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Abstract. In this paper, we study numerically the existence and stability
of some special solutions of the nonlinear beam equation: utt + uxxxx + u −
|u|p−1u = 0 when p = 3 and p = 5. For the standing wave solutions u(x, t) =

eiωtϕω(x) we numerically illustrate their existence using variational approach.
Our numerics illustrate the existence of both ground states and excited states.

We also compute numerically the threshold value ω∗ which separates stable

and unstable ground states. Next, we study the existence and linear stability
of periodic traveling wave solutions u(x, t) = φc(x+ ct). We present numerical

illustration of the theoretically predicted threshold value of the speed c which

separates the stable and unstable waves.

1. Introduction. We consider the nonlinear beam equation

utt + ∆2u+ u = f(u), (1)

which describes the relationship between the beam’s deflection and the applied load.
This equation, with a particular nonlinearity was considered first in [7] as a model for
the suspension bridge. Numerical evidence in the case of exponential nonlinearity
suggests that traveling waves are unstable for small speeds c and exhibit soliton like
behavior for speeds near the critical value

√
2. The nonlinear fourth-order beam

equation has been studied in the last decade both numerically and analytically, see
[6], [1], [3], [5]. It is interesting because the solitary waves of other higher-order
equations, such as the KdV equation and the generalized Boussinesq equations
satisfy a second-order ODE whereas the solitary waves of the beam equation satisfy
a fourth-order elliptic equation. There is no maximum principle available for fourth-
order PDEs. Thus the ground states may not necessarily be positive, in fact, they
may be oscillatory. There is no explicit formula for the solitary waves and this makes
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it hard to obtain the spectral information as well. In [6], the existence of ground-
state solitary traveling wave solutions of (1) in the form u(x, t) = ϕ(x+ct) was shown
for f(u) = |u|p−1u using a constrained minimization technique. Some qualitative
conditions on the wave speed c which imply orbital stability and instability of the
solitary waves were given as well. In a similar manner, the existence and orbital
stability of solitary standing waves is also considered. The analysis there relies more
on the variational characterization of the ground states rather than the linearized
operator. The authors of [5] showed the existence of traveling wave solutions of (1)
for a large class of nonlinearities f and for optimal range of speeds c by adapting
the Nehari manifold approach, commonly used for second-order problems, to this
fourth order problem.

In the current paper, we present some numerical results for the periodic beam
equation:

utt + uxxxx + u = |u|p−1u (2)

where (t, x) ∈ R1 × [−L,L]. In the first part, we study the existence and stability
of the standing wave solutions u(x, t) = eiωtϕω(x) in the cases p = 3 and p = 5 for
ω ∈ (−1, 1). Secondly, we study the existence and linear stability of the traveling

wave solutions u(x, t) = φc(x+ ct) for p = 3 when c ∈ (−
√

2,
√

2). Our assumption
is both ϕω and φc are even functions. The choice of power for the nonlinearity is
motivated by the importance of odd p’s in the PDE models and by our goal to make
the numerics as simple as possible and still be able to show the numerical values of
the theoretically predicted threshold values for stability ω∗ and c∗ in a nontrivial
model of interest. In fact, it is known (see [6] ) that values of p ≥ 9 produce unstable
waves only.

2. Standing wave solutions. In this section, we will present our numerical results
for the existence and the orbital stability of the standing wave solutions of (2) in
the form:

u(x, t) = eiωtϕω(x) (3)

where ϕω(x) is a real-valued periodic function satisfying the boundary condition:
ϕω(−L) = ϕω(L). Substituting the anzatz (3) into (2), we get

ϕ
′′′′

ω + (1− ω2)ϕω − |ϕω|p−1ϕω = 0 (4)

where x ∈ [−L,L].

2.1. The existence of standing wave solutions. In the whole line case scenario,
the existence of smooth and rapidly decaying solutions to (4) were shown in [6]. If
ϕ0 is a ground-state solution satisfying (3) with ω = 0, then

ϕω = (1− ω2)1/(p−1)ϕ0((1− ω2)1/4x) (5)

If the equation is considered in [−L,L] with periodic boundary conditions, the
existence of smooth spatially periodic standing waves when ω ∈ (−1, 1) was shown
in [4]. In addition, in this paper the authors prove orbital stability for these waves
under certain conditions. Our goal here is to illustrate all of the results in [4]
numerically and in particular to compute the threshold value ω∗ that separates
stability and instability regions. The range of ω ∈ (−1, 1) here is necessary for the
existence of these waves since this guarantees that the functional that is minimized
is bounded from below.
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2.1.1. Method. As in [6] for the whole line case, and in [4] for the periodic case, we
use a constrained minimization technique in order to show numerically the existence
of the standing wave solutions of (2) since we only aim to illustrate the above
results and to produce a numerical solution that we can then use for the stability
calculations. We consider the following minimization problem:

minimize
u

Iω(u) =

∫ L

−L
(u′′(x))2 + (1− ω2)u2(x)dx

subject to

∫ L

−L
up+1(x)dx = 1

(6)

If ψ is the solution to (6), then ϕω = (Iω(ψ))
1

p−1ψ solves (4). We expand ψ in the
Fourier basis, assuming ψ is even, to get

ψ(x) '
N∑

k=−N

ake
ikx = a0 +

N∑
k=1

2ak cos kx (7)

We use Matlab’s built-in interior-point algorithm in order to solve the minimiza-
tion problem (6). Using the Fourier basis requires us to map [−L,L] to [−π, π].
Thus by change of variables, the minimization problem (6) becomes equivalent to:

minimize
u

Iω(u) =

∫ π

−π

(π
L

)4
(u′′(x))2 + (1− ω2)u2(x)dx

subject to

∫ π

−π
up+1(x)dx = 1

(8)

Remark 1. Note that we work in two cases, p = 3 and p = 5. When L increases,
as expected, N also increases. Because of the nonlinear term, we have to deal with
more terms in the case p = 5 than in the case p = 3.

2.1.2. Results. Our numerical results show that the minimization problem (8) has
global and local minima. If ψ1 is the global (local) minimizer of (8) where we have

ψ1 =

N∑
k=−N

ake
ikx, then ψ2 =

N∑
k=−N

bke
ikx satisfying ak = ±bk is also a global (local)

minimizer for (8). Both minimizers, local or global, multiplied by the constant

(Iω(ψ))
1

p−1 satisfy the equation (4). In Figure 1, we present two standing wave
solutions, one derived from the global minimizer and the other derived from the
local minimizer for p = 3 case when ω = 0.5 and L = 20π. The global minimizers
are referred to as ground states and the local minimizers are the excited states.
The stability of both states is of interest, but we will only discuss the stability of
the ground states here. We will compare our numerical results with the theoretical
predictions in [4] and [6]. In Figure 2, we present the standing wave solutions
derived from the global minimizers of the minimization problem (8) as L and ω
varies.

2.2. Orbital stability of standing wave solutions. For the whole line case
scenario in [6], using Grillakis-Shatah-Strauss type arguments, it was shown that
the standing waves (5) are orbitally unstable for p ≥ 9. The waves are orbitally

stable for p < 9 for
√

2(p−1)
p+7 < |ω| < 1 and orbitally unstable for 0 ≤ |ω| ≤

√
2(p−1)
p+7 .

For such ω and p, the authors of [4] showed that the standing waves are orbitally
stable if d′′(ω) > 0 where
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Figure 1. Two standing waves are shown for p = 3, ω = 0.5 and
L = 20π. The dashed line is the standing wave derived from a local
minimizer of (8) and the solid line is derived from a global one.
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Figure 2. Existence of standing waves. ϕω versus position when
p = 3, (a) for different values of ω for L = 50π (b) for different
values of L for w = 0.8.

d(ω) =
p− 1

2(p+ 1)
M(ω)

p+1
p−1 , M(ω) := inf{Iω(u) : ‖u‖Lp+1 = 1} (9)

for all p ∈ (1,+∞) in dimension d = 1, 2, 3, 4 and for 1 < p < 2d
d−4 − 1, d ≥ 5 and

ω ∈ (−1, 1). In Figure 3, one can observe the concavity of d(ω) for p = 3 and p = 5
when L = 50π.

Our numerical computations showed that for any L, there exists ω∗ such that if
ω > ω∗ then d′′(ω) > 0 and we observed ω∗ decreases as L increases. In Table 1,
we give some ω∗ values for different L values.

Claim. Based on our numerical results, the relation between ω∗ and L is found as

ω∗ =

√
2(p− 1)

p+ 7

(
1 +

C

L

)
(10)

where C = C(L, p).
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Figure 3. Orbital stability of standing wave solutions. M(ω) ver-
sus ω when L = 50π, (a) p = 3, the graph is concave up for
ω ∈ (0.64, 1), (b) p = 5, the graph is concave up for ω ∈ (0.82, 1).

p ω∗ L

3
0.715± 0.005 π
0.655± 0.005 ∈ [2π, 50π]

0.6375± 0.0025 100π

5
0.865± 0.005 π
0.825± 0.005 ∈ [2π, 50π]

0.8175± 0.0025 100π

Table 1. ω∗ values as L varies.

Remark 2. When L → ∞, ω∗ becomes equal to
√

2(p−1)
p+7 which is the case in [6]

(see also [4]).

2.3. Space-time evolution of standing waves. In order to support our claim
for ω∗ as in (10), we have checked the space-time evolution of the periodic standing
wave solutions for ω > ω∗ and ω < ω∗. For our calculations, we mapped the space
domain [−L,L] to [−π, π]. We picked L = 30π where the claimed ω∗ is around 0.66
for p = 3 and 0.83 for p = 5. Figure (4) (a) shows snap-shots from the simulation
of the periodic standing wave moving in time for ω = −0.85, p = 3. Figure (4) (b)
is the space-time evolution of this standing wave and one can see that the wave is
orbitally stable. However when we picked ω = 0.55, we observed that the standing
wave is not orbitally stable. Figure (5) (a) presents the corresponding space-time
evolution. Similarly we repeated the process for p = 5. We picked ω = −0.95 and as
shown in Figure 6, we observed that the standing wave is orbitally stable. However,
when we picked ω = 0.65, as in Figure 5 (b), we observed that the periodic standing
wave is not orbitally stable.

3. Traveling wave solutions. In this section, we study the traveling wave solu-
tions u(x, t) = φc(x+ ct) of (2) when p = 3. These waves satisfy the equation

φ′′′′c + c2φ′′c + φc = φ3c (11)

where φc(−L) = φc(L) and 0 ≤ |c| <
√

2. As before, the range for wave speed

∈ (−
√

2,
√

2) is required so that the functional that is being minimized in the
constrained minimization procedure has a bound from below.
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Figure 4. (a) Snap-shots from the simulation of a periodic stand-
ing wave for p = 3, ω = −0.85, L = 30π when t = 0 (blue),
t = 5 (red), t = 17 (green), t = 24 (pink), t = 37 (purple), t = 49
(cyan), t = 56 (black). (b) the space-time evolution of the periodic
standing wave.

(a) (b)

Figure 5. Space-time evolution of the standing wave for L = 30π
(a) p = 3, ω = −0.55 (b) p = 5, ω = −0.65

3.1. Existence of traveling wave solutions. We need to show the existence
of solutions to (11). We will identify (11) as an Euler-Lagrange equation for the
following minimization problem

Ic(u) =

∫ L

−L
(|u′′(x)|2 − c2|u′(x)|2 + |u(x)|2)dx→ min

subject to K(u) =

∫ L

−L
|u(x)|4dx = 1

where c ∈ (−
√

2,
√

2). We have by Sobolev embedding

‖u‖L4([−L,L]) ≤ C‖u‖H2[−L,L].
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Figure 6. (a) Snap-shots from the simulation of a periodic stand-
ing wave for p = 5, ω = −0.95, L = 30π when t = 0 (blue), t = 5
(red), t = 22 (green), t = 28 (pink), t = 39 (purple), t = 44 (black).
(b) the space-time evolution of the periodic standing wave.

Note that
∫ L
−L u

′(x)2dx = −
∫ L
−L u(x)u′′(x)dx ≤ 1

2

∫ L
−L u(x)2dx + 1

2

∫ L
−L u

′′(x)2dx.
Thus one can estimate

Ic(u) ≥
∫ L

−L
(|u′′(x)|2 − c2

2
|u′′(x)|2 − c2

2
|u(x)|2 + |u(x)|2)dx ≥ (1− c2

2
)‖u‖H2[−L,L].

Thus Ic(u) is bounded from below for each admissible u and for c ∈ (−
√

2,
√

2). We
conclude that the quantity

Imin
c := inf

‖u‖L4=1
Ic(u) > 0,

is well-defined. Take a smooth minimizing sequence un, that is, ‖un‖L4 = 1, and

Ic(un)→ Imin
c .

In particular, we have that supn ‖un‖H2 < ∞. We first take an H2 weakly con-
vergent subsequence, denoted again by un, un → u. By the compactness of the
embedding H2[−L,L] ↪→ L4[−L,L], we can select a convergent (in the topology of
L4[−L,L]) subsequence, let us denote it again by un, un → u. Clearly u : ‖u‖L4 = 1
and by the lower-semicontinuity of the norms with respect to weak convergence, we
have

Ic ≤ lim inf
n

Ic(un) = Imin
c ,

whence u is an actual solution of the minimization problem.
The standard Euler-Lagrange scheme then produces a periodic solution of the

equation

u′′′′ + c2u′′ + u = u3.

Setting φc =
√
Imin
c u gives a solution of (11), for which we have already shown

φc ∈ H2[−L,L].
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3.1.1. Method. Similar to the standing waves case, we used the constrained mini-
mization technique and worked on:

minimize
u

J(ψ) =

∫ π

−π

(π
L

)4
(ψ′′)2 − c2

(π
L

)2
(ψ′)2 + ψ2dx

subject to

∫ π

−π
ψ4(x)dx = 1

(12)

to verify the numerical existence of the traveling waves φc that solve (11) where

φc =
√
J(ψ)ψ.

Similar to the standing waves case, we used Fourier basis to expand ψ, assuming
that ψ is even. In order to solve the minimization problem (12), as in the standing
waves case, we used Matlab’s built-in interior-point algorithm.

3.1.2. Results. Our numerical results show that the minimization problem (6) has
global and local minima and both minimizers, local or global, after multiplied by
the constant

√
J(ψ), satisfy the equation (11). In Figure 7, we see the traveling

waves derived from the global minimizers of (12).
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Figure 7. Existence of traveling waves. φc versus position for
different values of c when L = 100π and p = 3. c = 0 corresponds
to the steady state solution.

3.2. Linear stability of traveling wave solutions. In order to find the linear
stability of the traveling wave solutions φc, first we study the spectrum of the
linearized operator about φc. If we substitute u(x, t) = φc(x+ ct) + v(x+ ct, t) into
(2) with p = 3, we get

vtt + 2cvtx + c2vxx + vxxxx + v − ((φc + v)3 − φ3c) = 0 (13)

Then the linearized equation becomes:

vtt + 2cvtx +Hv = 0 (14)

where H = D4 + c2D2 + 1− 3φ2c .
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Figure 8. The first and the second minimum eigenvalues of H as
L varies on [5π, 31π] for c = 0, c = 1 and c = 1.3.

3.2.1. Spectrum of the linear operator H. Since H is a fourth order operator, and
φ′ is oscillatory, it is not trivial to obtain its spectrum. For example we cannot
apply Sturm-Liouville Theory as we do for the second order operators. Classical
results on periodic self-adjoint operators (see for example [8]) provide us with the
following.

• There is no essential spectrum since the perturbation has the same period.
• Since H is a self adjoint operator with domain D(H) = H4

per[−L,L], an iso-
lated point in the spectrum of H is also an eigenvalue and it is real.

• 0 is the eigenvalue of H with the eigenfunction φ′c. Since we assume that φc
is even, we can restrict H to the even subspace and 0 is not an eigenvalue.

• The bottom of the spectrum of H is a negative number. Indeed,

〈Hϕ,ϕ〉 = −2

∫ L

−L
ϕ4(x)dx < 0,

hence σ(H) ∩ (−∞, 0) 6= ∅. Unfortunately, we cannot verify analytically that
this eigenvalue is simple, although this is easily seen in our numerical simula-
tions, for all values of the parameter c.

3.2.2. Results. Our numerical results showed that H has only one negative eigenva-
lue for any c ∈ (0,

√
2) and L > 0 and, that eigenvalue is simple. We observed that

for any c ∈ (0,
√

2), there exists a monotonicity between the minimum eigenvalue
and the period L and also a monotonicity between the minimum eigenvalue and
c. In other words, as c and L increase, the minimum eigenvalue approaches to 0
monotonically. Based on that observation, we became interested in the question:
Are there any c and L values such that the minimum eigenvalue is positive? Be-
cause of the monotonicity we observed, we focused on c values close to

√
2 and L

values arbitrarily large. Numerical calculations show that the minimum eigenvalue
of H when c = 1.4 as L varies on [π, 400π] remained around −0.118. Note that we
worked on positive c values, since the operator H is quadratic in c, so our results
are also true for c ∈ (−

√
2, 0).
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3.2.3. Stability/Instability results. In [9], and in more general situations in [10], it
is proved that there exists a threshold value of the speed which divides the intervals
of stability and the intervals of instability. Following these papers, consider linear,
second-order in time equations in the general form

utt + 2ωutx +Hu = 0, (t, x) ∈ R1 ×R1 or R1 × [−L,L] (15)

where H = Hc is a self-adjoint operator acting on L2, with domain D(H) and ω is a
real parameter. Note that it is better at this point to consider ω as an independent
parameter, and to ignore the fact that in the applications ω = c.

The self-adjoint operator H has one simple negative eigenvalue, a simple eigen-
value at zero and the rest of the spectrum is contained in (0,∞), with a spectral
gap. In addition,

σ(H) = {−δ2} ∪ {0} ∪ σ+(H), σ+(H) ⊂ (σ2,∞), σ > 0
Hφ = −δ2φ, dim[Ker(H+ δ2)] = 1
Hψ0 = 0, dim[Ker(H)] = 1
‖φ‖ = ‖ψ0‖ = 1

(16)

We shall need the following spectral projection operators

P0 : L2 → {φ}⊥;P0h := h− 〈h, φ〉φ
P1 : L2 → {φ, ψ0}⊥;P1h := h− 〈h, φ〉φ− 〈h, ψ0〉ψ0

Our next assumption is essentially that H is of order higher than one. We put
it in the following form: for all τ >> 1, we require

(H+ τ)−1/2∂x(H+ τ)−1/2, (H+ τ)−1∂x ∈ B(L2), (17)

Note that the quantities in (17) are well-defined, since for all τ >> 1, we have that
H+ τ ≥ (τ − δ2)Id > 0.

An easy consequence of (17) is that H−1P1∂xP1 ∈ B(L2) as well. This follows
easily from the resolvent identity, since

H−1P1∂xP1 = P1(H+ τ)−1∂xP1 + τH−1P1(H+ τ)−1∂xP1.

Lastly, we assume that H has real coefficients. We formulate as follows

Hh = Hh̄. (18)

An important observation, that we would like to make right away (and which will
be used repeatedly in our arguments later on) is that for every λ > 0, the operator
(H+ λ2) : {φ}⊥ → {φ}⊥ is invertible, since (H+ λ2)|{φ}⊥ ≥ λ2Id.

Then we have the following Theorem.

Theorem 3.1. Let H be a self-adjoint operator on L2. Assume that it satisfies the
structural assumption (16), (17) as well as (18).

Then, if1 that
〈
H−1[ψ′0], ψ′0

〉
≥ 0 we have spectral instability for all values of

ω ∈ R1.
Otherwise, supposing

〈
H−1[ψ′0], ψ′0

〉
< 0, we have

• the problem (15) is unstable if ω satisfies the inequality

0 ≤ |ω| < 1

2
√
−〈H−1[ψ′0], ψ′0〉

=: ω∗(H) (19)

1Note that ψ′0 ⊥ ψ0 and hence, since Ker(H) = span{ψ0}, H−1[ψ′0] is well-defined
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Figure 9. c∗ versus L. In this figure, L varies on [5π, 200π]. The
numerical computations show us as L increases c∗ decreases.

• the problem (15) is stable, if ω satisfies the reverse inequality

|ω| ≥ ω∗(H) (20)

For the traveling wave solutions of the beam equation considered here, we get
the following result.

Theorem 3.2. Assume that there exists a one parameter family {ϕc}c∈I such that

• ϕc ∈ H1 and c→ ‖ϕ′c‖L2 is a differentiable function on I.
• The operator Hc = ∂4x + c2∂2x + 1− pϕp−1c satisfies (16).

Then, the wave ϕc is linearly stable if and only if

∂c‖ϕ′c‖ < 0 and |c| ≥ ‖ϕ′c‖
−2∂c‖ϕ′c‖

. (21)

That is, if ∂c‖ϕ′c‖ ≥ 0 or ∂c‖ϕ′c‖ < 0, but |c| < ‖ϕ′c‖
−2∂c‖ϕ′c‖

, the wave ϕc is unstable.

We should note that the conclusions of our result for the case of the real line
coincide with those of Levandosky, [6]. Indeed, he computes d′(c) = −c‖ϕ′c‖2,
whence d′′(c) = −‖ϕ′c‖(‖ϕ′c‖ + 2c∂c‖ϕ′c‖). Clearly, our linear stability conditions
are precisely equivalent to d′′(c) > 0, which by Levandosky’s work implies orbital
stability.

Since there are no explicit formulas for the traveling wave solutions, the condition
(21) is impossible to verify analytically. Instead, we will use the form of the solutions
computed above and verify numerically that such threshold speed c∗ exists. We
already verified numerically that the spectral conditions are satisfied (see fig.8).
Next, we worked numerically and showed that there exists c∗ such that (21) holds

for any |c| ∈ [c∗,
√

2]. We observed that c∗ decreases as L increases. This means as
L gets larger, the interval for the stability gets larger. In Figure 9, we show such
c∗ values as L varies. Note that in [6] it is proved that the waves are unstable for

values of c close to zero and stable for values of c close to
√

2. Here we explicitly
compute the threshold value c∗ ∼ 1.348 (predicted in [9] and [10]) that separates
the unstable from the stable waves.
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Figure 10. (a) Snap-shots from the simulation of a periodic
traveling wave for c = −1, 32, L = 30π when t = 0 (blue), t = 1
(red) and t = 50 (green) (b) the space-time evolution of the periodic
traveling wave.
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Figure 11. (a) Snap-shots from the simulation of a periodic
traveling wave for c = −1, 38, L = 30π when t = 0 (blue), t = 1
(red) and t = 50 (green) (b) the space-time evolution of the periodic
traveling wave.

3.3. Space-time evolution of traveling waves. As we did for the periodic stand-
ing wave solutions, we have been curious about the space-time evolution of the peri-
odic traveling wave solutions for the values less and more than the critical value c∗.
We picked L = 30π where the claimed c∗ is around 1.35. We first ran the simulation
for c = −1.32. We observed that the traveling wave did not preserve its shape in
time as shown in Figure 10. However when we picked c = −1.38, (Figure 11) the
simulations showed that the periodic wave kept its shape as it traveled in time. The
space-time evolution plot also shows that it preserves its shape as it travels in the
long time.
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