥ k, Z ⊥ Ker(H), H satisfies

(39) H−1|Z ≤ −δ0.

Then,

H|Z⊥ ≥ 0.

Note: Clearly, in the applications, one would like to apply Theorem 1 for subspaces Z
with minimal dimension, that is Z : dim(Z) = k. This is allowed in the current formulation.
We however prefer to state it with inequality for technical reasons, to be discussed below.
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Proof. The proof proceeds by an induction argument on k.
For k = 1, Z is one dimensional, hence Z = span{ξ0} for some ξ0 and the result is

exactly Lemma 1. Assume that we have proved it for some k and consider an operator H
with k + 1 ≥ 2 eigenvalues, η1, . . . , ηk+1 and Z : dim(Z) ≥ k + 1 is subspace.

Take an arbitrary element 0 6= z̃ ∈ Z⊥. We claim that there exists an element η̃ : ‖η̃‖ =
1, with η̃ ∈ span{η1, η2} ⊂ Z0 and z̃ ⊥ η̃. Indeed, either z̃ ⊥ η1 or z̃ ⊥ η2, in either of
which cases we are fine or z̃ is perpendicular to some linear combination of η1, η2 ⊂ Z0, say
η̃ = aη1 + bη2, where a2 + b2 = 1 by the normalization. Consider the projection operator
on to η̃⊥ given by

Pη̃⊥f = f − 〈f, η̃〉η̃
Consider the self-adjoint operator H̃ := Pη̃⊥HPη̃⊥ and the subspace Z̃ := Pη̃⊥Z. It is clear

that dim(Z̃) ≥ k, since we project away at most one dimension.
We claim that H̃ has at most k eigenvalues. This is completely obvious if for example

η̃ = η1, since then H̃ = H|span{η2,...,ηk+1}, similar if η̃ = η2. In the general case, we argue

that the negative subspace of H̃ is spanned by {−bη1 + aη2, η3, . . . , ηk+1}. In fact, one can
even explicitly compute the k negative eigenvalues of H̃ as follows5

(40) − σ2
1b

2 − σ2
2a

2,−σ2
3, . . . ,−σ2

k+1,

where we have used the notation −σ2
j for the jth negative eigenvalue (i.e. Hηj = −σ2

j ηj).

Note that the operator H̃ still has k + 1 non-positive eigenvalues, as it should! These are
the k listed in (40) and the newly generated zero eigenvalue, with eigenvector η̃. In this
regard, note Ker(H̃) = span{Ker(H), η̃}.

We can now apply the induction hypothesis to H̃ and Z̃. Indeed, observe first that
Z̃ ⊥ Ker(H), since Z̃ ⊂ Z. In addition, Z̃ ⊥ η̃ by construction. Thus, Z̃ ⊥ Ker(H̃). In
addition, let z ∈ Z̃ ⊂ Z. Then, z ⊥ η̃ and

〈H̃−1z, z〉 = 〈H−1z, z〉 ≤ −δ0‖z‖2,

by the requirement (39) forH and Z. This is (39) for the pair H̃ and Z̃. From the induction
step, we conclude

H̃|Z̃⊥ ≥ 0.

In particular, for the arbitrary element z̃ ∈ Z⊥ that we have started with, we had z̃ ⊥ η̃
and hence z̃ = Pη̃⊥ z̃. We conclude

〈Hz̃, z̃〉 = 〈H̃z̃, z̃〉 ≥ 0,

which finishes the proof of the induction step and hence Theorem 1. �

4. Spectral stability for the periodic waves in the quadratic case

In this section, we consider the stability of the waves constructed in Section 2. Our main
result is

Theorem 2. The waves described in (23) are spectrally stable for all wave speeds c > 0.

5recall a2 + b2 = 1
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Before we proceed with the proof of Theorem 2, we would like to discuss an interesting
limiting case. To that end, take κ → 1− in the solution Φ (23) and then apply the
transformation (7). We obtain the so-called parabolic peakons in the form

(41) lim
κ→1−

Φκ(η(ξ)) = ϕ(ξ) =
ξ2

6
− c

2
, c =

L2

9
, −L < ξ < L.

This construction goes back to at least the late 70’s and it was revisited in several publica-
tions, [19, 5, 23, 1, 6]. In fact, the authors in [6] placed special emphasis of these explicit
solutions and asked about further properties of these simple solutions. It is easy to directly
check in (6) (see also [6]), that the function displayed in (41) provides a solution to (6) in
(−L,L). Note that this choice of c ensures that ϕ(−L) = ϕ(L). However, while the 2L
periodization of ϕ is clearly a continuous function, it is not a differentiable function at ±L.
Indeed, we have

lim
ξ→L−

ϕ′(ξ) =
L

3
, lim

ξ→L+

ϕ′(ξ) = −L
3
,

which clearly do not match. Thus, one obtains a peakon solution, with corner crests at all
points (2k + 1)L, k ∈ N. It would be interesting to see whether (an appropriate notion
of) stability holds for these waves. Note however, that if one does not impose appropriate
periodicity assumptions on z, one finds that (12) does in fact have solution for some µ > 0
and z ∈ C2(−L,L), see Section 6 for details.

Over the course of the next few sections, we give the proof of Theorem 2.

4.1. Proof of Theorem 2: preliminaries. According to the derivation of (13), we will
show that there does not exists Z ∈ L2[−M,M ] and λ : <λ > 0, so that (13) holds.
That is, the wave ϕ(ξ) = Φ(η) is stable. In fact, we will show that there does not exists
µ : <µ 6= 0 so that

(42) L[Z] = −c2Zηη − cZ + ΦZ = µZη.

That is, we will show that the spectrum of the linearized operator is on the imaginary axis.
We have that the operator L from (30) has two negative eigenvalues, an eigenvalue at zero,
all simple, while the rest of the spectrum is contained in (κ,∞), for some positive κ > 0.
That is, to introduce some notations,{

σ(L) = {−σ2
0} ∪ {−σ2

1} ∪ {0} ∪ σ+(L)
Lχ0 = −σ2

0χ0, Lχ1 = −σ2
1χ1, L[Φ] = 0.

We shall need, towards the end, explicit formulas for these functions and eigenvalues. One
can of course write them explicitly, according to (31), (32) and (33), but we will not do
so for now. We shall need to observe couple of things - first, χ0 and Φ are even functions,
while χ1 is an odd function, second - note the relation χ0(x) = Φ(x) − c0(κ). This is
easily seen, if one compares (33) (which provides Φ) and (31), which describes χ0. Note
specifically however that c0(κ) 6= c, the speed of the wave.

We argue by contradiction. Assuming that there is a solution Z of (42) (with some
µ : <µ 6= 0), we establish some properties. These are later used to obtain a contradiction.

We take a dot product of (42) with 1. We obtain

〈1, L[Z]〉 = µ〈Z ′, 1〉 = 0,
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whence 0 = 〈L[1], Z〉 = 〈Φ− c, Z〉, which implies Z ⊥ Φ− c. Next, take a dot product of
(42) with Φ. We obtain

µ〈Z ′,Φ〉 = 〈L[Z],Φ〉 = 〈Z,L[Φ]〉 = 0,

whence Z ⊥ Φ′.
Finally, take a dot product of (42) with χ0, the eigenfunction corresponding to the lowest

eigenvalue. We have

(43) µ〈Z ′, χ0〉 = 〈L[Z], χ0〉 = 〈Z,L[χ0]〉 = −σ2
0〈Z, χ0〉

On the other hand, recalling that χ′0 = Φ′, we conclude

(44) 〈Z ′, χ0〉 = −〈Z, χ′0〉 = −〈Z,Φ′〉 = 0.

Combining (43) and (44), we obtain 〈Z, χ0〉 = 0. We have shown that Z ⊥ Φ − c0(κ),
Z ⊥ Φ− c, where c0(κ) 6= c = c(κ). In addition, Z ⊥ Φ′. It follows immediately that

(45) Z ⊥ span{1,Φ,Φ′},

Having this information will allows us to rule out oscillatory/complex instabilities.

4.2. Proof of Theorem 2: ruling out complex instabilities. Assuming that the
eigenvalue problem (42) has a solution µ = µ1 + iµ2, µ1 6= 0, µ2 6= 0 and Z = u + iv
((u, v) 6= (0, 0) real valued functions), we reach a contradiction. Indeed, with this notations,
(42) is equivalent to the system

(46)

∣∣∣∣ Lu = µ1u
′ − µ2v

′

Lv = µ2u
′ + µ1v

′

Next, taking into account that the operator L preserves the parity of the function, we
further split u = u1 + u2, v = v1 + v2, where u1, v1 are even functions and u2, v2 are odd
functions. Projecting (46) in even and odd parts, we arrive at

(47)

∣∣∣∣∣∣∣∣
Lu1 = µ1u

′
2 − µ2v

′
2

Lu2 = µ1u
′
1 − µ2v

′
1

Lv1 = µ2u
′
2 + µ1v

′
2

Lv2 = µ2u
′
1 + µ1v

′
1

We have by the self-adjointness of L (and the reality of all functions involved)

(48) µ1〈u′2, v1〉 − µ2〈v′2, v1〉 = 〈Lu1, v1〉 = 〈Lv1, u1〉 = µ2〈u′2, u1〉+ µ1〈v′2, u1〉.

Similarly,

(49) µ1〈u′1, v2〉 − µ2〈v′1, v2〉 = 〈Lu2, v2〉 = 〈Lv2, u2〉 = µ2〈u′1, u2〉+ µ1〈v′1, u2〉.

Adding (48) and (49) yields

µ1(〈u′2, v1〉+ 〈u′1, v2〉) = µ1(〈v′2, u1〉+ 〈v′1, u2〉).

Taking into account µ1 6= 0 and 〈v′1, u2〉 = −〈u′2, v1〉 and 〈u′1, v2〉 = −(〈v′2, u1〉, we conclude
that

(50) 〈u′2, v1〉 = 〈v′2, u1〉.
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Subtracting (49) from (48) yields

µ2(〈v′1, v2〉 − 〈v′2, v1〉) = µ2(〈u′2, u1〉 − 〈u′1, u2〉).
Since µ2 6= 0, we have

(51) 〈v′1, v2〉 = 〈u′2, u1〉.
Evaluating

(52)
〈Lu1, u1〉+ 〈Lv1, v1〉 = µ1〈u′2, u1〉 − µ2〈v′2, u1〉+ µ2〈u′2, v1〉+ µ1〈v′2, v1〉 =

= µ1(〈u′2, u1〉+ 〈v′2, v1〉) + µ2(〈u′2, v1〉 − 〈v′2, u1〉) = 0,

where in the last line, we have used (50) and (51). Now, the condition (45) implies in
particular that

(53) u1, v1 ⊥ span{χ0,Φ, χ1}.
Indeed, since u1, v1 are even and χ1 is odd, we have u1, v1 ⊥ χ1. On the other hand, by
(45), we know that u1 + u2 = <Z ⊥ span{χ0,Φ} = span{1,Φ}. Observe that by parity
considerations, u2 ⊥ span{χ0,Φ} = span{1,Φ}. Thus, it must be that u1 ⊥ span{χ0,Φ}.
Similarly, v1 ⊥ span{χ0,Φ}, which is (53).

By (53) and the structure of the spectrum of L, it follows that u1, v1 lie in the positive
subspace of L, whence

0 = 〈Lu1, u1〉+ 〈Lv1, v1〉 ≥ δ(‖u1‖2 + ‖v1‖2).

Clearly, this implies u1 = v1 = 0. Going back to (47), we obtain, for some constants c1, c2,∣∣∣∣ µ1u2 − µ2v2 = c1

µ2u2 + µ1v2 = c2

Again, since µ1 6= 0, µ2 6= 0 implies that u1 = C1, u2 = C2 for some constants C1, C2. But
then

C1L[1] = 0, C2L[1] = 0,

which combined with L[1] = Φ − c 6= 0 implies C1 = C2 = 0. Thus, we have reached the
zero solution, a contradiction.

4.3. Proof of Theorem 2: ruling out real instabilities. Having this lemma in mind,
we can rule out real instabilities for the eigenvalue problem (42), provided, we know that

(54) 〈L−1[Φ′], [Φ′]〉 < 0.

Indeed, assume the validity of (54) and assume, for a contradiction, that for some µ > 0
and Z real-valued, we have (42). As it was established in (45), we have that Z ⊥ χ0,Φ,Φ

′.
Split in even and odd functions as before: Z = u + v, where u is even and v is odd. The
eigenvalue problem reduces to ∣∣∣∣ Lu = µv′

Lv = µu′

Taking dot products with u and v respectively and adding yields

〈Lu, u〉+ 〈Lv, v〉 = µ(〈v′, u〉+ 〈u′, v〉) = 0.

As before, u ⊥ χ0, χ1,Φ and hence 〈Lu, u〉 > 0 (unless u = 0, in which case, the contra-
diction is obvious right away). Thus, it follows that 〈Lv, v〉 < 0.
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We will show that this last inequality leads to a contradiction as well. Indeed, consider
the Hilbert space X0 := L2

odd, which is clearly an invariant subspace for L. We are in a
position to apply Lemma 1 to the operator H := L, acting on X0 = L2

odd with η0 := χ1.
Clearly, H|L2

odd∩{χ1}⊥ ≥ 0. Take ξ0 := Φ′ ∈ X0. Clearly, ξ0 ⊥ Ker(L) = span{Φ}. In

addition, we assume (54). Thus, by the conclusion of Lemma 1, we will have

(55) L|L2
odd∩{Φ′}⊥ ≥ 0.

On the other hand, Z = u+ v ⊥ Φ′, so it follows that v ⊥ Φ′ (since u ⊥ Φ′ by parity). Of
course v ∈ L2

odd, while 〈Lv, v〉 < 0, a contradiction with (55).

4.4. Computing 〈L−1[Φ′], [Φ′]〉. Due to the rescaling properties, it will suffice to work
with the following operators and functions

β(k) := 1 + k2 +
√

1− k2 + k4;

γ(k) :=
6k2

β(k)
− 2β(k);

Φ̃(y, k) := 6k2sn2(y, k)− 6k2

β(k)
;

L̃ := −∂yy + γ(k) + Φ̃ 0 ≤ y ≤ 2K(k).

We have L̃[Φ̃] = 0. Our goal is to show (54), which is equivalent to

(56) 〈L̃−1[Φ̃′], [Φ̃′]〉 < 0.

In order to compute L̃−1, we need to construct its Green function. This is achieved by
finding another non-trivial solution Ψ̃ : L̃[Ψ̃] = 0. There are methods for constructing
these, roughly by looking at a variation of constants formula like

Ψ̃(x) = Φ̃(x)

∫ x 1

Φ̃2(y)
dy.

It turns out that this, while possible formally, leads to some issues because of the vanishing
in the denominator of the integral. So, we just postulate

Ψ̃(x) := Φ̃(x)

∫ x

0

Φ̃(y)dy − 3Φ̃′(x).

Let us verify that this indeed satisfies L̃[Ψ̃] = 0. By differentiating this identity, we obtain
L̃[Φ̃′] = −Φ̃′Φ̃. We have

L̃[Ψ̃] =

(
L̃[Φ̃]

∫ x

0

Φ̃(y)dy

)
− 2Φ̃′Φ̃− Φ̃Φ̃′ − 3L̃[Φ̃′] = −3Φ̃′Φ̃ + 3Φ̃′Φ̃ = 0.

where we have used L̃[Φ̃] = 0. It is not hard to check that the function Ψ̃ is odd function
in [−K(k), K(k)]. Define the (x independent) Wronskian

W [k] = Ψ̃′(x, k)Φ̃(x, k)− Φ̃′(x, k)Ψ̃(x, k).
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One can now construct the inverse of L̃ as follows. Namely, for a function f ⊥ Ker[L̃] =
span[Φ̃],

L−1f =
1

W [k]

(
Φ̃(x)

∫ x

−K(k)

Ψ̃(y)f(y)dy − Ψ̃(x)

∫ x

−K(k)

Φ̃(y)f(y)dy

)
+ Cf Ψ̃(x),

where the constant Cf is chosen so that L−1[f ] is 2K(k) periodic. In our case, f = Φ̃′ a
we obtain the following formula for CΦ̃′

CΦ̃′ = − Φ̃(K(k))

W [k]Ψ̃(K(k))

∫ K(k)

0

Ψ̃(y)Φ̃′(y)dy.

Thus, we have, after some elementary integration by parts and using the periodicity of Φ̃

〈L̃−1[Φ̃′], [Φ̃′]〉 =
2

W [k]

(
Φ̃2(K(k))

∫ K(k)

0

Ψ̃(y)Φ̃′(y)dy −
∫ K(k)

0

Φ̃2(y)Ψ̃(y)Φ̃′(y)dy

)
−

− 2

W [k]

Φ̃(K(k))

Ψ̃(K(k))

(∫ K(k)

0

Ψ̃(y)Φ̃′(y)dy

)2

.

Clearly, matters reduce to the computation of the following integrals∫ K(k)

0

Ψ̃(y)Φ̃′(y)dy,

∫ K(k)

0

Φ̃2(y)Ψ̃(y)Φ̃′(y)dy.

We have

I1(k) :=

∫ K(k)

0

Ψ̃(y)Φ̃′(y)dy = −3

∫ K(k)

0

(Φ̃′(y))2dy − 1

2

∫ K(k)

0

(Φ̃(y))3dy +

+
Φ̃2(K(k))

2

∫ K(k)

0

Φ̃(y)dy.

On the other hand,

I2(k) :=

∫ K(k)

0

Φ̃2(y)Ψ̃(y)Φ̃′(y)dy = −3

∫ K(k)

0

Φ̃2(y)(Φ̃′(y))2dy − 1

4

∫ K(k)

0

Φ̃5(y)dy +

+
Φ̃4(K(k))

4

∫ K(k)

0

Φ̃(y)dy.

Thus, we may write now,

〈L̃−1[Φ̃′], [Φ̃′]〉 =
2

W (k)

(
Φ̃2(K(k))I1(k)− I2(k)− Φ̃(K(k))

Ψ̃(K(k))
(I1(k))2

)
.

This last expression is clearly a function of k only. While one can in principle compute
this expression explicitly by hand, we have used Mathematica for a symbolic integration.
Here are some of the formulas that we have found. The Wronskian is a positive function
on [0, 1], given by

W [k] = 16(2(
√
k4 − k2 + 1− 1) + k4(2

√
k4 − k2 + 1 + 3− 2k2)− 2k2

√
k4 − k2 + 1 + 3k2).
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while h(k) = Φ̃2(K(k))I1(k)− I2(k)− Φ̃(K(k))

Ψ̃(K(k))
(I1(k))2 = A(k)

B(k)
where

B(k) = (k2 +
√
k4 − k2 + 1 + 1)4((k2 +

√
k4 − k2 + 1 + 1)E(k)− (

√
k4 − k2 + 1 + 1)K(k))

A(k) is a little complicated to display, so we don’t provide the explicit formula here. We
can however plot the graph of this function for k ∈ (0, 1), see Figure 1 below. Since
obviously the function is negative for all values of k ∈ (0, 1), we conclude that (56) holds
and thus, Theorem 2 is proved in full.

0.2 0.4 0.6 0.8 1.0

-70

-60

-50

-40

-30

Figure 1. The function 2h(k)/W (k) in blue. The yellow line is at y =

−24 = limk→1−
2h(k)
W (k)

, while the red line is at y = −24π = limk→0+
2h(k)
W (k)

5. Spectral stability for the periodic waves in the cubic model

Our main result for the cubic model is the following.

Theorem 3. The waves constructed in (27) and (28) are spectrally stable with respect to
co-periodic perturbations.

The proof of Theorem 3 follows path similar to the proof of Theorem 2. We first rule
out complex instabilities. For the real instabilities, we need to use Theorem 1 for specific
co-dimension two subspace Z : Z ⊥ Ker(L). Finally, we need to verify that L−1|Z < 0,
which reduces to verifying the same type of quantity as before.

Based on the information for the operator L in (35), we have the following spectral
picture {

σ(L) = {−σ2
0} ∪ {−σ2

1} ∪ {0} ∪ σ+(L)
Lχ0 = −σ2

0χ0, Lχ1 = −σ2
1χ1L[Φ] = 0.

Note that χ0, χ1 are even functions, while Φ is an odd function. Next, we are considering
the eigenvalue problem (19). Taking dot product with the constant 1 yields

〈L[Z], 1〉 = µ〈Z ′, 1〉 = 0.
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Thus, 〈Z,L[1]〉 = 〈L[Z], 1〉 = 0, whence Z ⊥ L[1] = Φ2 − c. Taking dot product of (19)
with Φ, we obtain

µ〈Z ′,Φ〉 = 〈L[Z],Φ〉 = 〈Z,L[Φ]〉 = 0,

whence Z ⊥ Φ′.

5.1. Proof of Theorem 3: Ruling out complex instabilities. We now rule out com-
plex instabilities. We proceed in the same way as in the derivation of (46) and subsequently
(47), (50), (51). Instead of verifying the quantity (52) however6, we now compute

〈Lu2, u2〉+ 〈Lv2, v2〉 = µ1(〈u′1, u2〉+ 〈v′1, v2〉) + µ2(〈u′1, v2〉 − 〈v′1, u2〉) =

= µ1(〈u′1, u2〉+ 〈u′2, u1〉) + µ2(〈u′1, v2〉+ 〈v′2, u1〉) = 0.

where we have used (50) and (51). But now, u2, v2 are both odd functions and as such,
project on the non-negative subspace of L (recall that the negative subspace is spanned by
χ0, χ1, both even functions). Thus, it follows that 〈Lu2, u2〉 = 0 and 〈Lv2, v2〉 = 0, whence

u2 = C1Φ, v2 = C2Φ.

Putting this back in (47) yields in particular∣∣∣∣ µ1u
′
1 − µ2v

′
1 = 0

µ2u
′
1 + µ1v

′
1 = 0

Since µ1 6= 0, µ2 6= 0, it follows that u1 = A1, v1 = B1. But then again from (47), we obtain∣∣∣∣ A1L[1] = (µ1C1 − µ2C2)Φ′

B1L[1] = (µ2C1 + µ1C2)Φ′.

Since L[1] = Φ2 − c 6= Φ′, we have A1 = B1 = 0 and C1 = C2 = 0, which is the zero
solution for the spectral problem, a contradiction.

5.2. Proof of Theorem 3: Ruling out real instabilities. In this section, we rule out
the real instabilities. Assume for a contradiction that there is µ > 0, so that the eigenvalue
problem (19) has a solution Z = u+ v, where u is even and v is an odd function. We have
then

(57)

∣∣∣∣ Lu = µv′

Lv = µu′

Taking dot products with u and v respectively and adding

(58) 〈Lu, u〉+ 〈Lv, v〉 = µ(〈v′, u〉+ 〈u′, v〉) = 0.

Again, the odd function v projects over the non-negative subspace of L only. Thus,
〈Lv, v〉 ≥ 0. Assume first that 〈Lv, v〉 = 0. It follows that v = c0Φ for some constant
c0. It follows from (57) that

µu′ = L[c0Φ] = 0,

whence u = c1. But then, from the other equation in (57),

c1L[1] = µc0Φ′.

Again L[1] = Φ2 − c 6= Φ′ and this is only possible if c1 = c0 = 0, a contradiction.

6which is by the way still valid
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Thus, it must be that 〈Lv, v〉 > 0. By (58), this implies that 〈Lu, u〉 < 0. We will show
that this leads to a contradiction as well.

We need the following simple lemma7.

Lemma 2. Let X be a real Hilbertian space, with Z = span{η1, η2} ⊂ X , where η1, η2 :
η1 ⊥ η2. Let A be a self-adjoint operator on X . Then A|Z < 0 if and only if the matrix

D = (Dij)i,j=1,2, Dij = 〈Aηi, ηj〉.
is negative definite. Equivalently, D is negative definite if

〈Aη1, η1〉 < 0, det(D) > 0.

Proof. Assume A|Z < 0. Immediately, 〈Aη1, η1〉 < 0. Let

g(λ) := 〈A(λη1 + η2), λη1 + η2〉 = λ2〈Aη1, η1〉+ 2λ〈Aη1, η2〉+ 〈Aη2, η2〉.
In particular, g(λ) < 0 for all λ. Thus, the quadratic function λ→ g(λ) does not have real
roots, that is

〈Aη1, η2〉2 − 〈Aη1, η1〉〈Aη2, η2〉 < 0.

Since det(D) = −(|〈Aη1, η2〉|2 − 〈Aη1, η1〉〈Aη2, η2〉) > 0, we have shown one direction.
Conversely, assume that D is negative definite. Then since det(D) > 0, it follows that

g(λ) = 0 does not have real solutions. This, paired with 〈Aη1, η1〉 < 0 implies that g(λ) < 0
for all real λ, which in turn means that A|Z < 0. �

We claim that in order to obtain a contradiction, it is enough to show

(59) L−1|span{Φ′,Φ2−c} < 0.

Indeed, since we already have that Z = u + v ⊥ Φ′ and v ⊥ Φ′ (as an odd function), we
conclude that u ⊥ Φ′. Similarly, Z = u + v ⊥ Φ2 − c, v ⊥ Φ2 − c (as an odd function),
whence u ⊥ Φ2 − c. Overall, u ∈ span{Φ′,Φ2 − c}⊥. On the other hand, if (59) holds,
by Theorem 1, we would conclude L|span{Φ′,Φ2−c}⊥ ≥ 0, so in particular 〈Lu, u〉 ≥ 0, a
contradiction with (58), which implies 〈Lu, u〉 < 0. Thus, matters have been reduced to
showing (59).

By Lemma 2, in order to prove (59), it is enough to show that the matrix

D =

(
〈L−1[Φ′],Φ′〉 〈L−1[Φ2 − c],Φ′〉
〈L−1[Φ′],Φ2 − c〉 〈L−1[Φ2 − c],Φ2 − c〉

)
is negative definite. We have (recalling Φ2 − c = L[1]),

〈L−1[Φ′],Φ2 − c〉 = 〈Φ′, L−1[Φ2 − c]〉 = 〈Φ′, L−1[L[1]]〉 = 〈Φ′, 1〉 = 0.

Also,
〈L−1[Φ2 − c],Φ2 − c〉 = 〈L−1[L[1]],Φ2 − c〉 = 〈1,Φ2 − c〉 < 0,

where in the last step, we have made use of (29). Thus, the matrix D is diagonal, with
D22 < 0. It would follow that D is negative definite, if we can verify that D11 < 0. Thus,
we have reduced matters, again, to showing that

(60) 〈L−1[Φ′],Φ′〉 < 0.

7The lemma is well-known, but we add its proof for completeness, since we don’t have a direct reference
for it.
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5.3. Computing 〈L−1[Φ′],Φ′〉. By rescaling and from (35), we may take L as follows

L = −∂2
y + 2κ2sn2(y, k)− (1 + κ2)

Φ = sn(y, k),−2K(κ) ≤ y ≤ 2K(κ).

As before, the first order of business is to construct the Green’s function. We need a
second function in the kernel of L, in addition of Φ. Normally, we would take Ψ(x) =
Φ(x)

∫ x 1
Φ2(y)

dy, but note that the (definite) integral would be divergent over any interval

containing zero, because of the quadratic singularity of sn(y, k) at y = 0. Instead, one
integrates by parts and we come up with an equivalent expression, which is however well-
defined. Namely, using that

1

sn2(x, κ)
= − 1

dn(x, κ)

∂

∂x

cn(x, κ)

sn(x, κ)

and (formally) integrating by parts, we get

(61) Ψ(x) = − cn(x, κ)

dn(x, κ)
+ κ2sn(x, κ)

∫ x

0

cn2(y, κ)

dn2(y, κ)
dy.

This formula makes sense - note the lack of singularity in the denominator. Interestingly,
for fixed κ, the function x → Ψ(x, κ) turns out to be a periodic function in the basis
interval [−2K(κ), 2K(κ)], but its derivative x → ∂xΨ(x, κ) is not periodic8 anymore at
±2K(κ).

Define the Wronskian by the standard formula

W [κ] = Ψ′(x, κ)Φ(x, κ)−Ψ(x, κ)Φ′(x, κ).

Using Mathematica, we have found that W [κ] = 1, which confirms once again that the
function Ψ constructed in (61) is another non-trivial solution of LΨ = 0. We can now
represent for any f ∈ L2

per[−2K(κ), 2K(κ)],

L−1f(x) =
1

2

(
Φ(x)

∫ x

−2K(κ)

Ψ(y)f(y)dy −Ψ(x)

∫ x

−2K(κ)

Φ(y)f(y)dy

)
+ CfΨ(x).

where the constant Cf is to be selected so that the function x → L−1f(x) is periodic in
[−2K(κ), 2K(κ)].

For the function of interest, namely f = Φ′, we find that L−1f(−2K(k)) = L−1f(2K(κ))
for all values of C, but when we impose the condition ∂xL

−1f |x=−2K(k) = ∂xL
−1f |x=2K(k),

we come up with a condition for CΦ′

CΦ′ =
1

4Ψ′(2K(κ))

∫ 2K(κ)

−2K(κ)

Ψ(x)Φ′(x)dx.

8This is complicates matters somewhat, when one construct the Green’s function, but not in a major
way
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Now that we have a proper formula for L−1[Φ′], we may compute

〈L−1[Φ′],Φ′〉 =
1

2

[〈
Φ

∫ x

−2K(κ)

Ψ(y)Φ′(y)dy,Φ′
〉
−
〈

Ψ(x)

∫ x

−2K(κ)

Φ(y)Φ′(y)dy,Φ′
〉]

+

+
1

4Ψ′(2K(κ))
(〈Ψ,Φ′〉)2.

After integrating by parts, we get〈
Φ

∫ x

−2K(κ)

Ψ(y)Φ′(y)dy,Φ′
〉

= −1

2

∫ 2K(κ)

−2K(κ)

Φ2(x)Φ′(x)Ψ(x)dx

and 〈
Ψ(x)

∫ x

−2K(κ)

Φ(y)Φ′(y)dy,Φ′
〉

=
1

2

∫ 2K(κ)

−2K(κ)

Φ2Φ′Ψdx.

Putting it together in the formula for 〈L−1[Φ′],Φ′〉, we obtain

(62) 〈L−1[Φ′],Φ′〉 = −1

2

∫ 2K(κ)

−2K(κ)

Φ2Φ′Ψdx+
1

4Ψ′(2K(κ))

(∫ 2K(κ)

−2K(κ)

ΨΦ′

)2

.

Clearly, this last expression is a function of κ only. Computing precisely the integrals by
hand is not easy, even though some of them result in simple expressions, for example∫ 2K(κ)

−2K(κ)

ΨΦ′ = −2K(κ).

We use Mathematica for the symbolic integration9 to obtain the precise formulas. Below,
we provide the graph of the resulting function, from which it is clear that (60) is satisfied.

0.2 0.4 0.6 0.8 1.0

-7

-6

-5

-4

-3

-2

-1

Figure 2. The function κ → 〈L−1[Φ′],Φ′〉 in blue. The orange line is
y = −1 = limk→1−〈L−1[Φ′],Φ′〉.

9Even within Mathematika, we need to use the representation (61) to split and integrate in parts by
hand, whenever possible, in order to obtain explicit formulas
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6. The parabolic peakons are “unstable” in the absence of periodic
boundary conditions

As we have discussed in the previous sections, the parabolic peakons may be considered
as limit solutions of the arise as a limit of the stable snoidal solutions of the Ostrovsky
model introduced in (23). In that sense, one might be tempted to claim that they are
stable. We have however left this question open. This is partially due to the difficulty
of defining an appropriate boundary conditions for the corresponding linearized problem.
In this section, we construct (almost explicitly) solutions of (18), which lack the required
periodic properties, but are nevertheless smooth inside (−L,L) and satisfy the equation
in classical sense. So, one can say that in a way the parabolic peakons are unstable, once
the perturbations are allowed to have “wild” boundary conditions.

Theorem 4. The parabolic peakons ϕ, given by (41) are spectrally unstable for all L > 0 in
the sense that there exists z ∈ C2(−L,L) (in fact z ∈ C∞(−L,L)) so that (12) is satisfied
in a classical sense for ξ ∈ (−L,L).

Note: As we establish below, the 2L periodization of the function z constructed here is
not even continuous at ±L, since

lim
ξ→−L+

z(ξ) 6= 0, lim
ξ→L−

z(ξ) = 0.

Thus, the instability result claimed in Theorem 4 is not in the sense of Definition 1, but
rather in a milder sense, see the precise description above.

Proof. Our proof proceeds via the same approach, via the change of variables (7). In this
simple case, with the explicit formula (41), we will be able however to explicitly calculate
ξ = ξ(η) and its inverse. Indeed, taking derivative in η in (7), we obtain

(63)
dΞ

dη
= 1− Ψ′(η)

c
= 1− ϕ(ξ)

c
=

3

2L2
(L2 − ξ2).

Treating this last equality as a separable ODE, we have dξ
L2−ξ2 = 3

2L2dη. By integrating the

ODE, we obtain the formula

ξ = L
Ce

e3η

L − 1

Ce
e3η

L + 1
.

This gives us an arbitrary solution of (63). We set C = 1 as a particular solution, which
gives us

(64) ξ = Ξ(η) = L
e
e3η

L − 1

e
e3η

L + 1
= L tanh(3η/(2L)).

Clearly, the function Ξ : (−∞,∞)→ (−L,L) is one-to-one and it has an inverse function
η = η(ξ) : (−L,L) → (−∞,∞). Thus, in this case the interval (−M,M), which we used
to get from inverting the transformation ξ = Ξ(η) is actually degenerate, in that M =∞.
Using this last formula in (41), we obtain a formula for Φ. More precisely,

(65) Φ(η) = ϕ(Ξ(η)) =
L2

6
tanh2(3η/(2L))− L2

18
=
L2

9

(
1− 3

2
sech2(3η/(2L))

)
.
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Note that −c+ Φ = −L2

6
sech2(3η/(2L)). We will show that for some µ > 0, the resulting

eigenvalue problem

(66) (−L
2

81
∂ηη −

1

6
sech2(3η/(2L)))Z = ±µZη, −∞ < η <∞,

has a solution Z.
We make a few more transformation for (66). If we take f : Z(η) = f(3η/(2L)), it leads

us into the equivalent eigenvalue problem

(67) − f ′′(x)− 6 sech2(x)f(x) = ±µ1f
′(x), x ∈ R1,

where µ1 = 54µ
L

.
Next, we change variables to reduce (67) to a regular static Schrödinger equation, i.e.

one where is no first derivative terms. To this end, fix the plus sign10 in (67). Take

q : f(x) = e−
µ1
2
xq(x). Plugging this into (67) results in the new equation in terms of q

(68) − q′′(x)− 6 sech2(x)q(x) = −µ
2
1

4
q(x).

In this form, we can solve the problem explicitly. Indeed,

L = −∂2
x − 6 sech2(x) = L+ − 1

where L+ is the Schrödinger operator arising in the linearization around the soliton sech(x)
in the cubic NLS. As such, we know that for q1 := − sech′(x) = sech(x) tanh(x), L+[q1] = 0
or in terms of L, for µ1 = 2, we have

(69) − q′′1 − 6 sech2(x)q1 = −q1.

From this last formula for q1, it is clear that the (2L periodization of the) corresponding
function z cannot be even continuous at ±L. Indeed,

lim
ξ→−L+

z(ξ) = lim
η→−∞

Z(η) = lim
x→−∞

f(x) = lim
x→−∞

e−x sech(x) tanh(x) = −2

On the other hand

lim
ξ→L−

z(ξ) = lim
x→∞

e−xf(x) = 0.

Hence, we establish that the 2L periodization of the function z constructed here is not
even continuous at ±L. On the other hand, z ∈ C∞(−L,L) and it satisfies the eigenvalue
equation (12) for ξ ∈ (−L,L) by tracing back the changes of variables.

�
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