Elementi introduttiv Metodo di bisezione Metodo del punto fisso Metodo di Newton-Raphsor

Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 2 - EQUAZIONI NON LINEARI

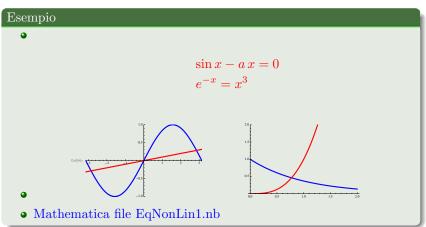
Lucio Demeio Dipartimento di Scienze Matematiche

- 1 Elementi introduttivi
- 2 Metodo di bisezione
- 3 Metodo del punto fisso
- 4 Metodo di Newton-Raphson

Introduzione

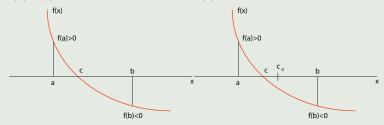
Problema: trovare le soluzioni di un'equazione del tipo

$$f(x) = 0$$



Bisezione

• Dal teorema degli zeri, data $f:[a,b] \to \mathbb{R}$ continua, se f(a) f(b) < 0 allora $\exists c$ tale che f(c) = 0.



• Costruiamo tre successioni, $\{a_n\}$, $\{b_n\}$ e $\{c_n\}$: siano

$$a_0 = a \qquad b_0 = b \qquad c_0 = \frac{a+b}{2}$$

Bisezione

• Nel nostro esempio, $f(a_0)$ $f(c_0)$ < 0, quindi il teorema degli zeri si applica nuovamente all'intervallo $[a_0, c_0]$. Siano allora

$$a_1 = a_0$$
 $b_1 = c_0$ $c_1 = (a_1 + b_1)/2$

• ... e così via:

se
$$f(a_n) f(c_n) < 0$$
 allora $a_{n+1} = a_n$ e $b_{n+1} = c_n$;
se $f(a_n) f(c_n) > 0$ allora $a_{n+1} = c_n$ e $b_{n+1} = b_n$
e $c_{n+1} = (a_{n+1} + b_{n+1})/2$.

- La successione $\{c_n\}$ converge a c (lo sappiamo dal teorema degli zeri), quindi l'algoritmo basato sul metodo di bisezione fornisce una successione che converge alla soluzione.
- In pratica, l'algoritmo viene fermato dopo N passi (o iterazioni) ed otteniamo un'approssimazione per lo zero della funzione:

Criterio di arresto

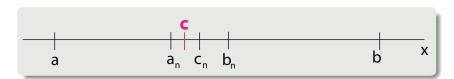
Varie possibilità:

- Fissare un massimo numero di iterazioni, $N \leq N_{max}$ (è di solito considerato un fallimento legato a ragioni di costo computazionale);
- Fissare una tolleranza $\eta << 1$ su c: $|c_N c| \leq \eta$ (ovviamente c non lo conosciamo ... vedi più avanti) è il caso più frequente nella prassi la chiameremo tolleranza assoluta
- Fissare una tolleranza relativa $\eta << 1$ su c: $|(c_N c)/c| \le \eta$ (anche qui c non lo conosciamo ...);
- Fissare una tolleranza $\eta << 1$ su f(c): $|f(c_N)| \leq \eta$

Quale errore commettiamo nei vari casi?

Analisi dell'errore nel caso $|c_N - c| \le \eta$

- Ricordiamo che $c_n \in [a_n, b_n]$ e $c \in [a_n, b_n]$;
- $c_n = (a_n + b_n)/2 e |b_n a_n| = (b a)/2^n;$
- quindi $|c_n c| \leq (b a)/2^n$;
- ci fermiamo quando $(b-a)/2^N \leq \eta$.
- dunque $N \approx \log_2(b-a)/\eta$.



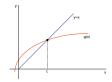
Nel caso $|(c_N-c)/c| \le \eta$ ci fermiamo quando $(b-a)/(|c_N|2^N) \le \eta$

Ordine di convergenza

- Nel caso $|c_n c| \le (b a)/2^n$ abbiamo che $\alpha_n = c_n$ e $\beta_n = 1/2^n$, con K = b a.
- \bullet Quindi c_n converge a c con tasso di convergenza $O(1/2^n),$ ovvero

$$c_n = c + O\left(\frac{1}{2^n}\right)$$

Un punto x = c si dice **punto fisso** per una funzione g(x) se g(c) = c, cioè una soluzione dell'equazione g(x) = x.



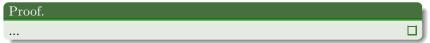
Punto fisso

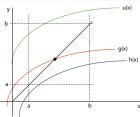
- Un problema del tipo f(x) = 0 si può sempre trasformare in un equivalente problema di punto fisso; esiste cioè sempre una funzione g(x) per cui l'equazione f(x) = 0 è equivalente all'equazione g(x) = x.
- Ci sono diversi modi per definire una funzione g(x) a tale scopo: ad esempio g(x) = x f(x) (quello più semplice) ma anche g(x) = x + a f(x) e molti altri.

Data una funzione g(x), definita su un intervallo [a, b], quando ha un punto fisso e quando questo è unico? E come si costruisce?

Theorem

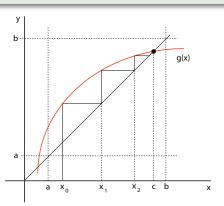
Se g è una funzione continua su [a,b] e $g(x) \in [a,b] \forall x \in [a,b]$, allora g ha un punto fisso in [a,b]; inoltre, se esiste k con 0 < k < 1 tale che $|g'(x)| < k \ \forall x \in [a,b]$, il punto fisso è unico.





Theorem (Teorema del punto fisso)

Sia g(x) una funzione che soddisfa le condizioni del teorema precedente. Allora, $\forall x_0 \in [a,b]$ la successione definita da $x_{n+1} = g(x_n)$ converge al punto fisso x = c (unico!!) della funzione g.



Proof.

Per le condizioni del teorema precedente, $x_n \in [a,b] \ \forall n$. Inoltre, per il teorema di Lagrange,

$$\begin{aligned} |x_n-c|&=|g(x_{n-1})-g(c)|=|g'(\xi_n)||x_{n-1}-c|\leq k|x_{n-1}-c|,\\ &\cos\,\xi_n\in[a,b]. \text{ Per induzione, allora abbiamo che}\\ |x_n-c|&\leq k^n\,|x_0-c|. \text{ Siccome }k<1, \text{ si ha che }\lim_{n\to\infty}k^n=0 \text{ e}\\ &\text{ quindi }\lim_{n\to\infty}|x_n-c|\leq \lim_{n\to\infty}k^n\,|x_0-c|=0. \text{ Quindi }\{x_n\}\\ &\text{ converge a }c. \end{aligned}$$

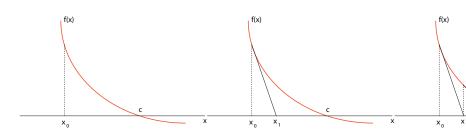
Theorem

Se q soddisfa le ipotesi del teorema del punto fisso, allora l'errore che si commette approssimando c con x_n soddisfa alle limitazioni

$$|x_n - c| \le k^n \max\{x_0 - a, b - x_0\}$$

 $|x_n - c| \le \frac{k^n}{1 - k} |x_1 - x_0|$

Proof.



Newton-Raphson

- Tangente ad f(x) per $(x_0, f(x_0))$: $y = f(x_0) + f'(x_0)(x x_0)$;
- l'intersezione della tangente con l'asse delle x fornisce $x_1 = x_0 f(x_0)/f'(x_0)$;
- ... e così via:

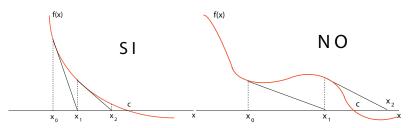
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Quando converge Newton-Raphson?

Theorem

Sia f(x) di classe $C^2([a,b])$. Se esiste $c \in [a,b]$ tale che f(c) = 0 ed $f'(c) \neq 0$, allora esiste un $\delta > 0$ tale che il metodo di Newton genera una successione x_n , con $x_0 \in (c - \delta, c + \delta)$, e con $x_n \to c$ per $n \to \infty$.

Intuitivamente:



Proof.

Il metodo di Newton è un problema di punto fisso per la funzione q(x) = x - f(x)/f'(x) Dobbiamo innanzitutto determinare un intervallo $I(\delta) = [c - \delta, c + \delta]$ che viene mappato in se stesso dalla funzione q e per il quale esiste una costante reale k, con 0 < k < 1, per cui $|q'(x)| \le k \ \forall x \in I(\delta)$. Sia $0 \le k \le 1$ arbitrario. Essendo $f'(c) \ne 0$, esiste un $I(\delta_1) \subset [a,b]$ tale che $\forall x \in I(\delta_1)$ si ha $f'(x) \neq 0$. Quindi, g è definita e continua su $I(\delta_1)$, abbiamo $g'(x) = f(x) f''(x)/[f'(x)]^2$ ed essendo $f \in C^2([a,b])$ è anche $g \in C^1(I(\delta_1))$. Notiamo che g'(c) = 0; quindi, per la continuità di g', esiste un $\delta > 0$ tale che, $\forall x \in I(\delta)$ è $|g'(x)| \leq k$. Resta da dimostrare che g mappa $I(\delta)$ in $I(\delta)$. Sia dunque $x \in I(\delta)$; per il teorema di Lagrange, esiste ξ compreso tra x e c tale che $|g(x) - c| = |g(x) - g(c)| = |g'(\xi)| |x - c| \le k|x - c| < |x - c| < \delta$, e quindi $g(x) \in I(\delta)$. Le ipotesi del teorema del punto fisso sono dunque tutte soddisfatte e la successione $x_{n+1} = g(x_n)$ converge al punto fisso $c \ \forall x_0 \in I(\delta).$

Convergenza

- In metodo di Newton converge rapidamente se la scelta iniziale x_0 e' abbastanza vicina allo zero x = c, in particolare se f(x) è monotona tra x_0 e c;
- dopo poche iterazioni già si capisce se il metodo converge o se "va a galline" (cioè non converge);
- uno svantaggio è dato dalla necessità di conoscere la derivata f'(x);
- i criteri di arresto sono essenzialmente gli stessi del metodo di bisezione, solo che non abbiamo a disposizione un intervallo $[a_n, b_n]$ come nell'altro caso; allora, la tolleranza (semplice o relativa) viene testata sulla differenza $|x_{n+1} x_n|$; vale a dire che $|x_{n+1} x_n| < \eta$ diventa il criterio di arresto (tolleranza semplice).

Theorem (Ordine di convergenza quadratico)

Sia f tale da obbedire alle condizioni del teorema sulla convergenza del metodo di Newton-Raphson. Allora il metodo gode di ordine di convergenza quadratico.

Proof.

Con riferimento a quanto visto in precedenza, siano $\{\alpha_n\}$ e $\{\beta_n\}$ le successioni date da $\alpha_n = x_{n+1} - c$ e $\beta_n = x_n - c$. Allora abbiamo $|\alpha_n| \leq |\beta_n|^2$. Infatti, con uno sviluppo di Taylor possiamo scrivere: $0 = f(c) = f(x_n) + (c - x_n) f'(x_n) + (c - x_n)^2 f''(\xi)/2$ da cui (dividendo per $f'(x_n)$) $f(x_n)/f'(x_n) + (c - x_n) = -(c - x_n)^2 f''(\xi)/(2 f'(x_n))$ e, ricordando che $x_{n+1} = x_n - f(x_n)/f'(x_n)$, $c - x_{n+1} = (c - x_n)^2 f''(\xi)/(2 f'(x_n))$ e quindi $|\alpha_n| \leq K |\beta_n|^2$.