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1 Introduction

The modeling of semiconductor devices, which is a very active and intense �eld of research, has

to keep up with the speed at which the fabrication technology proceeds; the devices of the last

generations become smaller and smaller and they have reached a size so small that quantum e�ects

dominate their behaviour. Quantum e�ects such as resonant tunneling and other size-quantized

e�ects cannot be described by classical or semiclassical theories and need a full quantum description

[Fre90, JAC92, KKFR89, MRS90, RBJ91, RBJ92]. A very important feature, that has appeared

in the devices of the last generation and which requires a full quantum treatment, is the presence

of the interband current, that is a contribution to the total current which arises from transitions

between the conduction and the valence band states. Resonant interband tunneling diodes (RITD)

are examples of semiconductor devices which exploit this phenomenon; they are of big importance

in nanotechnology for their applications to high-speed and miniaturized systems [YSDX91, SX89].

In the band diagram structure of these diodes there is a small region where the valence band edge

lies above the conduction band edge (valence quantum well), making interband resonance possible.

So far, most part of the existing literature has been devoted to quantum transport models

where only conduction band electrons contribute to the current 
ow and under the parabolic band

approximation, with only a small region of the Brillouin zone near the minimum of the band being

populated. In bipolar models, the contribution of the valence band (the current due to the holes)

is also included at the macroscopic level. Quantum models which include the interband resonance

process are called \multiband models", and have largely been formulated and analyzed only in

the last �ve to ten years. Like other models for semiconductor devices, they can essentially be
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divided in two classes: Schr�odinger-based models and Wigner-function-based (or density-matrix-

based) models. The former ones aim at the calculation of the wave function for the system or device

under study, and contain no statistics. The latter ones involve electron statistics or transport theory

concepts.

Hydrodynamic models have also been formulated and discussed [Gar94]; again, for the most part

only single-band hydrodynamics has received attention. Only recently, multiband hydrodynamic

models, based on the multiband kinetic models mentioned above, have appeared.

In this review paper, we describe the multiband models that have recently been formulated in

both classes. Attention is given to the de�nitions of the relevant quantities which characterize each

model and to the advantages and disadvantages of each model compared to others. The technical

details of the derivations of the various models, as well as the rigorous proofs of consistency and

existence of the solutions, are diverted directly to the papers where the models have been described.

This paper is organized as follows: in Section 2 we brie
y recall the Bloch theory of electrons

moving in a periodic potential; Section 3 is devoted to the envelope-function theory; in Section

4 we deal with the multiband models based on the Schr�odinger equation; Section 5 contains the

statistical kinetic models based on the Wigner-function approach and in Section 6 we give an

outline of the hydrodynamic models.

2 The Schr�odinger equation and the wave function in a periodic

potential

The starting point of any theoretical description of a quantum system is the Schr�odinger equation,

which we now discuss for a periodic Hamiltonian [RS72, MRS90].

We consider an ensemble of electrons moving in a semiconductor crystal. The electrostatic

potential generated by the crystal ions is represented by a periodic potential VL(x), the periodicity

being described as follows:

VL(x+ a) = VL(x); 8a 2 L;
where L is the periodic lattice of the crystal. The quantum dynamics of a single electron is,

therefore, generated by the Hamiltonian

H = H0 + V (x); (1)

where H0 = p2=2m + VL(x) is the periodic part of the Hamiltonian, which contains the kinetic

energy and the periodic potential. Also, p = �i~r is the momentum operator, m is the electron

mass, ~ is Planck's constant over 2� and V (x) is the potential due to external �elds, such as barriers

or bias. The periodic HamiltonianH0 has a complete system of generalized eigenfunctions bn(x; k),

called Bloch waves, where the \pseudomomentum" or \crystal momentum" variable k runs over
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the so-called Brillouin zone. This is de�ned as the centered fundamental domain of the reciprocal

lattice L�, i.e.

B =
�
k 2 R3

��k is closer to 0 than to any other point of L�	 :
The Bloch waves satisfy the generalized eigenvalue equation

H0bn(x; k) = �n(k)bn(x; k); (2)

(or H0 jnki = �n(k) jnki in Dirac's notation), where the generalized eigenfunctions �n(k) are the

energy bands of the crystal. Accordingly, the integer n is called \band-index".

Using Dirac's notation, we choose the following normalization of the Bloch functions:

hnk jn0k0i = jBj Ænn0 Æ(k � k0); (3)

so that any wave function 	 can be decomposed as follows

	 (x) =
X
n

Z
B

dk

jBj �n(k) bn(x; k); (4)

where

�n(k) =

Z
R3

dx bn(x; k)	 (x): (5)

It is well known that the Bloch waves can be written in the form

bn(x; k) = eik�xun(x; k); (6)

where un(x; k), called Bloch functions, are L-periodic in x and have the property that fun(�; k) jn 2 Ng
is an orthonormal basis of L2(C) for any �xed k 2 B, where C denotes the fundamental cell of the

direct lattice L. In particular,Z
C

un(x; k)un0(x; k) dx = Ænn0 ; k 2 B: (7)

The electron population of the semiconductor material is partitioned into the energy bands

of the Hamiltonian. The highest occupied energy band usually contains only a small electron

population and therefore it has many unoccupied states; this is the conduction band. The states

of all other (lower energy) bands are instead fully occupied and form the valence bands. In the

older devices, based on resonant tunneling, only the electrons of the conduction band contribute

to the 
ow of the current across the device. In some of the devices of the last generation, instead,

the resonant tunneling occurs between states belonging to di�erent bands, so that also the carrier

population of the valence band contributes to the 
ow of current. For the description of these last

devices, multiband models must be used.
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3 Envelope function theory

The wave function of an electron moving under the action of a periodic potential, which we

have described in the previous Section, is a fast oscillating object (both in time and space) and

is therefore not well suited for numerical computations. A widely used methodology is that of

smoothing out these fast oscillations, thus leading to the \envelope function" approach. Envelope

functions can be introduced in basically two di�erent ways, one due to Wannier [Wan62] (called

the Wannier-Slater envelope functions) and one due to Luttinger and Kohn [LK55] (called the

Luttinger-Kohn envelope functions). The Luttinger-Kohn envelope functions are the building

blocks of the Kane model, which will be described in the next Section. Here, we introduce the

de�nitions and outline the most important properties of both kinds of envelope functions.

3.1 Wannier-Slater envelope functions

The Wannier-Slater (W-S) envelope functions [Wan62] are de�ned as follows:

fn(x) =
1

(2�)3=2

Z
B

�n(k) e
ix�kdk; (8)

where �n(k) is given by (5). Note that the W-S envelope functions are inverse Fourier transforms

to which fast oscillations due to the periodic potential have been removed. In other words, each

envelope function fn has the property that its Fourier transform is supported in the Brillouin zone

B. The W-S envelope functions are easily expressed in terms of the wave function by introducing

\continuous-index Wannier functions"

an(x; x
0) =

1

(2�)3=2

Z
B

bn(x; k)e
�ix0�kdk: (9)

Using (5), (8) and (9) we get

fn(x) =

Z
R3

an(x
0; x)	 (x0) dx0; (10)

and, conversely,

	 (x) =
X
n

1

jBj
Z
R3

an(x; x
0)fn(x

0) dx0: (11)

To better understand the meaning of the W-S envelope functions, consider the (discrete-index)

Wannier functions [Wan62], which are the Fourier components of the Bloch waves with respect to

k:

an(x� �) =

Z
B

dk

jBj bn(x; k)e
�ik�� =

Z
B

dk

jBj un(x; k)e
ik�(x��); (12)

where � is a point of the periodic lattice L. The most important property of the Wannier

functions is that they are localized at the sites of the lattice, with an exponential decay away

from those sites. The Bloch waves, on the contrary, are delocalized and maintain their highly
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oscillatory behaviour throughout R. The Wannier functions, like the Bloch waves, form a complete,

generalized, orthonormal basis and any wave function can be expanded as

	 (x) =
X
n

X
�2L

fn(�)an(x� �);

where

fn(�) =

Z
B

dk

jBj �n(k)e
ik��:

If the length scale of the crystal lattice is small with respect to the macroscopic scale described

by the variable x, the Brillouin zone becomes very large and the Fourier coeÆcients fn(�) can be

replaced by the continuous Fourier transform, yielding de�nition (8).

The dynamics of the W-S envelope functions can be deduced from (10) and (11), and from the

Schr�odinger equation

i~
@

@t
	 (x; t) = H	 (x; t);

where H is the Hamiltonian operator (1). This yields (see [Bar03b] for the details of the derivation):

i~
@

@t
fn(x; t) = e�n (�ir) fn(x; t) +X

n0

Z
R3

V WS
nn0 (x; x0)fn0 (x0; t) dx0: (13)

Here,

VWS
nn0 (x; x

0) =
1

jBj
Z
R3

an(y; x)V (y) an(y; x
0) dy (14)

are matrix-elements of the external potential with respect to the continuous-index Wannier

functions and e�n (�ir) are pseudo-di�erential operators associated to the energy bands with a

cut-o� outside the Brillouin zone, namely

e�n (�ir) fn(x; t) = 1

(2�)3

Z
R6

IB(k) �n(k) fn(x
0) eik�(x�x

0)dx0dk:

where IB is the characteristic function of the Brillouin zone B.

3.2 Luttinger-Kohn envelope functions

A general de�nition of envelope functions in the sense of Luttinger and Kohn [Bur92, LK55] may

be given as follows. Let fvn(x) jn 2 Ng be L-periodic functions that form an orthonormal basis of

L2(C). Then, the Luttinger-Kohn (L-K) envelope functions of a wave function 	 , with respect to

the basis vn(x) are functions Fn(x) such that

(i) 	 (x) =
P

n
Fn(x) vn(x);

(ii) the Fn are slowly varying with respect to the lattice periodicity, namely

supp
�
F̂n
� � B; n 2 N ; (15)

where F̂n denotes the Fourier transform of Fn.
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Usually the basis functions vn are chosen to be the Bloch functions un(x; k) evaluated at k = 0,

so that

	 (x) =
X
n

Fn(x)un(x; 0);

but, of course, other choices are possible. It can be proved that the L-K envelope functions are

uniquely determined by the two conditions (i) and (ii) and that the Parseval-like equality

k	k2 = 1

jCj
X
n

kFnk2 (16)

holds. It is not diÆcult to see that the L-K envelope functions are easily expressed in terms of the

wave function as follows:

fn(x) =

Z
B

dk

jBj1=2
Z
R3

dyXn(y; k) e
ik�x 	 (y); (17)

where

Xn(y; k) = 1

jBj1=2 vn(y) e
ik�y; y 2 R3; k 2 B; n 2 N: (18)

is a (generalized) Luttinger-Kohn basis [LK55]. By using the above relations it is possible to deduce

the dynamics of L-K envelope functions. In the case vn(x) = un(x; 0) we have [Wen99]

i~
@

@t
Fn(x; t) = �n(0)Fn(x; t)� ~2

2m
�Fn(x; t)� ~2

m

X
n0

Knn0 � rFn0(x; t)

+
X
n0

Z
R3

V LK
mn0 (x; x0)Fn0(x0; t) dx0: (19)

Here, �n(0) is the m-th energy band evaluated at k = 0 and

Knn0 =

Z
C

un(x; 0)run0(x; 0) dx = �Kn0n (20)

are the matrix elements of the gradient operator between Bloch functions (which, we recall, are

real-valued). The matrix-elements of the external potential are given by

V LK
nn0 (x; x0) =

1

(2�)3

Z
B

dk

Z
R3

dy

Z
B

dk0�

�
n
eik�xXn(y; k)V (y)Xn0 (y; k0) e�ik

0�x0

o
; (21)

where, of course, un has to be used in de�nition (18) in place of vn .

4 Pure-state multiband models

The equations of envelope-function dynamics, eqs. (13) and (19), are still too complicated for

modeling purposes and, therefore, they should be considered as starting points for building simpler

models rather then models per se.
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First of all we note that, if the external potential is slowly varying with respect to the lattice

period, then the L-periodic function un(y; 0)un0(y; 0) in (21) (see de�nition (18)) can be substituted

by its average on a periodic cell. Hence, we can write

V LK
nn0 (x; x0) � 1

jBj jCj (2�)3
Z
C

un(z)un0(z) dz�

�
Z
B

dk

Z
R3

dy

Z
B

dk0
n
eik

0�xe�iy�(k�k
0)e�ik

0�x0

V (y)
o

and so, using (7), jCj jBj = (2�)3, and B � R3,

V LK
nn0 (x; x0) � Ænn0Æ(x� x0)V (x� x0): (22)

In other words, if the potential V is smooth enough, the complicated potential term in eq. (19)

can be approximated by the simple multiplication by V (x) of each Fn. The same property holds

for VWS
nn0 (x; x0) (see de�nition (14)) and the proof is similar.

Another typical approximation is the e�ective-mass dynamics. This can be easily deduced from

the Wannier-Slater equations (13) by simply substituting the energy-band function �n(k) with its

parabolic approximation near a stationary point (that we assume to be always k = 0 for the sake

of simplicity). This, together with the approximation (22) yields a completely decoupled dynamics

of the form

i~
@

@t
fn(x; t) = �~

2

2
r �M�1

n
rfn(x; t) + V (x) fn(x; t)

where M is the e�ective-mass tensor:

M
�1
n = r
r �n(k) jk=0:

The e�ective-mass model is widely used in semiconductor modeling and it has been rigorously

studied, as an asymptotic dynamics, in Refs. [AP05], [BLP78] and [PR96]. However, if interband

e�ects have to be included, then we have to go beyond the e�ective-mass approximation and to

include at least two coupled bands.

4.1 The two-band Kane model

A simple multiband model was introduced by Kane [Kan56] in the early 60's in order to describe

the electron transport with two allowed energy bands separated by a forbidden region. The Kane

model is a simple two-band model capable of including one conduction band and one valence band

and it is formulated as two coupled Schr�odinger-like equations for the conduction-band and valence-

band envelope functions [BFZ03]. The coupling term is treated by the k � P perturbation method

[Wen99], which gives the solutions of the single electron Schr�odinger equation in the neighborhood

of the bottom of the conduction band and the top of the valence bands, where the most part
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of electrons and holes, respectively, are concentrated. The Kane model is very important for the

modeling of the RITD devices, and is widely used in literature [SX89, YSDX91].

From our point of view, the Kane model can be viewed as an approximate evolution equation

for L-K envelope functions arising from eq. (19) when using the following approximations:

1. the external potential kernel (21) is substituted by the local and diagonal approximation (22);

2. only two bands (conduction and valence) are included;

3. the bottom of conduction band Ec = �c(0) and top of valence band Ev = �v(0) are viewed as

functions of the position x (this allows to model band heterostructures).

Thus, using the indices c for conduction and v for valence, we have a two-term L-K envelope

function expansion

	 (x) = 	c(x)uc(x) + 	v(x)uv(x);

of the wave function 	 and the following evolution equations for 	c and 	v:

i~
@

@t
	c(x; t) = (Ec+ V )(x)	c(x; t)� ~2

2m
�	c(x; t)� ~2

m
K � r	v(x; t);

i~
@

@t
	v(x; t) = (Ev+ V )(x)	v(x; t)� ~2

2m
�	v(x; t) +

~2

m
K � r	c(x; t);

(23)

which is the two-band Kane model. Note that the quantity K, called Kane momentum, is given by

K = Kcv = �Kvc =

Z
C

uc(x)ruv(x) dx

(see (20) and recall that the Bloch functions uc and uv are real-valued). A word of caution has

to be spent on the notation: 	c and 	v are not really band-projections (spectral projections) of

the wave function, not only because of the envelope function approximation but also because

the Hamiltonian operator de�ned by the right-hand side of eq. (23) is not diagonal, even in the

absence of external potentials. The identi�cation of 	c and 	v with spectral projections is only

approximately true for k � 0.

The Kane model in the Schr�odinger-like form (23) has been recently studied by J. Ke�, [Kef03],

and in the Wigner-equation form by Borgioli, Frosali and Zweifel [BFZ03].

4.2 The Morandi-Modugno multiband model

In this section we brie
y introduce the multiband envelope function model, introduced recently

by Modugno and Morandi (M-M); for the complete derivation of the model we refer the reader to

[MM05].
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The starting point is the W-S envelope function dynamics (13). When the potential V is smooth

enough, we can approximate the matrix-elements VWS
nn0 in the same way as we deduced eq. (22),

obtaining

VWS
nn0 (x; x0) � 1

jBj (2�)3=2
Z
R3

dk

Z
R3

dk0
n
eik�xBnn0(k; k0) V̂ (k � k0) e�ik

0�x0

o
(24)

where

Bnn0(k; k0) =
1

jCj
Z
C

un(z; k)un0(z; k0) dz: (25)

By using the eigenvalue equation (2) one obtains

Bnn0(k; k0) =
1

jCj
~

m
(k � k0)

Pnn0(k; k0)

�Enn0(k; k0)
; for n 6= n0,

where

Pnn0(k; k0) =

Z
C

un(x; k)(�i~r)un0(x; k0) dx (26)

and

�Enn0(k; k0) = �n(k) � �n0(k0)� ~2

2m
(k2 � k02):

Moreover, as can be deduced from eq. (3), the diagonal terms are simply given by

Bnn(k; k
0) =

jBj
(2�)3

=
1

jCj : (27)

Using (24), (25) and (27) in eq. (13) (and recalling that B � R3) we get

i~
@

@t
fn(x; t) = �n (�ir) fn(x; t) + V (x) fn(x; t)

+
~

m

X
n0 6=n

Z
R3

dk

Z
R3

dk0
eik�x

(2�)3
Pnn0(k; k0)

�Enn0(k; k0)
V̂ (k � k0) f̂n0(k0; t)

where a diagonal part and a non-diagonal part of the dynamics can be clearly distinguished.

Assuming, for the sake of simplicity, that the stationary point of each band is k = 0 and that

the crystal momentum k remains small during the whole evolution, we can expand the term

Pnn0=�Enn0, which characterizes the interband coupling, to �rst order in k and k0. After some

manipulations by means of standard perturbation techniques, we get the multiband equation

i~
@

@t
fn(x; t) = �n (�ir) fn(x; t) + V (x) fn(x; t)

� i~

m
rV (x) �

X
n0 6=n

Pnn0

�Enn0

fn0(x; t)� ~

m
rV (x) �

X
n0 6=n

M�
nn0

�Enn0

rfn0(x; t)

� ~

m

X
n0 6=n

Mnn0

�Enn0

�r2V (x)fn0(x; t) +rV (x) � rfn0(x; t)
�
: (28)
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where we put Pnn0 � Pnn0(0; 0), �Enn0 � �Enn0(0; 0) and

Mnn0 =
~

m

X
n00 6=n0

Pnn00Pn00n0

En �En00

; M�
n0n

=
~

m

X
n00 6=n0

Pnn00Pn00n0

En0 � En00

are e�ective-mass terms. A simple two-band model can be built using the following assumptions:

1. only two bands (c and v) are included;

2. the energy band operator �n (�ir) is substituted by its parabolic approximation (e�ective-mass

energy band);

3. the interband terms of order greater than 2 in k are neglected (this amounts to neglecting

terms proportional to the matrices Mnn0);

4. the bottom of the conduction band and the top of the valence band are functions of the position

x (as in the two-band Kane model).

This yields

i~
@

@t
�c(x; t) = (Ec + V )(x)�c(x; t)� ~2

2
r �M�1

c
r�c(x; t)

� i~

mEg(x)
rV (x) � P �v(x; t);

i~
@

@t
�v(x; t) = (Ev + V )(x)�v(x; t)� ~2

2
r �M�1

v
r�v(x; t)

� i~

mEg(x)
rV (x) � P �c(x; t);

(29)

where Eg(x) = Ec(x)�Ev(x) is the band-gap. Contrarily to the Kane model (23), in the the M-M

model (29) the envelope functions �c and �v are true band-functions, to the extent that in the

absence of external potentials (V = 0) the dynamics is diagonal.

5 Statistical multiband models: density matrix and Wigner function

We now turn our attention to the multiband models that make use of statistical concepts, mainly

of the Wigner-function approach [Wig32, MRS90, BJ99, JBBB01, Bar03a]. A multiband model

involving the density matrix was already introduced by Krieger and Iafrate [KI87, IK86] by taking

matrix elements of the density operator between Bloch states. Subsequently, a number of multiband

models based on Wigner-function approach were developed. In [Bar03b, Bar04a, BD02] envelope

functions were used to construct the multiband Wigner function; in [BFZ03] a Wigner version of

the Kane model was introduced; in [DBBBJ02, DBBJ02, DBJ03a, DBJ03b] the multiband Wigner

function was obtained by using the Bloch-state representation of the density matrix.
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We recall that statistical states in quantum mechanics are described either in terms of the

density operator � or the Wigner function f(x; p), [Fey72]. The density operator is usually de�ned

by a statistical mixture of states, say f	j j j 2 Ng, where 	j(x) are the wave functions that

characterize each state of the mixture. If �j � 0 is the probability distribution of the states,

then
P

j
�j = 1 and the density operator is given by

� =
X
j

�j j	jih	j j (30)

in Dirac's notation, and the density matrix in the space representation is given by

�(x; x0) =
X
j

�j 	j(x)	 j(x
0) =

X
j

�j hx j	jih	j jx0i: (31)

The Wigner function f(x; p) is de�ned by the Wigner-Weyl transform of the density operator, that

is

f(x; p) =

Z
d�

(2�~)3
�
�
x+

�

2
; x� �

2

�
e�ip�=~: (32)

In the theoretical models based on the solution of the Schr�odinger equation (pure states),

the calculation of the current across the device, j(x), follows the standard quantum-mechanical

de�nition

J(x) = � ~
m

Im
�
	 (x)r	 (x)� : (33)

In the statistical models, instead, the current is expressed in terms of the density matrix or in

terms of the Wigner function. In the �rst case the current is

J(x) = � i~

2m
(rx �rx0) �(x; x0)jx=x0 ; (34)

and, in the Wigner picture, by

J(x) =
1

m

Z
pf(x; p) dp; (35)

an expression which is, remarkably, identical to the classical expression for the current in statistical

systems. It can be easily shown that, in the case of pure states, these two expressions coincide with

(33).

5.1 Wigner-function based statistical models

A suitable partition of the Wigner function among the energy bands can be obtained by using

the completeness of the Bloch states in equation (32). We adopt hereafter Dirac's notation and

consider, for the sake of simplicity, the one-dimensional case only. By de�ning the coeÆcients �mn

and the integral kernel Wmn,
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�mn(k; k
0; x; p) =

Z Z
d�

2�~

D
x+

�

2

��� nkEDnk0 ���x� �

2

E
e�ip�=~ (36)

Wmn(x; p; x
0; p0) =

Z
B2

dkdk0�mn(k; k
0; x; p)��

mn
(k; k0; x0; p0); (37)

the Wigner function can be written as a sum of projections over the Floquet subspaces of the

energy bands (see [DBBJ02] for details):

f(x; p) =
X
mn

fmn(x; p); (38)

where

fmn(x; p) =

Z
B2

dkdk0�mn(k; k
0)�mn(k; k

0; x; p): (39)

By expressing � as a function of f , we can write fmn = Pmnf , where Pmn is the linear integral

operator

(Pmnf) (x; p) � 1

2�~

Z Z
dx0dp0Wmn(x; p; x

0; p0)f (x0; p0) :

Here, �mn(k; k
0) = hmk j � jnk0i are the matrix elements of the density operator in the Bloch-state

representation and the linear integral operator Pmn is a projection operator and yields the Wigner

projections fmn from the total Wigner function f .

The time evolution of the Wigner function is given by the sum of the time evolutions of the

band projections,

i~
@f

@t
(x; p; t) =

X
mn

i~
@fmn

@t
(x; p; t);

given by [DBBJ02]

i~
@fmn

@t
=
X
�2L

hb�m(�)fmn(x +
�

2
; p; t)� b�n(�)fmn(x� �

2
; p; t)

i
eip�=~

+

Z Z
dx0d�cWmn(x; p; x

0;��)ÆV (x0; �) bf(x0; �; t); (40)

where cWmn is the Fourier transform of Wmn with respect to the momentum variable:

cWmn(x; p; x
0; �) =

1

2�~

Z
dp0Wmn(x; p; x

0; p0)eip
0
�=~: (41)

Equation (40) is the equation that governs the time evolution of the Floquet projections fmn of the

Wigner function for an ensemble of electrons moving in a semiconductor crystal in the presence of

external �elds and allowing for energy bands of arbitrary shape. The �rst term, containing the sum

over the lattice vectors, refers to the action of the periodic potential of the crystal lattice, while

the last term, written in the form of an integral operator, refers to the action of the external or

self-consistent �elds acting on the electrons. The �rst term, as shown in [DBBJ02], reduces to the

usual free-streaming operator in the case of a single parabolic band; for this reason we shall refer to
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this term as to the streaming term, while the second term will be called the force term, in analogy

with the corresponding force term of the Boltzmann equation. These equations show that, in the

absence of external �elds, di�erent bands remain dynamically uncoupled and each contribution to

the Wigner function evolves independently. In the case V (x) � 0, these equations were already

written by Markowich, Mauser and Poupaud [MRS90, MMP94] for a single band. It can be shown

that, in the case of a single parabolic band, eq. (40) reduces to the usual Wigner equation in the

e�ective mass approximation
@f

@t
+

p

m�

@f

@x
+
i

~
�[ÆV ]f = 0;

where m� is the (one-dimensional) electron e�ective mass in the selected band and

(�[ÆV ]f) (x; p) =
1

2�~

Z
R2

e�i(p�p
0)�=~ ÆV (x; �) f(x; p0) d� dp0 (42)

is a pseudo-di�erential operator with symbol

ÆV (x; �) = V
�
x+

�

2

�
� V

�
x� �

2

�
: (43)

A multiband model for electron transport in semiconductors, based on the density-matrix

approach, was introduced by Krieger and Iafrate in [KI87, IK86]. They considered a statistical

ensemble of electrons moving under the action of an external time-dependent electric �eld. Here,

we brie
y summarize this model in a simpli�ed form. Their model is obtained by expanding the

density matrix elements in Bloch functions:

�(y; z) =
X
mn

Z
B2

dkdk0�mn(k; k
0)bm(k; y)bn(k

0; z); (44)

where �mn(k; k
0) = hmk j � jnk0i are the already-introduced matrix elements between Bloch

functions, whose evolution is given by

i~
@�mn(k; k

0)

@t
= [�m(k)� �n(k

0)]�mn(k; k
0)

+
X
l

Z
B

dk00 [Vml(k; k
00)�ln(k

00; k0) � Vln(k
00; k0)�ml(k; k

00)] : (45)

Here, Vmn(k; k
0) = hmk jV jnk0i are the matrix elements of the external potential in the Bloch

representation. The main source of diÆculty with this approach lies exactly in these matrix

elements, which are ill-de�ned for most potentials of practical interest.

The Wigner-function formalism has also been used by Buot and Jensen [Buo74, Buo76, Buo86,

BJ90] to formulatemultibandmodels within the framework of the Lattice-Weyl transform, in which

a non-canonical de�nition of the Wigner function, based on a discrete Fourier Transform, was

introduced. This de�nition of the Wigner function makes use of the Wannier functions introduced

by (12). Let f jm�i;m 2 N, � 2 Lg be the states corresponding to the Wannier functions (see
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eq. (12)); here, L is the direct lattice and the vectors � are elements of the direct lattice. We can

consider matrix elements of the density operator � in the Wannier representation,

�mn(�; �) = hm� j � jn�i

with �; � 2 L. A Wigner function is then introduced by

fmn(k; �) = N
X
v2L

�mn(�+ v; �� v)e2ikv; (46)

where N is a normalization factor, � 2 L is a lattice vector and k 2 B. This de�nition of the Wigner

function is sometimes called discrete Wigner-Weyl transform, and has a similar structure of the

de�nition given in (32); there are however some important di�erences: the Wigner function is only

de�ned on the lattice points; it is de�ned by a Fourier series, rather that the Fourier transform; it

is a function of the crystal momentum, which has not been integrated over. According to (35), the

current density is then given by

J(�) =
X
mn

Z
B

dk

jBj
p

m
fmn(k; �); (p = ~k)

and is also de�ned on the lattice points.

5.2 Reduced Wigner-Bloch-Floquet models

Equations (40) are the most general time evolution equations that can be written for the Floquet

projections of the multiband Wigner function in presence of external �elds and in absence of

collisions. The action of the periodic potential is described by the �rst term, which contains the

Fourier coeÆcients of the energy bands, and which reduces to the usual free-streaming operator in

the parabolic-band approximation. The second term describes the action of the external potential.

We note that, while the �rst term requires only the knowledge of the energy band functions,

the second term requires the knowledge of the Bloch eigenfunctions of the material of interest.

Therefore, the model equations (40) are very hard to solve in full generality in practical applications,

and the derivation of a set of simpli�ed models is needed. In the following subsections, we outline

some of the reduced models which have been derived within the Bloch-Floquet approach.

Two-band model in the parabolic band approximation without external �elds

It is interesting to consider a simple two-band model in the parabolic band approximation and

without external �elds, in order to study the o�-diagonal Floquet projections of the Wigner

function, which arise in this case. In a two-band model, the Wigner function and its evolution

equation are given by equations (38) and (40) without external �elds, and with m = 0; 1 and
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n = 0; 1. The Wigner function is given by the sum of four contributions, f00, f01, f10 and f11.

It can be seen easily from equations (36), (39) and (37) that f01 = f10, while f00 and f11 are

real. Each of the four contributions evolves according to equations (40). In the parabolic band

approximation, the di�erential equations for f00 and f11 are:

@f00

@t
+
p� ~k0
m0

@f00

@x
= 0

@f11

@t
+
p� ~k1
m1

@f11

@x
= 0;

(47)

where m0 and m1 are the e�ective masses for band 0 and band 1 respectively and k0 and k1 are the

values of the crystal momentum at which band 0 and band 1 attain their minimum. The evolution

equations for f01 and f10 = f01 have instead a di�erent structure. A simple calculation shows that:

i~
@f01

@t
=

��
�0(k0) +

(p� ~k0)2
2m0

�
�
�
�1(k1) +

(p� ~k1)2
2m1

��
f01(x; p) +

� i~

2

�
p � ~k0
m0

+
p� ~k1
m1

�
@f01

@x
� 1

8

�
~2

m0

� ~2

m1

�
@2f01

@x2
: (48)

which follows from equation (40) after expanding fmn(x � �=2; p; t) in Taylor series about � = 0

and using parabolic pro�les for the two bands. By introducing the frequencies

!01 = (�0(k0)� �1(k1))=~


01(p) = !01 + (p� ~k0)2=(2m0~) � (p � ~k1)2=(2m1~)

and the new function

g01(x; p; t) = f01(x; p; t)e
i
01(p)t;

equation (48) can be cast in the more elegant form

@g01

@t
+

1

2

�
p� ~k0
m0

+
p� ~k1
m1

�
@g01

@x
� i~

8

�
1

m0

� 1

m1

�
@2g01

@x2
= 0: (49)

Note that in the de�nition of the Wigner function (38) f01 and f10 appear only in the combination

f01 + f10, consistently with the Wigner function being real. Equation (48) shows that the time

evolution of f01 is given by three contributions: an oscillatory term, a free streaming term and a

di�usive term with imaginary di�usion coeÆcient (Schr�odinger-like term). The frequency of the

oscillatory term, 
01, is proportional to the di�erence of the total energies of the particles of the

two bands; the velocity of the free streaming term is an average of the relative velocities of the

particle with respect to the two minima and the imaginary di�usion coeÆcient vanishes when the

two e�ective masses are equal.

Equations (47) and (49) completely describe the time evolution of all the components of the

Wigner function in a two-band model with the parabolic-band approximation and in the absence

of external �elds. Note that these evolution equations are uncoupled.
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Multiband model in the Luttinger-Kohn approximation

As we have already seen in Section 3.2, the Luttinger-Kohn model [LK55] considers the carrier

populations near minima (or maxima) of the energy bands and it is therefore to be used in

conjunction with the parabolic-band approximation. For the Bloch states near the minimum (or

maximum) of the band, the Bloch functions un(x; k) are replaced with the set of functions un(x; kn),

i.e. the Bloch functions at the bottom (or top) of the band, here assumed at k = kn. The functions

eikxun(x; kn), after a suitable normalization, also form a complete set (see Ref. [LK55] and see

also Section 3.2) and any wave function can be expanded in their basis. In this Section, we use the

Luttinger-Kohn basis for expressing the Floquet projections fmn of the Wigner function and for

writing the evolution equations. The action of the free Hamiltonian is treated in the parabolic-band

approximation.

If the n�th band has an extremum at k = kn, we can approximate the Bloch waves as

hx jnki = bn(x; k) � un(x; kn) e
ikx: (50)

Since the functions un(x; kn) are periodic functions with period a, we can introduce their Fourier

expansion,

un(x; kn) =

1X
n0=�1

bUn

n0e
iK

n
0x;

where, Kn = 2�n=a are vectors of the reciprocal lattice with K�n = �Kn. After evaluating the

coeÆcients �mn and the integral kernel Wmn in this basis, and after carrying out the integration

over the momentum variables k and k0, one obtains for the Floquet projection fmn of the Wigner

function:
fmn(x; p) = 4�

X
m0n0m00n00

bUm

m0
bUn�
n0
bUm�
m00

bUn

n00ei(Km
0�K

n
0 )x

�H
�
�

a
�
����p~ � Km0 +Kn0

2

����
�

�
Z
dx0

sin 2[�=a� jp=~� (Km0 +Kn0)=2j](x� x0)

x� x0

� f

�
x0; p� ~Km0 +Kn0 �Km00 �Kn00

2

�
e�i(Km

00�K
n

00 )x
0

;

where the integrals are performed over the whole real line and H is the Heaviside function. The

evolution equations have been formulated for the case of two energy bands in the parabolic band

approximation. If m0 and m1 are the e�ective masses for band 0 and band 1 respectively and k0

and k1 are the values of the crystal momentum at which band 0 and band 1 attain their minimum,

we have that
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@f00

@t
+
p� ~k0
m0

@f00

@x
+
i

~
(�00f)(x; p) = 0 (51)

@f11

@t
+
p� ~k1
m1

@f11

@x
+
i

~
(�11f)(x; p) = 0; (52)

i~
@f01

@t
=

��
�0(k0) +

(p � ~k0)2
2m0

�
�
�
�1(k1) +

(p� ~k1)2
2m1

��
f01(x; p)

� i~

2

�
p� ~k0
m0

+
p� ~k1
m1

�
@f01

@x
� 1

8

�
~2

m0

� ~2

m1

�
@2f01

@x2

+ (�01f)(x; p); (53)

where �mn is an operator acting on the whole Wigner function f and, recalling de�nition (42), is

given by

(�mnf)(x; p; t) =

Z Z
dx0d�cWmn(x; p; x

0;��)ÆV (x0; �) bf(x0; �; t)
= 4�

X
m0n0m00n00

bUm

m0
bUn�
n0
bUm�
m00

bUn

n00ei(Km
0�K

n
0 )xH

�
�

a
�
����p~ � Km0 +Kn0

2

����
�

�
Z
dx0e�i(Km

00�K
n

00 )x
0 sin 2[�=a� jp=~� (Km0 +Kn0)=2j](x� x0)

x� x0

�
Z
d�ÆV (x0; �)e�i(p�(Km

0+K
n

0�K
m

00�K
n

00 )=2)�=~ bf (x0; �; t): (54)

A two-band model with empty-lattice eigenfunctions

A di�erent simpli�cation of the transport equations can be obtained by using the Bloch functions

of the \empty lattice", that is periodic plane waves. Here, we consider only the two lowest energy

bands, given by

�0(k) =
~2k2

2m
(55)

�1(k) =
~
2

2m
[H(k)(k �K)2 +H(�k)(k +K)2]; (56)

with K = 2�=a and m the bare electron mass, and whose eigenfunctions are

	0k(x) = hx j 0ki = 1p
2�

eikx (57)

	1k(x) = hx j 1ki = 1p
2�

(H(k)e�iKx +H(�k)eiKx)eikx: (58)

By using this basis in the de�nition (39) of the multiband Wigner function, one obtains for the

band projections fmn (see [DBJ03b] for the details):
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f00(x; p) =
1

�
H
�
K

2
�
���p
~

���� Z sin 2(K=2� jp=~j)(x� x0)

x� x0
f(x0; p)dx0 (59)

f01(x; p) =
1

�

Z � eH�
�3~K

4
; p; 0

�
ei(�1+�2+K)(x�x0) sin(�2 � �1)(x� x0)

x� x0

+ eH�
0; p;

3~K

4

�
ei(�3+�4�K)(x�x0) sin(�4 � �3)(x� x0)

x� x0

�
� f(x0; p)dx0 (60)

f11(x; p) =
1

�

Z � eH�
�~K; p;�~K

2

�
sin 2(K=4� jp=~+ 3K=4j)(x� x0)

x� x0

+ eH�
~K

2
; p; ~K

�
sin 2(K=4� jp=~� 3K=4j)(x� x0)

x� x0

+ 2H
�
K

4
�
���p
~

���� sin 2(K=4� jp=~j)(x� x0)

x� x0
cos

3

2
K(x� x0)

�
� f(x0; p)dx0: (61)

where the function eH(a; x; b) � H(x� a)H(b� x) has been introduced, and

�1(p) = �K
2
+

����p~ +
K

2

���� �2(p) =
K

4
�
����p~ +

K

4

����
�3(p) = �K

4
+

����p~ � K

4

���� �4(p) =
K

2
�
����p~ � K

2

���� :
The time evolution of the Floquet projections of the Wigner function is given by:

@f00

@t
+

p

m

@f00

@x
+
i

~
(�00f)(x; p) = 0

@f11

@t
+

p

m

@f11

@x
+
i

~
(�11f)(x; p) = 0;

@f01

@t
+

p

m

@f01

@x
+
i

~
(�01f)(x; p) = 0;

where � is an operator acting on the total Wigner function f and is given by
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(�00f)(x; p) =
1

�
H
��
a
�
���p
~

���� Z sin 2(�=a� jp=~j)(x� x0)

x� x0

�
Z
ÆV (x0; �) bf(x0; �; t)e�ip�=~ d� dx0

(�01f)(x; p) =
1

�

Z � eH�
�3~K

4
; p; 0

�
ei(�1+�2+K)(x�x0) sin(�2 � �1)(x � x0)

x� x0

+ eH�
0; p;

3~K

4

�
ei(�3+�4�K)(x�x0) sin(�4 � �3)(x� x0)

x� x0

�

�
Z
ÆV (x0; �) bf(x0; �; t)e�ip�=~ d� dx0

(�11f)(x; p) =
1

�

Z � eH�
�~K; p;�~K

2

�
sin 2(K=4� jp=~+ 3K=4j)(x� x0)

x� x0

+ eH�
~K

2
; p; ~K

�
sin 2(K=4� jp=~� 3K=4j)(x� x0)

x� x0

+ 2H
�
K

4
�
���p
~

���� sin 2(K=4� jp=~j)(x� x0)

x� x0
cos

3

2
K(x� x0)

�

�
Z
ÆV (x0; �) bf(x0; �; t)e�ip�=~ d� dx0

Equations (59)-(61) show that the Floquet projections of the Wigner function given by this model

are functions with compact support and cover di�erent portions of the phase space. The support

of the projection f00 on the lower band, for example, corresponds to the �rst Brillouin zone;

the supports of the other projections are larger and extend beyond the �rst Brillouin zone. The

equations of this two-band model are very hard to approach numerically, because of the presence

of convolution integrals of highly oscillatory functions.

5.3 Envelope-function based statistical models

An alternative approach to statistical models based on the Wigner picture starts from an envelope-

function model, such as the Kane model (23) or the M-M model (29) and then applying the Wigner

transformation (32) directly to the envelope functions (	c and 	v in the former case, �c and �v in

the latter).

For a two-band model we need a 2� 2 matrix of Wigner functions (Wigner matrix), de�ned as

the component-wise Wigner transform:

wij(x; p) = (W �ij) (x; p); i; j 2 fc; vg;

where W denotes the Wigner transformation (32) and �ij is an envelope-function density matrix

(i.e., in the pure-state case, it is given by �ij(x; x
0) = 	i(x)	 j(x

0) for the Kane model and by

�ij(x; x
0) = �i(x)�j(x

0) for the M-M model). The self-adjointness of the density operator implies

the Hermiticity of the Wigner matrix for any �xed (x; p):
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�ij(x; x
0) = �ji(x0; x) =) wij(x; p) = wji(x; p):

The evolution equation for the Wigner matrix in the case of the Kane model (23) is�
@

@t
+

p

m
� rx +

i

~
�[Vcc]

�
wcc = � i~K

2m
� rx(wcv � wvc)� K � p

m
(wcv + wvc)

�
@

@t
+

p

m
� rx +

i

~
�[Vcv]

�
wcv =

i~K

2m
� rx(wcc +wvv) +

K � p
m

(wcc � wvv)

�
@

@t
+

p

m
� rx +

i

~
�[Vvc]

�
wvc = � i~K

2m
� rx(wcc +wvv) +

K � p
m

(wcc � wvv)

�
@

@t
+

p

m
� rx +

i

~
�[Vvv]

�
wvv = � i~K

2m
� rx(wcv � wvc) +

K � p
m

(wcv +wvc)

(62)

where we put

Vij(x; �) = (Ei + V )

�
x+

�

2

�
� (Ej + V )

�
x� �

2

�
; i; j 2 fc; vg; (63)

and the pseudo-di�erential operator, in the present three-dimensional case, is given by

(�[�]f) (x; p) =
1

(2�~)3

Z
R6

e�i(p�p
0)��=~ �(x; �) f(x; p0) d� dp0: (64)

The system (62) has been studied from a mathematical point of view in [BFZ03]. The Wigner

matrix describing thermal equilibrium of the Kane model has been analyzed in Ref. [Bar04a].

The evolution equation for the Wigner matrix in the case of the M-M model (4.2) is�
@

@t
+ p �M�1

c
rx +

i

~
�[Vcc]

�
wcc = �[F�]wcv ��[F+]wvc

�
@

@t
+ p � M

�1
c + M�1

v

2
rx � i~

4
rx � M

�1
c � M�1

v

2
rx +

ip

~
� M

�1
c �M�1

v

2
p

�
wcv

= � i

~
�[Vcv]wcv + �[F�]wcc ��[F+]wvv

�
@

@t
+ p � M

�1
c + M�1

v

2
rx +

i~

4
rx � M

�1
c � M�1

v

2
rx � ip

~
� M

�1
c �M�1

v

2
p

�
wvc

= � i

~
�[Vvc]wvc � �[F+]wcc +�[F�]wvv

�
@

@t
+ p �M�1

v rx +
i

~
�[Vvv]

�
wvv = ��[F+]wcv + �[F�]wvc

(65)

where we put

F�(x; �) =
rV � P
mEg

�
x� �

2

�
;
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and the symbols Vij are still given by (63). From eq. (26) we see that that P and, consequently,

F� are purely imaginary, so that the following relations hold:

�[F�]wij = ��[F�]wji; i; j 2 fc; vg:

In the special case of constant and opposite e�ective-masses,

M c = m�I; M v = �m�I;

the above system reduces to�
@

@t
+

p

m�
� rx +

i

~
�[Vcc]

�
wcc = �[F�]wcv ��[F+]wvc

�
@

@t
� i~

4m�
r2
x
+

ip2

~m�
+
i

~
�[Vcv]

�
wcv = �[F�]wcc ��[F+]wvv

�
@

@t
+

i~

4m�
r2
x �

ip2

~m�
+
i

~
�[Vvc]

�
wvc = ��[F+]wcc +�[F�]wvv

�
@

@t
� p

m�
� rx +

i

~
�[Vvv]

�
wvv = ��[F+]wcv +�[F�]wvc ;

(66)

(see also Ref. [FM05]). The negative e�ective-mass introduced in this model has the e�ect of

making the Hamiltonian unbounded from below. As it is well known, such a Hamiltonian is not very

good, especially for statistical purposes (the thermal equilibrium states are ill-de�ned). However,

the correct interpretation is that (66) should be considered just as an approximation of the true

dynamics for small values of the momentum p.

6 Hydrodynamic models

It is universally recognized that the hydrodynamic approach presents important properties both

from the theoretical and the numerical point of view because it gives an interpretation of the

transport phenomenon by macroscopic quantities and it produces many advantages from the

computational point of view.

The literature on hydrodynamicmodels is very broad, both in classical as well as in semiclassical

and quantum framework.

Some very interesting results have been achieved, proposing quantum hydrodynamic equations,

able to describe the behaviour of nanometric devices like resonant tunneling diodes. Here, we

restrict ourselves to describing the hydrodynamic versions of the Kane model and of the M-M

model.
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Most of the results published in the literature refer to single-band problems. The generalization

to multiband models presents several diÆculties. Among others, the de�nition of the macroscopic

quantities with a realistic physical meaning and the diÆculty in imposing boundary conditions.

In this review we give an insight into the classical derivation of a two-band quantum 
uid. As

we have said, the above-mentioned multiband models are based on the single electron Schr�odinger

equation, and the resulting equations are essentially linear. By applying the WKB method, it is

possible to derive a zero-temperature hydrodynamic version of the Schr�odinger two-band models.

When it is desirable to model the dynamics of a family of electrons, the statistical description

requires the introduction of a sequence of mixed states, with an attached occupation probability.

In this case, the WKB method leads to a sequence of hydrodynamic equations. Starting from

it, it is possible to derive a set of equations for certain macroscopic averaged quantities. These

hydrodynamic equations share a similar structure with the corresponding equations for a single

electron, the only di�erence being the appearance of terms that can be interpreted as thermal

tensors, and of additional source terms. These new terms depend on all states, so the system is not

closed unless appropriate closure conditions are provided. It is clear that the �nal hydrodynamic

model with temperature is by no means equivalent to the original quantum model. We could say

that the nonlinearity of the resulting hydrodynamic model is \genuine" and is the price to pay for

keeping only a �nite number of equations.

6.1 The hydrodynamic quantities

In order to obtain hydrodynamic versions of the kinetic models described in the previous sections,

one possibility is to follow the general hydrodynamic approach to quantum mechanics due to

Madelung [LL77]. This approach consists in writing the wave function in the quasi-classical

form a exp
�
iS

�

�
, where a is called the amplitude and S=� the phase. With this approach, the

hydrodynamic limit is valid only for pure states, that is to say, it is valid only for a quantum

system at zero temperature. In the case of a two-band model, we have

 a(x; t) =
p
na(x; t) exp

�
iSa(x;t)

�

�
; a = c; v: (67)

where the squared amplitude has the physical meaning of the probability density of �nding the

\particle" at some point in space, and the gradient of the phase corresponds to the classical velocity

of the \particle".

In the framework of two-band models, the densities

nab =  a b;

are introduced, where  a, with a = c; v, is the envelope function for the conduction and the

valence band, respectively. When a = b, the quantities nab = na = j aj2 are real and represent
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the position probability densities of the conduction band and of the valence band electrons, albeit

only in an approximate sense, since  c and  v are envelope functions which mix the Bloch states.

Nevertheless, n =  c c +  v v is exactly the total electron density in the conduction and in the

valence band, and, as expected, it satis�es a continuity equation. When a 6= b, the density  
a
 b

is a complex quantity, which does not have a precise physical meaning. Despite of this, as it will

become clear in the next section, the complex quantities  
a
 b appear explicitly in the evolution

equation for the total density n.

It is customary, after (67), to write the coupling terms in a more convenient way, by introducing

the complex quantity

ncv =  
c
 v =

p
nc
p
nv e

i�; (68)

where � is the phase di�erence de�ned by

� =
Sv � Sc

�
: (69)

In this way, in order to study a zero-temperature quantum hydrodynamic model, we need to use

only the three quantities nc; nv and � to characterize the zero order moments.

The situation is more involved for the current densities. In analogy to the one-band case, we

introduce the quantum mechanical electron current densities

Jab = � Im
�
 ar b

�
: (70)

It is natural to recover the classical current densities,

Jc = Im
�
� cr c

�
= ncrSc; Jv = Im

�
� vr v

�
= nvrSv ; (71)

whose physical meaning is clear.

The introduction of the complex quantity (68) allows to write � 
a
r b in (70) as

� 
c
r v = ncvuv; � 

v
r c = ncvuc; (72)

where the complex velocities uc and uv are given by

uc = uos;c + iuel;c; uv = uos;v + iuel;v: (73)

with uos;c and uos;v the so-called osmotic velocity and current velocity given by

uos;a =
�rpnap

na
; uel;a = rSa = Jc

na
; a = c; v: (74)

In analogy with the single-band case we have de�ned the osmotic and current velocities as complex

quantities which can be expressed solely by means of nc; nv; Jc and Jv. In addition, the coupling

term ncv has been de�ned by introducing the phase di�erence �. We note that
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�rncv = ncv(uc + uv): (75)

Coming back to the choice of the hydrodynamic quantities, we maintain that, for a zero-

temperature quantum hydrodynamic system, it is suÆcient to take the usual quantities nc, nv, Jc

and Jv, plus the phase di�erence �. This will be con�rmed in the next section.

6.2 Hydrodynamic version of the Kane system

The Kane model was introduced in Section 4.1 by using envelope functions. Before introducing the

hydrodynamic form, we rewrite it by using dimensionless variables. To this aim we introduce the

rescaled Planck constant � = ~=�, where the dimensional parameter � is given by � = mx2
R
=tR,

by using xR and tR as characteristic (scalar) length and time variables. The band energy can be

rescaled by taking new potential units V0 = mx2
R
=t2
R
. A dimensional argument shows that the

original coupling coeÆcient is a reciprocal of a characteristic lenght, thus the coeÆcient is scaled

by KxR, componentwise.

Hence, dropping the primes and without changing the name of the variables, we get the following

scaled Kane system, which will be the object of our study:

i�
@ c

@t
= ��

2

2
� c + Vc c� �2K � r v

i�
@ v

@t
= ��

2

2
� v + Vv v+ �2K � r c ;

(76)

where K is the rescaled coupling interband coeÆcient, � is the rescaled Planck constant, Vc = Ec+V

and Vv = Ev + V . In the Kane model the coupling parameter has to be considered constant. In

realistic heterostructure semiconductor devices, the parameter K, approximatively expressed in

terms of the e�ective electron mass and the energy gap, depends on the layer composition through

the spatial coordinates.

Taking into account the wave form (67) and using the equations of system (76), time derivation

of na; a = c; v gives immediately

@nc

@t
+r�Jc = �2K � Im (ncvuv)

@nv

@t
+r�Jv = 2K � Im (ncvuc) ;

(77)

where (71) has been used for Jc and Jv. We remark that the right-hand side of (77), containing

the terms ncvuv and ncvuc, can be expressed in terms of osmotic and current velocities, and the

phase di�erence �.
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Adding the equations in (77) and using the identity Im(� cr v)� Im(� 
v
r c) = �r Imncv;

we obtain the balance law for the total density

@

@t
(nc + nv) +r�(Jc + Jv + 2�K Imncv) = 0 ;

which is just the quantum counterpart of the classical continuity equation.

The derivation of the equations for the phases Sc, Sv, and consequently for Jc and Jv, is more

involved.

Referring the reader to the original paper [AF05] for more details, the equations for the currents

take the form

@Jc

@t
+ div

�
Jc 
 Jc

nc
+ �2rpnc 
r

p
nc � �2

4
r
rnc

�
+ ncrVc

= �2 Re
�r( 

c
(K � r v)) � 2r 

c
(K � r v)

�
: (78)

@Jv

@t
+ div

�
Jv 
 Jv

nv
+ �2rpnv 
rpnv � �2

4
r
rnv

�
+ nvrVv

= � �2 Re �r( v(K � r c)) � 2r v(K � r c)
�
: (79)

The left-hand sides of the equations for the currents can be put in a more familiar form by

using the identity

div

�
rpna 
r

p
na � 1

4
r
rna

�
= �na

2
r
�
�
p
nap
na

�
; a = c; v:

The correction terms
�2

2

�
p
nap
na

; a = c; v ;

can be identi�ed with the quantum Bohm potentials for each band, because they can be interpreted

as internal self-consistent potentials, in analogy with the single-band case. The right-hand sides

can be further expressed in terms of the hydrodynamic quantities, obtaining the �nal system

@Jc

@t
+ div

�
Jc 
 Jc

nc

�
� ncr

�
�2�

p
nc

2
p
nc

�
+ ncrVc

= �r Re (ncvK �uv)� 2 Re (ncvK �uvuc) ;

@Jv

@t
+ div

�
Jv 
 Jv

nv

�
� nvr

�
�2�

p
nv

2
p
nv

�
+ nvrVv

= ��r Re (ncvK �uc) + 2 Re (ncvK �ucuv) :

(80)

It is evident that the equations for the conduction and the valence band are coupled. Also,

because of the presence of �, it is necessary to \close" the system, in order to obtain an extension
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of the classical Madelung 
uid equations to a two-band quantum 
uid. In this context, we choose

the following constraint

�r� =
Jv

nv
� Jc

nc
: (81)

Now we are in position to rewrite the hydrodynamic system (80) as follows

@nc

@t
+ divJc = �2K � Im(ncvuv);

@nv

@t
+ divJv = 2K � Im(ncvuc);

@Jc

@t
+ div

�
Jc 
 Jc

nc

�
� ncr

�
�2�

p
nc

2
p
nc

�
+ ncrVc

= �rRe(ncvK �uv)� 2 Re (ncvK �uvuc) ;
@Jv

@t
+ div

�
Jv 
 Jv

nv

�
� nvr

�
�2�

p
nv

2
p
nv

�
+ nvrVv

= ��rRe(ncvK �uc) + 2 Re (ncvK �ucuv) ;

�r� =
Jv

nv
� Jc

nc
;

(82)

where ncv; uv, and uv are expressed in the terms of the hydrodynamic quantities nc; nv; Jc; Jv, and

� by (68) and (73).

6.3 The nonzero-temperature case

The extension of the previous analysis to an electron ensemble requires a quantum statistical

mechanics treatment. According to the general discussion at the beginning of Section 5, it is possible

to represent an electron ensemble as a mixed quantum mechanical state given by a sequence of

pure states 	k, with occupation probabilities �k � 0, so that
P

k
�k = 1. In the two-band case,

each pure state is represented by a couple of envelope-functions,  kc and  kv and, therefore, we

shall extend the de�nition of the hydrodynamic quantities as a superposition, with weights �k, of

the corresponding pure-state quantities. For example, the density will be na =
P

k
�k 

k

a 
k
a , for

a = c; v.

In the sequel we shall work at the formal level, and we refer to the equations found in [AF05].

The k-th state for the Kane system is described by the solutions of the system

i�
@ kc
@t

= ��
2

2
� kc + Vc 

k

c � �2K �r kv ;

i�
@ k

v

@t
= ��

2

2
� k

v
+ Vv 

k

v
+ �2K �r k

c
:

(83)
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Using the expressions (67) for each state k in (83),

 kc =

q
nkc exp

�
iSkc =�

�
;  kv =

q
nkv exp

�
iSkv =�

�
;

under the assumption of positivity of the densities nk
c
and nk

v
, a hydrodynamic system analogous

to (82) is obtained for each state k. The densities and the currents corresponding to the two mixed

states for conduction and valence electrons can be de�ned as

nc =

1X
k=0

�knkc ; nv =

1X
k=0

�knkv;

Jc =

1X
k=0

�kJk
c
; Jv =

1X
k=0

�kJk
v
:

We also de�ne

� =

1X
k=0

�k�k; ncv =
p
nc
p
nv exp(i�);

uc =
�rpncp

nc
+ i

Jc

nc
; uv =

�rpnvp
nv

+ i
Jv

nv
:

Multiplying (82) for the state k by �k and summing over k, we �nd new quantities that must be

manipulated with much care. In analogy with the one-band case [GMU95], new terms containing

the total temperature �c and �v, for each band, appear in the current equations. The temperature

tensors are de�ned by the sum of osmotic temperature and electron current temperature

�c = �os;c + �el;c and �v = �os;v + �el;v

given by

�os;c =

1X
k=0

�k
nk
c

nc
(ukos;c � uos;c) 
 (ukos;c � uos;c);

�el;c =

1X
k=0

�k
nkc
nc

(ukel;c � uel;c) 
 (ukel;c � uel;c):

In conclusion our system becomes

@nc

@t
+ divJc = � 2K � Im [ncv (�uv + �v)];

@nv

@t
+ divJv = 2K � Im[ncv (�uc + �c)];
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@Jc

@t
+ div

�
Jc 
 Jc

nc
+ nc�c

�
� ncr

�
�2�

p
nc

2
p
nc

�
+ ncrVc

= �K �r Re (ncv(�uv + �v))

� 2K � Re �ncv(�uv 
 uc + �v 
 uc + uv 
 �c + �cv)
�
;

@Jv

@t
+ div

�
Jv 
 Jv

nv
+ nv�v

�
� nvr

�
�2�

p
nv

2
p
nv

�
+ nvrVv

= ��K �r Re (ncv (�uc + �c))

+ 2K � Re �ncv (�uc 
 uv + �c 
 uv + uc 
 �v + �vc)
�
;

�r� � Jv

nv
+
Jc

nc
= � Im

�
1

�

�
�r�� �v � �c

��
:

(84)

where the new quantities are de�ned by

� =

1X
k=0

�k
nkcv
ncv

; �v =

1X
k=0

�k
nkcv
ncv

(ukv � uv); �c =

1X
k=0

�k
nkcv
ncv

(ukc � uc):

and, in the expression of the coupling terms between the two bands, there appears a of temperature

tensor, given by

�cv =

1X
k=0

�k
nkcv
ncv

(ukv � uv) 
 (ukc � uc);

�vc =

1X
k=0

�k
nk
cv

ncv
(uk

c
� uc)
 (uk

v
� uv):

Equations (84) can be considered as a nonzero-temperature quantum 
uid model. The quantities

ncv, uc, and uv, already present in (82), are expressed in terms of nc, nv, Jc, Jv, and �, while the

new quantities �, �c, and �v satisfy the relation

Re

�
1

�

�
�r�� �v � �c

��
= 0

and need appropriate closure relations. Moreover, we must assign constitutive relations for the

tensor components �c, �v , �cv and �vc; �c and �v are formally analogous to the temperature tensor

of kinetic theory.

A simple class of closure conditions can be obtained by assigning a function � = �(nc; nv; �)

and taking

�c = 2nc
@��

@nc
uos;c � @��

@�
uel;c; �v = 2nv

@�

@nv
uos;v +

@�

@�
uel;v: (85)

Then, we have

�r�� �v � �c = 0;

which implies
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�r� � Jv

nv
+
Jc

nc
= 0:

In particular, it is possible to choose

� = 1; �c = �v = 0: (86)

We still need to consider the temperature tensors �c, �v, �cv and �vc. Heuristically, following the

analogy with the single-band 
uid-dynamical model [Jun01], the simplest closure relation is:

�c =
1

nc
pc(nc)I; �v =

1

nv
pv(nv)I; �cv = �vc = 0; (87)

where I is the identity tensor and the functions pc and pv can be interpreted as pressures. In this

way we obtain the simplest two-band, isentropic, 
uid-dynamical model:

@nc

@t
+ divJc = � 2K � Im(ncv uv);

@nv

@t
+ divJv = 2K � Im(ncv uc);

@Jc

@t
+ div

�
Jc 
 Jc

nc
+ pc(nc)I

�
� ncr

�
�2�

p
nc

2
p
nc

�
+ ncrVc

= �K �r Re (ncvuv) � 2K � Re (ncvuv 
 uc) ;

@Jv

@t
+ div

�
Jv 
 Jv

nv
+ pv(nv)I

�
� nvr

�
�2�

p
nv

2
p
nv

�
+ nvrVv

= ��K �r Re (ncv uc) + 2K � Re (ncv uc 
 uv) ;

�r� � Jv

nv
+
Jc

nc
= 0:

(88)

We remark that if the (classical) pressures are linear functions of nc and nv equations (88) reduce

to the so-called isothermal case.

6.4 Hydrodynamic version of the M-M system

The method used in the previous section is suitable to be applied also to the multiband envelope

function model introduced by Modugno and Morandi in [MM05] and described in Section 4.2.

However, as we have remarked at the end of Section 5.3, when mixed states become important

(namely, for nonzero temperature models), the M-M model has some undesirable features that

make the discussion more complicated, beyond the scope of the present review. For this reason we

shall restrict ourselves to the zero-temperature case.

By using dimensionless variables, the system (29) reads as follows:



30 Luigi Barletti, Lucio Demeio and Giovanni Frosali

i�
@ c

@t
= ��

2

2
� c + (Ec + V ) c � �2P  v;

i�
@ v

@t
=

�2

2
� v + (Ev + V ) v � �2P  c;

(89)

where P is the rescaled coupling interband coeÆcient and � is the rescaled Planck constant.

By using the Madelung form (67) for the wave functions, and proceeding in the same way as

for the Kane model in Section 6.2, we obtain the hydrodynamic equations for the two-band M-M

model
@nc

@t
+r�Jc = �2P Im

�
� 

c
 v
�
;

@nv

@t
�r�Jv = 2P Im

�
� c v

�
:

(90)

By summing the two equations in (90), we obtain the balance law for the total density,

@�

@t
+r�J = 0: (91)

where � = nc + nv is the total density and J = Jc � Jv is the total current.

We remark that, in contrast with the Kane model, interband current terms do not appear in

the conservation of the total density.

Next, the equations for the phases Sc, Sv, and the currents Jc and Jv are derived. Referring the

reader to the paper [AFM05] for the details, here we only write the equations for the currents in

the �nal form

@Jc

@t
+ div

�
Jc 
 Jc

nc

�
� ncr

�
�2�

p
nc

2
p
nc

�
+ nc(rEc +rV )

= �2rP Re ncv + �P
p
nc
p
nv(cos�(uos;v � uos;c)� sin�(uel;c + uel;v));

@Jv

@t
� div

�
Jv 
 Jv

nv

�
+ nvr

�
�2�

p
nv

2
p
nv

�
+ nv(rEv +rV )

= �2rP Re ncv � �P
p
nc
p
nv(cos�(uos;v � uos;c)� sin�(uel;c + uel;v)):

(92)

Also in this case, we have introduced the internal self-consistent potentials for each band (the

Bohm potentials) and the osmotic velocities (uos;c; uos;v) and current velocities (uel;c; uel;v); � is

again the phase di�erence de�ned by � = Sv�Sc
�

.

The systems (90) and (92) are not equivalent to the original system (89), due to the presence

of �. By using the constraint (81), we �nally obtain the hydrodynamic system
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@nc

@t
+ divJc = �2�P Imncv;

@nv

@t
� divJv = 2�P Imncv;

@Jc

@t
+ div

�
Jc 
 Jc

nc

�
� ncr

�
�2�

p
nc

2
p
nc

�
+ nc(rEc +rV )

= �2rP Re ncv + �P Re (ncv(uv � uc)) ;

@Jv

@t
� div

�
Jv 
 Jv

nv

�
+ nvr

�
�2�

p
nv

2
p
nv

�
+ nv(rEv +rV )

= �2rP Re ncv � �P Re (ncv(uv � uc)) ;

�r� =
Jv

nv
� Jc

nc
;

(93)

where ncv; uv; uv are expressed in the terms of the hydrodynamic quantities nc, nv, Jc, Jv, �.

System (93) is the extension of the classical Madelung 
uid equations to a two-band quantum


uid.
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