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ABSTRACT

In this work we present a one-dimensional model of quantum electron transport
in semiconductors that makes use of the Wigner function formalism and that
takes into account the full band structure of the medium for energy bands
of any shape. We introduce a multi-band Wigner function and derive the
evolution equations for each component, with and without external �elds, by
using a Bloch states representation of the density matrix.

1 Introduction

The Wigner-function approach to quantum electron transport in semiconduc-

tors is widely used to describe the properties of electronic devices such as the
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Resonant Tunneling Diode (RTD) and others [1, 2, 3]. By making use of phase

space concepts, it presents a close analogy to the classical Boltzmann-equation

approach; this has the advantage that many of the analytical and numerical

techniques commonly used for the Boltzmann equation can be adapted to the

Wigner function. In particular, the numerical complexity of other quantum

statistical approaches to electron transport, such as the density-matrix ap-

proach [4, 5, 6] and the Green's-function approach [7, 8, 9], is signi�cantly

reduced in the kinetic models that make use of the Wigner function. Also,

when dealing with space dependent problems in �nite domains, it is always

diÆcult to devise the correct boundary conditions to be imposed; because of

the analogy with the classical Boltzmann equation, this diÆculty is more easily

overcome with the Wigner-function approach, since one can rely on imposing

classical boundary conditions in a region suÆciently far from the quantum re-

gion, where classical e�ects dominate [3]. Also, adding collisions to the model

equations that govern the evolution of the Wigner function is less complicated

than including collisions into the other statistical models of quantum transport

[2].

All existing transport models for semiconductors based on the Wigner func-

tion, however, rely on the following two approximations: 1) that only single-

conduction-band electrons contribute to the current 
ow, and 2) that only a

small region of the Brillouin zone near the minimum of the band is populated,

leading to the parabolic band approximation. Under these conditions, conduc-

tion electrons can be considered as semiclassical particles having an e�ective

mass related to the curvature of the energy band function near the minimum.

The evolution equation for the Wigner function of the conduction electrons

then becomes the evolution equation for free particles with an e�ective mass.

This allows the inclusion of any �elds (barriers or bias) by means of the stan-

dard pseudodi�erential operator [1].

In the case of devices in which interband transitions or non-parabolicity
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e�ects may occur, the single-band, e�ective mass approximation is not sat-

isfactory. A correctly de�ned Wigner function for these phenomena should

include the populations of all bands involved in the transport processes and

the evolution equation that governs the time dependence of the Wigner func-

tion should take into account possible non-parabolicity e�ects. In this work, we

remove the single-band approximation and the parabolic band approximation,

by introducing a Wigner function which includes the populations of all energy

bands and derive an evolution equation which allows for energy bands of any

shape. The resulting equations provide an exact model for the description of

collisionless electron transport in semiconductors without the single-band and

the e�ective mass approximations. Collisions can be added to the model in

standard ways. We also discuss the derivation of the e�ective mass approx-

imation starting from the exact equations. Some of our results have already

appeared in the literature for particular cases. In absence of external �elds,

the evolution equations are a generalization of an earlier result for a single

band by Markowich, Mauser and Poupaud [10, 11]. A statistical description of

multiband transport was formulated by Krieger and Iafrate [12, 13] by making

use of accelerated Bloch states in a model based on the density matrix. A two

band kinetic model without external �elds was developed by Kuhn and Rossi

[14] and by Hess and Kuhn [15] for the description of semiconductor lasers.

2 The density matrix and the Wigner function

In this work, we consider an ensemble of electrons moving in a semiconduc-

tor crystal, which is considered as an in�nite homogeneous medium. The

main quantity of a quantum statistical description of the electron ensemble

in phase space is the Wigner function, which is de�ned by a suitable Fourier

transformation of the density matrix. If � is the single particle density opera-

tor, the corresponding density matrix in the space representation is given by
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�(r; s) =< rj�js >, where Dirac's notation has been used. Then, the Wigner

function [1] is derived from the density matrix by �rst considering a transfor-

mation from the variables r and s to the variables x = (r+s)=2 (center of mass

variable) and � = r� s (relative variable), and then taking Fourier transforms

with respect to �:

f(x; p) =
Z
d� < x+

�

2
j�jx�

�

2
> e

�ip�=�h
: (1)

This relation can be inverted and the elements of the density matrix can be

written in terms of the Wigner function:

< rj�js >=
1

2��h

Z
dpf

�
r + s

2
; p

�
e
ip(r�s)=�h (2)

In general, an electron in the crystal will be found in a superposition of

Bloch states belonging to di�erent energy bands. If we wish to use the Wigner

function approach in situations in which band to band transitions occur, the

Wigner function has to contain the information about the electron populations

of all energy bands and their dynamics. A suitable partition of the Wigner

function among the energy bands is obtained by using the Bloch states and

the matrix elements of the density operator in the Bloch states representation.

Let H0 be the Hamiltonian containing only the kinetic energy and the pe-

riodic potential Vp, and given by H0 = p
2
=2m+ Vp, and let 	m(x; k), m 2 N,

k 2 B, with B the Brillouin zone [10], be the eigenfunctions and �1(k), �2(k),

. . . , �m�1(k), �m(k), . . . , the eigenvalues of H0:

H0	m(x; k) = �m(k)	m(x; k);

or, using Dirac's notation,

H0jm;k >= �m(k)jm;k > : (3)

The eigenfunctions are given by the Bloch functions

< xjmk >� 	m(x; k) = e
ikx
umk(x) (4)
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and form a complete orthonormal set [16]. Here, umk(x) is the periodic part

of the Bloch function for the m-th band and the states fjmk >g, m 2 N,

k 2 B are the Bloch states. If a is the period of the lattice, we have that

umk(x+ a) = umk(x) and

e
ik�

< xjmk >=< x+ �jmk > (5)

8� 2 L, with L the direct lattice (therefore � = �(l) = la, l 2 Z). The

functions �m(k) are the energy bands of the material and are periodic in the

crystal momentum k with period 2�=a. They can be expanded in a Fourier

series,

�m(k) =
X
�2L

b�m(�)eik�; (6)

where b��m(�) = b�m(��), since the �m(k) are real functions of k. By using the

completeness of the Bloch states fjmk >g in equation (1), the Wigner function

can be written as a double sum of contributions from all energy bands:

f(x; p) =
X
m0m00

fm0m00(x; p) (7)

where

fm0m00(x; p) =

Z
B2

dk
0

dk
00

�m0m00(k0; k00)�

�
Z
d� < x+

�

2
jm0

k
0

>< m
00

k
00jx�

�

2
> e

�ip�=�h (8)

and

�m0m00(k0; k00) =< m
0

k
0j�jm00

k
00

> (9)

are the elements of the density operator in the Bloch states representation.

Equation (8) can be written in a more compact form, by introducing a pro-

jection operator Pm0m00 such that, (Pm0m00f)(x; p) = fm0m00(x; p). Let us �rst

de�ne the coeÆcients

�m0m00(k0; k00; x; p) =
Z
d� < x+

�

2
jm0

k
0

>< m
00

k
00jx�

�

2
> e

�ip�=�h
: (10)
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These integrals have the property that

1

2��h

Z Z
dxdp�m0m00(k0; k00; x; p) = Æm0m00Æ(k0 � k

00); (11)

which can be easily derived from the orthogonality of the Bloch states. After

substituting into (8) we have:

fm0m00(x; p) =
Z
B2

dk
0

dk
00

�m0m00(k0; k00)�m0m00(k0; k00; x; p): (12)

The coeÆcients �m0m00(k0; k00) of the density matrix can be written in terms of

the Wigner function by using (2). After some algebra, we have:

�m0m00(k0; k00) =< m
0

k
0j�jm00

k
00

>=

=

Z Z
drds < m

0

k
0jr >< rj�js >< sjm00

k
00

>=

=
1

2��h

Z Z
dxdpf (x; p)

Z
d� < m

0

k
0jx+

�

2
>< x�

�

2
jm00

k
00

> e
ip�=�h =

=
1

2��h

Z
dx

Z
dp��m0m00(k0; k00; x; p)f (x; p) :

Finally, by introducing the transfer function

Wm0m00(x; p; x0; p0) =

Z
B2

dk
0

dk
00�m0m00(k0; k00; x; p)��m0m00(k0; k00; x0; p0); (13)

the band projection fm0m00 can be written as

fm0m00(x; p) =
1

2��h

Z Z
dx

0

dp
0

Wm0m00(x; p; x0; p0)f (x0; p0) � (Pm0m00f)(x; p):

(14)

The last equality de�nes the linear integral operator Pm0m00 , which yields the

projections fm0m00 from the total Wigner function f . It is easy to see that Pm0m00

is a projection operator. The functions fm0m00, which are the projections of f

onto the band subspaces, and the coeÆcients �m0m00(k0; k00) are similar to the

ones introduced in [17, 18, 19].

The macroscopic quantities such as particle density, current and energy, are

likewise expressed as a sum of band terms. It can be shown that only the

diagonal terms contribute to the total number of particles, that isZ Z
dxdpf(x; p) =

X
m

Z Z
dxdpfmm(x; p):
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This follows from the fact that
R R

dxdpfm0m00(x; p) = 0 for m0 6= m
00, as results

from equation (11).

3 General evolution equations

The time evolution of the Wigner fuction is given by the sum of the time

evolutions of the band projections,

i�h
@f

@t
(x; p; t) =

X
m0m00

i�h
@fm0m00

@t
(x; p; t);

and it must follow from the time evolution of the density matrix, which is

governed by the Liouville-von Neumann equation

i�h
@�

@t
= [H; �]: (15)

We shall analyze separately the contribution to the time evolution due to the

periodic potential, and determined by the Hamiltonian H0, and the contribu-

tion due to the external potential V . We shall write explicitely

@�

@t
=

 
@�

@t

!
0

+

 
@�

@t

!
V

; (16)

where i�h(@�=@t)0 = [H0; �] and i�h(@�=@t)V = [V; �]. Similarly, we shall write

@f

@t
=

 
@f

@t

!
0

+

 
@f

@t

!
V

(17)

for the Wigner function.

We begin by considering the time evolution of the Wigner function due to

the periodic potential. From equation (12) we have:

i�h

 
@fm0m00

@t

!
0

(x; p; t) =
Z
B2

dk
0

dk
00

i�h

 
@�m0m00

@t

!
0

(k0; k00; t)�m0m00(k0; k00; x; p)

(18)

and, by using equations (3) and (15),

i�h

 
@�m0m00

@t

!
0

(k0; k00; t) =< m
0

k
0j[H0; �]jm

00

k
00

>=

= [�m0(k0)� �m00(k00)]�m0m00(k0; k00; t):

7



By using the Fourier expansion (6) for the energy bands, we then have:

i�h

 
@fm0m00

@t

!
0

(x; p; t) =Z
B2

dk
0

dk
00[�m0(k0)� �m00(k00)]�m0m00(k0; k00; t)�m0m00(k0; k00; x; p) =

=

Z
B2

dk
0

dk
00

X
�2L

[b�m0(�)eik
0� � b�m00(�)eik

00�]�

��m0m00(k0; k00; t)�m0m00(k0; k00; x; p): (19)

In order to obtain a closed system of equations for the fm0m00 's, the right hand

side of equation (19) must be rewritten in terms of the fm0m00's themselves.

By using (5) and following [11], we have that eik� < x + �=2jmk >=< x +

� + �=2jmk > and e
ik�

< mkjx � �=2 >=< mkjx � � � �=2 > and, after

substituting in (19) and using the explicit expression for the coeÆcients (10),

we have:

i�h

 
@fm0m00

@t

!
0

(x; p; t) =
X
�2L

Z
B2

dk
0

dk
00

�m0m00(k0; k00; t)�

�
�b�m0(�)�m0m00(k0; k00; x+

�

2
; p) � b�m00(�)�m0m00(k0; k00; x�

�

2
; p)

�
e
ip�=�h

:

After rearranging terms we �nally obtain:

i�h

 
@fm0m00

@t

!
0

(x; p; t) =

=
X
�2L

�b�m0(�)fm0m00(x+
�

2
; p; t)� b�m00(�)fm0m00(x�

�

2
; p; t)

�
e
ip�=�h (20)

Equations (20) for the band projections fm0m00 are the equations that govern

the time evolution of the Wigner function of an ensemble of electrons moving

in a semiconductor crystal in the absence of external �elds and of collisions,

and that allows for energy bands of any shape. Note that, as was to be

expected, the populations of the bands do not interact and each contribution

to the Wigner function evolves independently in the absence of external �elds.

Equation (20) is a generalization to the multi-band case of an earlier result

obtained by Markowich, Mauser and Poupaud [11] for a single band. In the
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next Section, we shall relate these equations to the better known equations of

the e�ective mass approximation.

Next, we consider the time evolution of the Wigner function due to the

external potentials:

i�h

 
@f

@t

!
V

(x; p; t) =

Z
d� < x+

�

2
j[V; �]jx�

�

2
> e

�ip�=�h
: (21)

We recall that the right hand side of equation (21), can be cast in the form [1]Z
d� < x+

�

2
j[V; �]jx�

�

2
> e

�ip�=�h = (�(ÆV )f)(x; p; t) (22)

where �(ÆV ) is the pseudodi�erential operator with symbol ÆV (x; �) = V (x+

�=2) � V (x� �=2),

(�(ÆV )f)(x; p; t) =

Z
d�ÆV (x; �)f̂(x; �; t)e�ip�=�h;

and

f̂ (x; �; t) =
1

2��h

Z
dpf(x; p; t)eip�=�h

is the Fourier transform of the Wigner function with respect to the momentum

variable. Expressions (21)-(22) remain valid also in the multiband case, with

f the total Wigner function. We are however interested in the time evolution

of the single components fm0m00, which can be obtained by acting on both sides

of equation (21) with the operator Pm0m00 . From equation (22) we have:

Pm0m00(�(ÆV )f)(x; p; t) =

=
1

2��h

Z Z
dx

0

dp
0

Wm0m00(x; p; x0; p0)(�(ÆV )f)(x0; p0; t) =

=
1

2��h

Z Z
dx

0

dp
0

Wm0m00(x; p; x0; p0)
Z
d�ÆV (x0; �)f̂(x0; �; t)e�ip

0�=�h =

=
1

2��h

Z
dx

0

Z
dp

0

Wm0m00(x; p; x0; p0)e�ip
0�=�h

Z
d�ÆV (x0; �)f̂(x0; �; t) =

=
Z Z

dx
0

d�cWm0m00(x; p; x0;��)ÆV (x0; �)f̂(x0; �; t);

where cWm0m00(x; p; x0; �) =
1

2��h

Z
dp

0

Wm0m00(x; p; x0; p0)eip
0�=�h
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is the Fourier transform of Wm0m00 with respect to the last variable, and �nally

i�h

 
@fm0m00

@t

!
V

(x; p; t) =
Z Z

dx
0

d�cWm0m00(x; p; x0;��)ÆV (x0; �)f̂(x0; �; t):

(23)

The full time evolution of the band projection fm0m00 of the Wigner func-

tion, due to both the periodic potential of the crystal lattice and the external

potential, is obtained by adding the two contributions of equation (20) and

equation (23):

i�h
@fm0m00

@t
=

=
X
�2L

�b�m0(�)fm0m00(x+
�

2
; p; t)� b�m00(�)fm0m00(x�

�

2
; p; t)

�
e
ip�=�h +

+
Z Z

dx
0

d�cWm0m00(x; p; x0;��)ÆV (x0; �)f̂(x0; �; t): (24)

Equation (24) gives the full time evolution of each component of the Wigner

function, in presence of an external �eld and in the absence of collisions.

3.1 Quantum e�ects for linear and quadratic potentials

It is well known that in the case of linear and quadratic potentials the pseudod-

i�erential operator of the transport equation for the standard Wigner function

reduces to the classical di�erential operator of the Boltzmann equation. We

now show that this property holds in the multiband case with a slight modi�-

cation.

In the case of linear and quadratic potentials, the symbol ÆV of the pseu-

dodi�erential operator factors in the form

ÆV (x; �) = V (x+ �=2) � V (x� �=2) = �F (x)�

where F (x) is the force. For a linear potential, V (x) = �Ex and we have

F (x) = E; for a quadratic potential, V (x) = �x
2
=2 and we have F (x) = ��x.
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In either case, the standard pseudodi�erential operator with the potential be-

comes the di�erential operator in p-space of the classical Boltzmann equation:

�(ÆV )f =
Z
d�ÆV (x; �)f̂(x; �)e�ip�=�h =

= �F (x)
Z
d��f̂(x; �)e�ip�=�h = i�hF (x)

@f

@p
:

In the multiband case, a more general result is obtained and we have for

equation (23):

i�h

 
@fm0m00

@t

!
V

(x; p; t) = Pm0m00(�(ÆV )f)(x; p; t) = i�hPm0m00

 
F
@f

@p

!
(x; p; t):

(25)

In the case of a constant applied external �eld, E, we have F (x) = E and

equation (25) becomes 
@fm0m00

@t

!
V

(x; p; t) = EPm0m00

 
@f

@p

!
(x; p; t): (26)

The simpli�cation introduced by the di�erential operator is very important for

numerical calculations.

4 The parabolic band approximation and the

e�ective mass

The single band model with the parabolic band approximation is used to de-

scribe the electron population near the minimum of the conduction band. In

electronic devices such as the RTD, this approximation is justi�ed since these

electrons are responsible for most part of the 
ow of current. In the parabolic

band approximation, the evolution equation for the Wigner function simpli-

�es considerably. Moreover, in the absence of external �elds the evolution

equations in the parabolic band approximation can be written out without the

explicit knowledge of the eigenfunctions of the Hamiltonian (the Bloch states),

and they reduce to the standard free-streaming part of the Wigner equation.
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In the presence of external �elds, instead, little progress can be made without

the knowledge of the Bloch states for the material under study. For this rea-

son, we shall analyze the �eld-free case only, leaving the case with the �eld for

a separate work [20].

In the single band model, the total Wigner function f coincides with the

projection onto the conduction band and the sum over m0 and m
00 in equation

(7) collapses to a single term, say m
0 = m

00 = 1. Equation (20) with m
0 =

m
00 = 1 then gives the time evolution of the Wigner function of the conduction

band for a band of arbitrary shape in the absence of external �elds.

For a band �(k) having a minimum at k = 0, in the parabolic band approx-

imation and in the absence of external potentials, the evolution equation for

the Wigner function f is given by

@f

@t
+

p

m
�

@f

@x
= 0;

with

m
�
= �h2

 
@
2
�

@k2

!
�1

k=0

the e�ective mass. If the energy band attains its minimum at k = k
�
,

�(k) = �(k
�
) +

�h2(k � k
�
)2

2m
�

; (27)

with the e�ective mass de�ned by

m
�
= �h2

 
@
2
�

@k2

!
�1

k=k�

; (28)

the evolution equation is

@f

@t
+
p� �hk

�

m
�

@f

@x
= 0 (29)

In this section, we shall discuss the parabolic band approximation from the ex-

act equation (20) for a single band and illustrate its range of validity. Through-

out this Section, we shall omit the band index from the band energy function
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(�(k) instead of �m(k)) and from the band projection (f instead of fm0m00) of

the Wigner function. We shall also write @f=@t for (@f=@t)0 throughout this

and the next Section. Equation (20) for a single band of arbitrary shape is

i�h
@f

@t
(x; p; t) =

X
�2L

b�(�) �f(x+ �

2
; p; t)� f(x�

�

2
; p; t)

�
e
ip�=�h

: (30)

By expanding the nonlocal terms in the square brackets in a Taylor series

about � = 0, we obtain:

i�h
@f

@t
(x; p; t) =

X
�2L

b�(�) " 1X
n=0

2

�
�

2

�2n+1 1

(2n+ 1)!

@
2n+1

f

@x2n+1

#
e
i�p=�h =

=
1X
n=0

2�2n

(2n + 1)!

@
2n+1

f

@x2n+1

X
�2L

b�(�)�2n+1ei�p=�h =
= �i

1X
n=0

2�2n(�1)n

(2n+ 1)!

"
@
2n+1

�

@k2n+1

#
p=�h

@
2n+1

f

@x2n+1
=

= �i

"
@�

@k

#
p=�h

@f

@x
+ i

1

4!

"
@
3
�

@k3

#
p=�h

@
3
f

@x3
+ : : : :

For the parabolic band given in (27) the third derivatives of the energy band

vanish exactly and we obtain the evolution equation (29) for the Wigner func-

tion. Notice that the �rst non-parabolicity correction is proportional to the

third derivative of the energy band at the minimum and it involves the third

partial derivative of the Wigner function with respect to the space variable.

The non-parabolicity correction to the free-streaming equation dosn't appear

as a small term in some parameter, but it is of the same order of magnitude as

the free-streaming terms. This fact needs further understanding, particularly

since the parabolic band approximation is known to work well when only states

near the minimum of the band contribute to the density matrix (and thus to

the Wigner function).

It is also interesting to compare the exact solution of equation (30) with the

solution of the corresponding free-streaming equation obtained in the e�ective

mass approximation.
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Figure 1: f(x; p) as a function of x, 0 � x � 20 for p � 0:5, and for t = 20;
exact solution from (31) (solid line), free-streaming approximation from equation
(29) (dashed line). Dimensionless variables as de�ned in the text.

For the comparison, which is only qualitative, we have used dimensionless

variables: the space variable x is measured in units of a, the momentum p in

units of �h=a, time t in units of ma
2
=�h and the crystal momentum k in units of

1=a. In the dimensionless variables, the free-streaming equation becomes

@f

@t
+ p

@f

@x
= 0:

Also, we have chosen �(k) = 1 � cos k, �� � k � �, for the band pro�le

(thus k
�
= 0) and 0 � x � 20. Note that, with these dimensionless quantities,

the phase-space momentum p and the crystal momentum k, though di�erent

variables, are measured in the same units. We have followed the time evolution

of an initial Gaussian shaped Wigner function in phase space, according to the

exact equation and according to the free-streaming approximation. Equation

(30) can be solved explicitely by using Fourier Transforms in space. If f̂k is

the k�th Fourier component of f with respect to x, it is easy to see that

f̂k(p; t) = f̂k(p; 0)e
i�k(p)t (31)

where

�k(p) = 2i
X
�

b�(�) sin k�

2
e
ip�=�h

:
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Figure 2: f(x; p) as a function of p, �� � p � � for x = 0, and for t = 20;
exact solution from (31) (solid line), free-streaming approximation from equation
(29) (dashed line). Dimensionless variables as de�ned in the text.

The main features of the comparison are shown in Figures 1, 2 and 3. Figure 1

shows f(x; p) as a function of x for a �xed value of p, p � 0:5, and a �xed value

of t. Figure 2 shows f(x; p) as a function of p for a �xed value of x, x = 0,

and the same �xed value of t. This value of t is such that the range of phase

space momenta where the bulk of the Wigner function lies, when interpreted in

terms of the crystal momentum variable, still corresponds to the parabolicity

region of the band. Figure 3 shows the average position

< x > (p; t) =

R
xf(x; p; t)dxR
f(x; p; t)dx

(32)

as a function of time for 0 � t � 30 and for p � 0:5. The solid lines rep-

resent the exact solution and the dashed lines represent the free-streaming

approximation.

From these �gures, it is clear that the free-streaming approximation cannot

describe the oscillatory behaviour of the Wigner function in phase space. The

oscillations, however, contribute little to the moments and the results for the

average quantities shows a better agreement (see Figure 3). This example

underlines the conceptual and practical di�erence between the Wigner variable
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Figure 3: Average position < x > from equation (32) as a function of t, 0 � t � 30
for p � 0:5; exact solution (solid line), free-streaming approximation (dashed line).
Dimensionless variables as de�ned in the text.

p and the crystal momentum k of the Bloch functions. It has to be remarked

that other e�ects, such as external �elds and collisions, will alter this picture

signi�cantly; in particular, collisions may help the particles stay near the band

minimum, while external �elds will tend to move them farther away. We shall

examine these details in a separate work.

4.1 A two-band model with no external �elds

It is interesting to exemplify our concepts with a simple two-band model which,

for now, does not include external �elds. In a two-band model the Wigner

function and its evolution equation are given by equations (7) and (20) where

now m
0 = 1; 2 and m

00 = 1; 2. The Wigner function is then given by the sum

of four contributions, f11, f12, f21 and f22. It can be seen easily from equation

(8) that f12 = f
�

21, while f11 and f22 are real. Each of the four contributions

evolves according to equation (20). In the parabolic band approximation, the

di�erential equations for f11 and f22 are identical to (29):

@f11

@t
+

p� �hk1

m1

@f11

@x
= 0 (33)
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@f22

@t
+

p� �hk2

m2

@f22

@x
= 0; (34)

where m1 and m2 are the e�ective masses for band 1 and band 2 respectively

and k1 and k2 are the values of the crystal momentumat which band 1 and band

2 attain their minimum. The evolution equations for f12 and f21 = f
�

12 have

instead a di�erent structure. From equation (20), after a simple calculation,

we have

i�h
@f12

@t
=

("
�1(k1) +

(p� �hk1)
2

2m1

#
�

"
�2(k2) +

(p � �hk2)
2

2m2

#)
f12(x; p) +

�
i�h

2

 
p � �hk1

m1

+
p � �hk2

m2

!
@f12

@x
�

1

8

 
�h2

m1

�
�h2

m2

!
@
2
f12

@x2
;

which, by introducing !12 = (�1(k1)��2(k2))=�h, 
12(p) = !12+(p��hk1)
2
=(2m1�h)�

(p � �hk2)
2
=(2m2�h) and

g12(x; p) = f12(x; p)e
i
12(p)t;

can be cast in the more elegant form

@g12

@t
+
1

2

 
p � �hk1

m1

+
p � �hk2

m2

!
@g12

@x
�
i�h

8

�
1

m1

�
1

m2

�
@
2
g12

@x2
= 0: (35)

Note that in the de�nition of the Wigner function (7) f12 and f21 appear only in

the combination f12 + f21, consistently with the Wigner function's being real.

The time evolution of the real and imaginary parts is given by the system

obtained by taking real and imaginary parts of (35).

Equation (35) shows that the time evolution of f12 is the composition of an

oscillatory term, a free streaming term and a di�usive term. The frequency of

the oscillatory term, 
12, is proportional to the di�erence in the total energy

of the particle in the two bands; the velocity of the free streaming term is

an average of the velocities of the particle in the two bands and the di�usion

coeÆcient in the di�usive term depends, in magnitude and sign, on the relative

magnitude of the e�ective masses.
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Equations (33), (34) and (35) completely describe the time evolution of

all the components of the Wigner function in the two band model with the

parabolic band approximation and in the absence of external �elds. Note these

evolution equations are uncoupled.

5 Conclusions

In this work we have developed a model describing the multiband transport of

electrons in a semiconductor crystal by using the Wigner function approach.

An in�nite homogeneous medium, with space-independent band pro�les, has

been assumed throughout. We have de�ned the components of the Wigner

function on each band subspace by introducing a projection operator that acts

on the total Wigner function and gives the band projection as a result. We

have derived exact evolution equations for each Wigner projection, with and

without external �elds. In absence of �elds the equations are uncoupled, as

expected. This con�rms that band transitions can occur only in presence of

external �elds or collisions. The numerical approach to the model equations is

underway.

Finally, we have discussed the e�ectivemass approximation in the absence of

external �elds and compared the exact time evolution with the free-streaming

evolution that governs the Wigner function in the e�ective mass approxima-

tion.
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