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Abstract

‘We consider a discontinuous system exhibiting a, possibly non-smooth,
homoclinic trajectory. We assume that the critical point lies on the dis-
continuity level. We study the persistence of such a trajectory when the
system is subject to a smooth non-autonomous perturbation. We use a
Mel'nikov type approach and we introduce conditions which enable us to
reformulate the problem in the setting of smooth systems so that we can
follow the outline of the classical theory.
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1 Introduction

In this paper we are interested in the persistence of a homoclinic trajectory of
a system, either continuous or discontinuous, subject to a smooth perturbation.
Let f be a smooth function and assume that the system & = f( 7) admits a
trajectory 4(¢) homoclinic to the origin (which is assumed to be a fixed point).
It is well known that the perturbed system

—

I = f(&) +ed(t, Ze) (1.1)

where g is a smooth function and ¢ is a small positive constant, admits a homo-
clinic trajectory Z(t,e) close to ¥(t), if a generic Mel’nikov condition is satisfied,
see [9, 5, 18, 10] and Theorem 2.3 below. Furthermore when g is periodic in ¢
such a condition is sufficient for the appearance of a chaotic pattern for the per-
turbed system (1.1), see e.g. [18]. In this framework we quote also [15] where
the authors overview all codimension 1 bifurcations for a planar autonomous
discontinuous (but piecewise smooth) vector field.
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Recently several papers extended this well developed theory to the case of
discontinuous equations, see [13, 14] for the 2-dimensional non-autonomous case.
Battelli and Feckan in [3] consider the case of higher dimensional discontinuous
systems: they assume that f is discontinuous on a smooth surface ° and that
the flow is transversal on Q° (so there is no sliding). Moreover they assume
that there is a homoclinic trajectory ¥(t) which crosses Q° transversally twice,
thus ¥(¢) is in fact obtained gluing together (in a Lipschitz way) two smooth
functions, ¥~ (¢) and 4 (¢). In this context they are able to produce a Mel'nikov
condition sufficient to guarantee the persistence of the homoclinic trajectory in
the perturbed system.

More precisely, let G be a C” function, 7 > 2, on Q C R”, and let QF = {Z €
Q| £G(%) > 0}, Q° := {7 € Q | G(¥) = 0}; here and in the sequel we use the
shorthand notation 4 to represent both the + and — equations and functions.
Let fi € C7(QF,R™) and consider the equation

= f52) +ej(t,T,e), zeQF (1.2)

where § € CJ(RxQxR,R") and ¢ € Ris a small parameter. In [3] it is discussed
the case where (1.2) admits a continuous but not smooth homoclinic trajectory
J(t) for € = 0, such that §(t) € Q= for [t| > T, ¥(t) € QF for |[t| < T and which
crosses transversally the hypersurface Q0 at [t| = T for a certain 7 > 0. The
authors prove the persistence of the homoclinic trajectory for |e| > 0, assuming
that the critical point lies in the interior of Q~, i.e. G(0) < 0. The main
difficulty in [3] is to take care of the jump discontinuities of the projector maps
of the exponential dichothomy of the variational system. Furthermore finding
an explicit expression of the bounded solution of the adjoint variational system
leads to rather cumbersome computations.

The main purpose of this paper is to generalize the results of [3] to the case
where the fixed point of both the systems # = f*(Z) is the origin, and lies on
the discontinuity level Q°. The key point, that makes the extension not trivial,
is that we need to locate trajectories when they are exponentially small, so
we cannot simply rely on a continuity argument, but we need to give precise
asymptotic estimates.

With the same notation as above, here we assume that G(0) = 0 and that
for ¢ = 0 equation (1.2) admits a continuous (not necessarily C!) trajectory
~(t) homoclinic to the origin, which in fact consists of two solutions:

where y5(t) € QF for t # 0, and 77 (0) = 77 (0) = 7(0) € Q° (with ¥(0) # 0,
see figure 1).

We prove via Mel'nikov theory the existence of a solution Z(t,¢), |e| > 0
small, which is homoclinic to the origin and close to ¥(t), and we look for
conditions on j?i and ¢ which guarantee that Z(t,e) € Q= for ¢ < 0 and
Tp(t,e) € QF for t > 0 (see Theorem 3.7 below).
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Figure 1: A sketch of the piecewise smooth homoclinic trajectory ¥(¢) of the
unperturbed problem (1.2).

As a first step we consider a simpler case. We assume that, for ¢ = 0,
equation (1.2) has a smooth trajectory §(¢) homoclinic to the origin and which
lies entirely, say, on QF, and we look for conditions to get @(t,e) € Q7 for any
t € R. Now, a crucial remark is that this problem can be equivalently stated
in the continuous setting. As a consequence of this observation, we start our
investigation in the following way. We focus on the continuous case, that is
we consider equation (1.1), and we assume that the system & = f(&) admits a
trajectory 7(t) homoclinic to the origin (which still lies on Q%) and such that
F(t) € QF for any t € R. Then we just have to guarantee that the perturbed
homoclinic Z(¢,¢€), obtained via classical Mel’nikov theory (see Theorem 2.3
below, see also [18, 3]), lies in Q7. We present this first result in Theorem
2.9 below and the application to the discontinuous case in Corollary 3.1. This
result may be applied to study a pendulum subject to small spatial dependent
forcing and small dry friction. With our tool one may show the existence of a
homoclinic trajectory in which there is no inversion of the motion.

As pointed out, we are able to develop all the proofs in a simpler context,
which involves the least of technicalities and already introduces all the main
ideas of this paper. In fact, we just need to follow the outline of the proof of
the known results and to modify a lemma in order to locate stable and unstable
trajectories. Then in Theorem 3.7 we consider the motivating case of equation
(1.2) where y*(t) € QF.

The main goal of this paper concerns the comprehension of non-smooth
and discontinuous differential equations. These problems occur typically in
mechanical systems with dry friction or with impacts, and have received a great
interest for their relevance in applications. They turn out to be useful also in
control theory, electronics, economics and biology (see [6, 7, 14, 15] for more
details). On the other hand, as a corollary of our approach we are able to
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locate homoclinic trajectories of perturbed problems, even in the continuous
case, and this fact proves to be useful also in different settings. In the last
section, devoted to applications, we give a result concerning radial solutions
of an elliptic equation: we show that our method can be used to guarantee
positivity of the solutions found, which is one of the main issues in that context.

The plan of this paper is the following. In Section 2.1 we fix the notation
and we give a list of the assumptions that are used in the sequel. Moreover
we collect some known results in Mel’nikov theory concerning the continuous
setting. Then, in Section 2.2, we assume J(t) € QT for any ¢t € R and we give
conditions in order that the perturbed homoclinic Z(t, ) lies in Q7.

In Section 3 we consider the discontinuous setting where () € Q7 for ¢ > 0,
F(t) € Q~ for t < 0 and 7 crosses transversally QY at t = 0. We still assume
that §(t) is asymptotic to the origin which lies on Q°. The generalization to
this case in fact needs just little effort. Then we show that we can analyze the
case where 7 crosses Q¥ twice (or more) and is asymptotic to the origin, which
lies on 90, see figures 1 and 3. Here we put together the ideas of Section 2 with
the argument developed in [3].

In Section 4 we construct, for illustrative purposes, some examples where all
the computation can be carried on analytically. In the Appendix we discuss a
result related to the roughness of exponential dichotomy, which we did not find
in literature, even if it seems to be known by experts.

Finally we note that a related problem is studied in [1], where the authors
consider the case where a finite part of the homoclinic solution of the unper-
turbed problem remains on a discontinuity level, i.e. sliding is allowed. We
stress that in this paper we always give conditions which ensure that sliding
phenomena do not appear.

Acknowledgment: the authors are indebted to Prof. Flaviano Battelli for
his useful suggestions.

2 The continuous case

2.1 Preliminary results and notation

In this section we collect some known results in Mel'nikov theory and we fix the
notation.

Throughout the paper we will use the following notation. We denote scalars
by small letters, e.g. a, vectors in R™ with an arrow, e.g. d, and n X n matrices
by bold letters, e.g. A. By a* and A* we mean the transpose of the vector a
and of the matrix A respectively, so that @*b denotes the scalar product of the
vectors @, b. We will denote by || -|| the Euclidean norm in R” and in the space
of n x n matrices. We will use the shorthand notation f, = % unless this may
cause confusion.

As in the Introduction, let G be a C" function on the open set 2 C R",

7 > 2, such that G(0) = 0 and let QF = {F € Q| +G(Z) > 0}, Q== {F € Q|
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Figure 2: A sketch of the homoclinic trajectory ¥(¢) of the unperturbed problem
(2.1). Here we assume that ¥(¢) € Q" and is smooth for any t € R.

G(Z) = 0}. We consider equation

—

T = f(Z) +egd(t, &,e), (2.1)

where f e CI(Q,R"), § € Cr(R x Q x R,R") and ¢ € R is a small parameter.
We suppose that the unperturbed equation # = f (Z) admits a trajectory ¥(t)
homoclinic to the origin (which is assumed to be a fixed point) and such that
F(t) € QF for any t € R.

First of all we observe that, since the map g is bounded, the critical point
bifurcates into a bounded solution Zy(¢;€) such that

[Z0(:5€)lloc = sup{[|Zo(t; )| |t € R} < Klel,

for some K > 0. Then, via Mel’nikov theory, one can prove the existence of
a solution Z(t; €) which is homoclinic to #y(t;€), see Theorem 2.3 below. Our
next step (see Section 2.2 below) is to give sufficient conditions in order to
guarantee that the homoclinic solution verifies T (¢,£) € QT for any ¢ € R.

Along the paper we will consider the following assumptions. We list them
here for reader’s convenience.

FO f. (6) has no eigenvalues with real part equal to zero.

We denote by A, and A, the eigenvalues of fz(0) respectively with smallest
positive real part and with largest negative real part.

F1 )\, and A, are real and simple.

We denote by ¥, and s the normalized eigenvectors corresponding to A, and
As. We assume w.l.o.g. that [VG(0)]*¥s and [VG(0)]*0, are both nonnegative
and we consider the following hypotheses:
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F2 @, and ¥, are not orthogonal to VG(0).
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—Us respectively.

We stress that conditions FO, F1, F2, F3 are generic. We know that ¢, and
Us belong respectively to the unstable space and the stable space of the linearized
system T = fyp (6)5 Condition F1 ensures that a “generic” trajectory (E(lf) of
Z= f(f), converging to the origin as |t| — oo, has a definite direction, hence
the limits lim;_+ 0 ¢(t)/||(t)]| exist. Condition F3 guarantees that ¥(t) is one
of the “generic” trajectories just described.

Remark 2.1. We point out that the results of this paper are still valid weakening
condition F1 by assuming that A\, and A\, are real and semisimple. In this

Y(t Y(t
case we still suppose that the limits lim Z( ) and lim Z( )
b= e (|7 ()] f=teo {13 (2]

we define ¥, and —¥s as in F3. Then, we observe that ¥, and v, are still
normalized eigenvectors corresponding to A, and A; respectively, and we assume
that condition F2 holds.

exist, and

Concerning the perturbation term ¢ we will assume boundedness and condi-
tion GO below, i.e., superlinearity in Z. We stress that the basic assumption of
boundedness of the map ¢ is needed to guarantee the persistence of a bounded
solution bifurcating from the origin, for e small enough.

GO §(t; 0, e) =0 and gx(t; 0, g) =0 for any t € R and any ¢ € R.

Condition FO implies that the autonomous system z = fm(ﬁ)f admits an
exponential dichotomy on the whole of R, with projection P°® and constant
k® > 1. Hence, if X°(t) = exp|t f,(0)] is the fundamental matrix of this system,
we have

[ POXO(t — s)|| < kOers(t=) if s <t

(T = PO)XO(t — o)|| < KOeMe (=) if ¢ < . (2:2)

Because of roughness of exponential dichotomies (see [8, 18, 19] and the Ap-
pendix) the linear system Z=fu (7(t))Z admits an exponential dichotomy on
(—00,0] and [0, o) respectively, that is, there exist projections P : R” — R"
and a positive number k£ > 1 such that the following hold:

[ X ()P~ X~1(s)|| < kers(t—9) if s<t<0
[ X()([I—P)XYs)|| < ket ift <5<0 93
| X ()Pt X~1(s)|| < kets(t—2) if0<s<t (2:3)
[ X1 —PHX ()| < ket if0<t<s

where X () is the fundamental matrix of the linear system & = f,(9(t))& such
that X (0) =1L
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Remark 2.2. We stress the fact that the exponents A,, As in the exponential
dichotomies (2.3) are the same as in (2.2). This will be a crucial point in the
proof of Theorem 2.9. In the Appendix we give a proof of this roughness result.

Next, setting PE(t) = X () P£X ~1(+t) we have (see [18])

lim ||P*(t)— P°|=0.

t—+oo
To apply Mel'nikov theory we need a further non-degeneracy condition:

F4 Bounded solutions of the linear system # = f,(7(t))& have the form ¢y(t)
where c is an arbitrary constant.

We stress that cﬁ’(t), c € R, is always a bounded solution of the above system.
Condition F4 requires that all the bounded solutions have this form. Notice
that F4 is equivalent to the assumption NP~ N RPT = span[7(0)], and this
condition is always satisfied in dimension n < 3. Moreover, such a condition is
equivalent to the following:

F4* The adjoint variational system & = — f* (3(t))Z admits a bounded solution
1 (t) which is unique up to multiplication by a constant.

We review first briefly the standard case: we formulate a Mel’nikov condition
that guarantees the existence of the perturbed homoclinic (¢, ¢). Assume that
conditions FO, F4 hold. Define the Mel'nikov function

+oo
M(a) = Y ()Gt + o, 5(t),0)dt (2.4)
and consider its derivative
! oo Tk 6g N
Ma)= [ GO+ a,7(0), 0)d

The next theorem guarantees the existence of the perturbed homoclinic.

Theorem 2.3 ([18],[3]). Assume that conditions FO, F4 hold, and that there is
ap such that M(ag) = 0 and M'(ag) # 0. Then there exists g > 0 such that for
any 0 < |e| < g¢ system (2.1) admits a unique C™~1 solution Ty(t;¢) bounded
on R, and there is a C™=1 function a(e), with a(0) = ag, with the following
property:
sup ||Zp(t + a(e);e) = ()| = 0 ase — 0. (2.5)
teR
We stress that Theorem 2.3 does not allow to locate Z(¢;¢). In order to
ensure that Zp(t;¢) € Q1 we need to require 7(t) € QT for any ¢t € R and some
further assumptions on f and g: this will be the content of Theorem 2.9. For a
further discussion on the regularity of Zj, with respect to the parameter €, see
Remark 3.5.
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Even if Theorem 2.3 is known, we sketch the proof for convenience since
this gives us the outline of the proof of our results (in particular Theorem 3.7
below). We refer the interested reader to [18] or [3] for more details.

The starting point is the following lemma (see e.g. Lemma 2.5 in [3]).

Lemma 2.4. For any a € R there are eg > 0 and ng > 0, such that for any
7 € NP~ and ijt € RPT, ||| + |17 |] < mo, 0 < || < o, there are unique
C"-solutions T~ (t,77,a,¢) defined for t < «, and TT(t,7T,a,€) defined for
t >« of (2.1) satisfying

(H - P_)[f_(a7ﬁ_7a75> - ’7(0)] = 77_

PH[Et (o, 7T, a,e) — 7(0)] = 7*
and . . . .
sup;<o |77 (t + o, 177, a,8) = Y@ < c[ll7~ [ + |e]]
supso |77 (t + o, 7, a,e) = F(@O)|| < e[ll7F ] + Jel]

for a constant ¢ > 0.

Let us sketch the proof of Lemma 2.4. First we set Z(t) = Z~ (t + ) — 7(¢);
then Z(t) solves

7= f(F()Z+ Ho(t; 7, o, €) (2.6)
where

— —

Ho(t; Z,a,) = f(Z+ (1) = f(7() = Fa(3(1))Z +£di(t + a, Z+5(t),2) . (2.7)

Observe that ||H( Z,a,e)|| = O(e) + o(]|Z]]) as € — 0 and ||Z]] — 0. The
existence of ¥~ (¢,7,a,€) is now obtained rewriting (2.6) as the fixed point
equation

F=T(),

where the operator T, acting on the Banach space of bounded continuous func-
tions CP((—o0, 0], R™) with the standard supremum norm, is defined by

T = X7 + / X(t)P~ X~ (s) Ho(s; 2(5), 0, €)ds—
(2.8)
/X I — P~) XY (s)Ho(s; 2(s), a,€)ds ,

with 7= € A/P~. Using exponential dichotomy and the estimates on H, it is not
difficult to see that for |77~ ||, |¢| small enough, the map 7 is a contraction and
maps a small ball centered at the origin in itself. So we can apply the Banach
fixed point theorem, and prove the existence and uniqueness of £~ (¢,7, @, €).
Analogously we can show the existence and uniqueness of Z¥(t,7, a, ) and
conclude the proof of Lemma 2.4.
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Remark 2.5. Differentiating the fixed point equation z' = T (%), it is possible to
compute the following derivatives (compare also [18] and [3]):

—— 0
e (@la,0) = [ PmX (s + a,7(s),0)ds
+oo

(@000 = [ = PX (s + a7(5),0ds
and
Zi:(t +;0,0,0) = X (t)|\rp-
gj:(t +;0,0,0) = X (t)| o p -

The existence of the homoclinic trajectory @(¢; ), now amounts to the ex-
istence of a solution for the equation

F(7, 7, ae) == T (7%, a,8) — (o577, v, €) = 0. (2.9)

To see that such a solution exists we apply the implicit function theorem but
we need first to make a Lijapunov-Schmidt reduction. First observe that, from
the uniqueness and t-invariance of the solutions of # = f(&) it follows that for
any «, € R we have

F(t+a, (T — P7)F(B) — 7(0)],0,0) = (¢ + ) for t <0,

and
T (t+a, PT[H(B) — 5(0)],a,0) = F(t + B) for t > 0.

Let us denote by M the following smooth curve in NP~ x RP™:
My :={ (T — P7)[F(B) = 7(0)], PT[¥(8) —7(0)]) | B € R} .
We have
F(ii,it,a,0)=0 forany o € R and (7 ,77t) € M. (2.10)

Roughly speaking this means that when € = 0 there is a whole “matching curve”
My. We will see that the situation is quite similar for € # 0 small.
Observe that (0,0) € My, and the tangent space of My at (0,0) is spanned

by (7(0),(0)); in fact
PT[3(B) — 7(0)] = BPF[¥(0)] + o(8) = 7(0) + o(B), B — 0,

and similarly for (I — P~)[¥(8) — 7(0)], since 7(0) € RP+ N NP~
Now, assumption F4 implies that N'P~(t) N RP¥(t) = span[y(t)] for all

t € R. Let us denote by V= := NP~ N [J(0)]*, and V' := RP* N [7(0)]*. Tt



Mel’nikov methos and homoclinic orbits in discontinuous systems 10

follows that NP~ + RP+ =Vt @V~ @span[7(0)]. We write 7~ and 7t as
follows: 7+ := ﬁ + u%5(0), where 77, € V~ and 77| € VT, respectively.
By F4, the adjoint variational system

F=—f."(3(1)F

admits a unique solution 1/_;(75) which is bounded in the whole of R, up to mul-
tiplication by a constant. Moreover span[i)(t)] = [NP~(t)]* N [RP*(t)]*

for all t € R. Therefore R” = VT @V~ P span[y(0)] P span[¢)(0)]. Denote
by II : R® — R"™ the orthogonal projection such that RII = V- @ V™' and

NTI = span[43(0)] @@ span[7(0)].

According to the above settings, we write equation (2.9) as
F(7. 4+ p=7(0), 77 4+ ut5(0), a,e) = 0,
and we decompose it as
Fo(i + p=7(0), 771 + 1t 7(0), a,6) =

o 0
Fu (7 + pm7(0), 77} + pt(0), a,e) =0,
Ey(i] + p=9(0), 71 + u+5(0),a,e) = 0

where
Fo(iT + = 7(0), 77 + pt7(0), a, ) := TLE(77 + p=7(0), 77} + pt7(0), a, ),

Fy (7] 4+ p5(0), 75 + 1 3(0), o, €) := VO F (7] +p™7(0), 7T + 17 5(0), ),

(i1 +p=7(0), 77 +ut7(0), o, €) == [(0)]* F(77] +p~7(0), 7] +p*3(0), v, €).

Notice that .
F(0,0,,0) =0, for any a € R.

Now, from Remark 2.5 it follows that, for any a € R,

dF, - dF, - -
_,S (Oa Oa «, 0) = _HV*7 _,_{0_ (07 07 Q, 0) = HVJr
o1, o |
and OF
1 /357 o . 2

So we can apply the implicit function theorem and we find unique smooth
functions 7] = 77 (", a,¢), 71 = il (™, ,e) and p* = p*(u=,a,¢) such
that: 77 (0,a,0) = 0, 77 (0,a,0) = 0,

—

Fo( (™ ase) + p7(0), 7t (u™ e e) + put(p™, a,)7(0), a,¢) = 0,

)

Fi(if (n ene) + p=7(0), 71 (n™ e e) + pt (1™, ,€)7(0), o, ) = 0.
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Thus

By(p™,a,€) i= Fa(if (0™, o, €) + = 7(0), 71 (1™, ave) + ph (n™, o, €)7(0), a, €)

becomes the new bifurcation function for our problem. We want to apply
again the implicit function theorem in order to find @ = a(p™, ) such that
ﬁ’g(p‘,a(u_,s),s) =0, for p~, e small.

We claim that Fg(u_,oz, 0) =0 for any @ € R and p~ small. Indeed, recall
that, for any o € R fixed and (7,7) € My, we have F(ij~, 7", «,0) = 0. On
the other hand, for = small, the pair

(T =m0 w0
it =t (n, 0, 0) + pt(p, o, 0)7(0)

which describes a smooth curve Ny in NP~ x RP7, solves the system

Now, by (2.10), such a system is solved by (77,7") € My as well. Moreover,

both My and N, are smooth curves in NP~ xRPT and have a point in common

(the origin), so they must coincide because of uniqueness. Consequently, we have

Fyo(i7~, 7, «,0) = 0 for any o € R and (577, 7+) € Np, and this proves the claim.
So we define the smooth function

Fy(pa.€) if e £ 0

Alp™,a,e) = 5 €
(k ) {aa?(u_,aﬂ) if e = 0.

In view of Remark 2.5, since ¢*(t) = ¢* X ~1(t), *(I—P~) = 0, and * P+ = 0
we find

+oo |
SAGT 0 0) = M(a) = [ (O3t +a,7(2), 0)dt
0A tee L 0F
a0 =M (@)= [ @G+ a0, 0

(notice in fact that the above integrals do not depend on u™).

Assume now, as in Theorem 2.3, that «g is a simple zero for A(u~, «,0).
Then we can apply the implicit function theorem again to find a C"~! function
a = a(p™,¢e) such that a(p™,0) = ap and A(p~, a(p™,¢€),e) = 0 for any (u~,¢)
small enough.

So we get

F((p,e) + p=500), 7 (u™,e) + ut(u=,e)7(0), a(u,e),e) =G,

for any (p~,¢) sufficiently small. That is,
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for (u=,e) small. This allows to define the homoclinic trajectory z,(t) =
Ty(t; u~€) by

a?b(t):{ I (t+a(p™,e),7 (0 e),a(n™,e),e) ift>0
FH(t+a(p,e), 7t (p e),alp e).e) ift <0.

T =
=

Finally, let us discuss briefly the dependence on p~ of such a homoclinic.
When ¢ = 0, arguing as above, we find that for 4~ small the pair

{ 7~ =i (n™,0)+ u5(0)
7t = (0, 0) + pt (1, 0)7(0)
describes a smooth curve in NP~ x RPT which solves F(i~, 7", aq,0) = 0.

Thus, again this curve must coincide with M. Hence, for any 8 small enough
there exists u~ = p~ (8) such that

(™ (8),0) + p~7(0) = (T = PT)F(B) — 7(0))-
Observe that this equality allows to estimate p~(8) for 8 small. In fact we get
Z—Z(O) =1, that is, u= = S + o(pB) for 5 — 0.
Analogously, for € # 0 small, the pair

{ﬁ i (n=e) + p=9(0)
it =7t (u,e) + pt(u,)7(0)

describes, for for ;= small, a smooth curve M. in NP~ x RPt, defined in
a neighborhood of (0,0) and close to My, which again is a sort of “matching
curve”. Roughly speaking, we see that the ¢ translation term « is constant along
My but it changes as p~ varies along M.

In fact we have obtained a whole one parameter family of homoclinic trajec-
tories, satisfying

Sup % (t + a(p™e);n™ ) =v(O) < C(lu~ | + lel)

for a certain C' > 0. Then, if we set a(0,¢) = a(e) and Z(t,€) = (¢, 0,¢) the
estimate (2.5) follows and Theorem 2.3 is proved. We stress that @ (¢t + 7,¢) is
a homoclinic solution of (2.1) for any 7 € R. Thus, exploiting the uniqueness
of M, we see that the function 7 — Z(7, €) gives a further parameterization of
M.. Therefore if W = PT[7}(7 + a(e),e) — (0)] and @~ = (I — P7)[& (7 +
a(e),e) —v(0)], then there is p~ such that 7+a(e) = a(p™,e), 7~ (=, &) =W~
and 77t (p~,e) = Wt

2.2 The result in the continuous case

In this section we give sufficient conditions in order to guarantee that the ho-
moclinic solution (¢, €), whose existence is given by Theorem 2.3, lies in QF
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for any t € R. We assume that 5(t) € Q for any ¢t € R. Thus, when |¢| belongs
to a bounded interval we can use a continuity argument and we easily get that
Tp(t;e) € QF; but we need further hypotheses and a better insight to achieve
the same conclusion as [t| — 4+00. More precisely we will assume that condition
GO holds; the idea is to state a result analogous to Lemma 2.4 and to prove
it using the Banach fixed point theorem in a suitable space of exponentially
bounded functions.
For this purpose we introduce the Banach spaces

X~ = {7 € C((—00,0],R") | sup,[|Z(t)[le™**'] < o0}
Xt ={Z€C([0,+00),R") | supyo[[|2(t)[le™ "] < o0}

endowed respectively with the norms

IZllx- = sup[|Z(t)[e "] and |2 x+ = sup[||Z(t)[e"*"].
t<0 >0

Observe that 7(t) and §(t) belong to both X~ and X, moreover 7(t) assumes
the direction of v, as t — —oo and of vs as ¢ — +o00, while by F3 &'(t) assumes
the direction of v, as t - —oo and of —v; as t — +o0. Consequently, for any
4 > 0, there are positive constants C, Cy,, Cs and T = T'(§) such that

max{[|7llx-, [7llx+, [Tlx-, Flx+} <C
[7(t)e " — Cui,|| <6 fort < —T (2.11)
|F(t)e st — Cow|| <6 fort >T

Let us set, for any p < 2C,

Ag(p) = sup{||fa(21) — fa(@2)[| | 5[], [22]| < o}
Ag(p) = sup{llga(t, 71, ) — ga(t, 23, €) | | [|21 ], [[22]| < p, T € R, [e] <o}

Since f and § are C", there are My, Ny > 0 such that A¢(p) < Myp, and
Ay(p) < Nop.

We point out that it is possible to prove our results under weaker regularity
assumptions (see Remark 2.7 below). However, for the sake of simplicity we
always assume that f and g are of class C}, r > 2.

To get our result the first step is to prove the following lemma analogous to
Lemma 2.4.

Lemma 2.6. Assume GO and FO,F1,F3. Then for any o € R there are
positive constants g, <o, c¢(no,€0) such that, for any 7 € NP~, it € RPT,
711+ 1771 < no, and 0 < |e| < e, there are C"-solutions Z(t, 77, a,€) defined
fort < a, and Z(t, 7+, a,€) defined for t > o of (2.1) satisfying

(]I —f-")[:ﬁ‘(a,ﬁ_,a,a) - ;Y'(O)] =1
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and .
sup,<q | 2(t + a; 7, o) — F(t)le ™ < [l || + [e]]

- ! (2.12)
Sup;sq [|2(t + a3 77, a, ) = F(t) et < ||| + Je]]

Moreover these are the only exponentially bounded solution of (2.1), i.e. if
T~ (t;e) and Tt (t;¢) solve (2.1) and are exponentially bounded 'respectifuely for
t < a and for t > «, then T~ (t;¢) = &(t, 77, a,e) and Tt (t;e) = x(t 7, a,e)
where (I — P™)[Z (a,e) — 5(0)] = 7~ and PT[Z"(a,e) — 5(0)] = 7.

Proof. We just prove the lemma for f(t, 7 ,a,¢), ie. for @ € R fixed and t <
the case f(t, 7, a, €) being analogous.

Let Z(t) = &(t + a) — 4(t), and let T be the restriction to the space X~
of the operator T defined in (2.8). We want to apply the Banach fixed point
theorem to the operator 7.

Let p be fixed with 0 < p < C. Let us prove that 7 is a contraction
on the ball centered at the origin of radius p, uniformly in «, e, whenever
0 < |e] < e and [|77~ || < no with:

4k[Na]) " (Mop +4NogeoC?) < 1, 4k[\] (o + 4NoeoC?) <
First notice that, given Z € X~ with ||Z]|x- < p, for any ¢ < 0 we have
1g(t + o, 2(t) + (1), )| <
/ gt + 0, 0(Z(E) + 7)), ) (1) + 7] | 0 < (2.13)
< Noe? 1 [5(8) + ZO)l%— < 2No(C? + pl| | x- )e et
Thus, it is easy to check that

[ Ho(t; 2(t), a, €)|| < e (Mop|| 2] x- + 4NoC?le])  and
[ Ho(t; Z(t), v, €) — Ho(t; 21(t), e, €) || < €Mt (Mop + ANoC?le]) |22 — 21| x - -

Using these estimates together with (2.3) on (2.8) we find

- erut 1
TGO < ke 17711+ (oplElx- +48a0?1e) (55 + )]
IT(22)(t) = T(2)(0)] <

)\ut
< ket (Mop + ANoC2Je]) (5

m )||Z2 Zif| x--

Thus,
(5 2k 2 "
ITE)llx- < 3= [0 +4NoC?0 + Mopl|Z] x-]

o 2% L
[T(22) = T(Z)llx- < ~ [Mop 4 4NoC?eo] || 22 — 21| x -

u
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Therefore T maps the ball of X~ centered at the origin with radius p in itself,
and it is a contraction with factor of contraction 1/2. By the Banach fixed point
theorem, 7 has a unique fixed point z = 2(-, 7, a, &) with ||Z]|x- < p.

To prove the estimate

12,77 s e)llx- < ([l [ + [e])

observe that, since Z = T (%), we have
- = 2k, 2k -
Zlx- = ITEx- < = (1771 + 4NoC?[e]) + 3= Mopl| 2] x - <
u u
2k, 1.
T (17711 +4NoC2le]) + 2l

Hence

i Ak
12lx- < =
'LL

(17| + 4NoC?Je]) -
This completes the proof. [ |

Remark 2.7. As already pointed out, Lemma 2.6 as well as Theorem 2.9 below
still hold under weaker regularity assumptions. More precisely, to prove Lemma
2.6 it is sufficient to assume that f and ¢ are C', and that their derivatives
with respect to the & variable are Holder continuous, uniformly for any ¢t € R
and any € € R. For instance, if we assume Hoélder continuity with exponent
0 < ¢ < 1, we get that there are constants M;, Ny such that A¢(p) < Myp°,
and Agy(p) < Nip* for any p < 2C. Therefore, formula (2.13) above is replaced
by the estimate

15t + e, Z(8) + (1), €)[| < No(C + )+ eAuliror
and the proof of Lemma 2.6 can be modified accordingly.

Since the fixed point of 7 and 7 is unique, we have the following:

Remark 2.8. Each solution Z(t, 74, , ), constructed through Lemma 2.4, sat-
isfies (2.12) so it is in fact exponentially bounded.

In view of the above remark, we get that @ (t + «;€) — J(t) is exponentially
bounded both in the past and in the future. Moreover we recall that in order to
construct the homoclinic trajectory @ (¢; ) through Theorem 2.3, the solutions
Z(t, 7, a,€) and Z(t, 77T, a, €) are selected in such a way that |77~ H—i—||7]+|| = 0(e)
as € — 0. Hence we can find a constant ¢ > 0 such that || T (t+a;e) —5(t)|| x- +
13 (¢ + ase) — FBll s < clel.

So, from (2.11), as ¢ — —oo we find the following

G(Ty(t + a;€)) = VGOV [7(t) + Z(1)] + o(e!) >
> {Cu[VG(0)]"T, — | VG(0)[|6} e + o(e?),
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and analogously as t — +o0o0 we get

G(&(t + a;€)) = [VGO)*[F(t) + Z(1)] + o(e™") >
> {C,[VG(0)]* T — | VG(0)[| 0} e st + o(e*?).

Thus, possibly choosing a larger T in (2.11), from F2 we find G(Z,(t;€)) > 0 for
[t| > T. Furthermore G(¥(¢)) > 0 for any ¢ € R, so using a continuity argument
we easily get that G(Z(t;¢)) is positive for [t| < T, too. In this way we have
proved the following.

Theorem 2.9. Assume that FO,F1,F2 F3,F4 and GO are satisfied and that
there is ag € R such that the function M(«) defined in (2.4) has a simple zero
at ag. Assume further that ¥(t) € QF for any t € R. Then, there is g > 0 such
that for any 0 < |e| < g the homoclinic solution Z(t;€) as in the assertion of
Theorem 2.8 belongs to QT for any t € R.

3 The discontinuous case
In this section we consider the discontinuous equation
= f5@) +¢ej(t, &), zeQF, (3.1)

where, as above, QF = {# € Q | £G(Z) > 0} are open subsets of R™, the maps
£ e Cr(OE,RY), G e CF(R x Q x R,R™) are given, and ¢ € R is a small
parameter.

By a solution of (3.1) we mean a continuous, piecewise C'* function Z that
satisfies equation (3.1) on QF. That is, & verifies

T(t) = f(Z(t)) +g(t, Z(t),e), whenever Z(t) € O, (3.1-)
Z(t) = fH(Z(t)) +ed(t, Z(t),e), whenever Z(t) € QF. (3.1+)

Moreover, if for some to we have that (to) belongs to Q° = {7 € Q | G(Z) = 0},
then for ¢ in some left neighborhood of g, say (to — 7,to) with 7 > 0, we should
have either Z(t) € Q™ or #(t) € Q. In the first case the left derivative of F(t)
at t = to has to satisfy Z(ty) = f~(Z(to)) + £7(to, Z(to), ); while in the second
case, Z(ty) = FH(&(to)) +F(to, Z(to), ). A similar meaning it is assumed when
the right derivative f(ta' ) is concerned. We stress that, in this paper, we do not
consider solutions of equation (3.1) that belong to Q° for ¢ in some nontrivial
interval.

Assume first that for ¢ = 0 equation (3.1) admits a homoclinic trajectory
v(t) such that y(t) € QF for any ¢t € R. In this case we obtain the following
immediate consequence of Theorem 2.9.



Mel’nikov methos and homoclinic orbits in discontinuous systems 17

Corollary 3.1. Assume that for ¢ = 0, equation (3.1) admits a homoclinic
trajectory y(t) such that v(t) € QF for any t € R. Assume that the maps f*
and G verify the hypotheses of Theorem 2.9. Then there is ¢g > 0 such that
for any 0 < |e| < &g, equation (3.1) admits a homoclinic solution Zy(t;e) with
Tp(t;e) € QF for any t € R.

Now we turn to consider the main object of this section, i.e., we assume
that for e = 0 equation (3.1) admits a homoclinic trajectory 4(t), which in fact
consists of two solutions:

B J=(t) ift<o0
7(t)_{v(t) ift>0),

such that ¥(t) € Q= for t < 0, 7(0) € Q0 and 7(¢t) € Q* for t > 0, so §(t) is
continuous but not necessarily C''. To get our result we need to translate for
this setting the hypotheses FO-F4.

FO' f7(0) and f(0) have no eigenvalues with real part equal to zero.

In analogy to the previous section we denote by A, and A\] respectively the
eigenvalue of (0 ) 0) with smallest positive real part, and the eigenvalue of f+( )
with largest negative real part.

F1’ A\, and A} are real and simple.

We denote by @, and ¢ the corresponding normalized eigenvectors, such
that [VG(0)]*5+ <0< [VG(0)]*7;.

As in Remark 2.1 we observe that our results remain valid if A\, and A\ are
real and semisimple, modifying the definition of ¥, and v} accordingly.

F2' ¥, and 7 are not orthogonal to VG(0).

S
o . y(t =
=4, and lim;_, o ) _ —ut.

/ N
F3’ The limits lim;_, o Ol

AT
,7

7= @l

As we already pointed out, from the roughness of exponential dichotomies
we get that the linear systems & = f. (77 (¢))Z and Z = fF (7 (¢))Z have an
exponential dichotomy on (—o0,0] and [0,00) respectively. Hence, there are

projections PE:R" 5 R” and positive numbers k > 1 such that

[ X—()P~[X~(s)]7 | < kers (=9 if s<t<0
[ X~ ()@= P7)[X~(s)] 7! < ket if £ <5 <0
| X+ (@) PH[XTt(s)]~ 1|| < ke (t=9) if0<s<t
IXH(E A= PH[XF(s)] 7Y < ket if0<t<s

where X ®(t) are the fundamental matrices of the linear systems

P = fEGH)T

respectively, such that X+ (0) = X~(0) = L.
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Next, setting PE(t) = X*(t)PE[X*(¢)]~" we have (see [18, 19))

: t _ pEy —
lim [P P =0,

where Pét denote the projections on the stable manifold of the discontinuous
autonomous system # = fE(0)z.

Now, following [3], we translate for this context condition F4, and we intro-
duce the transversality condition F5':

F4' dim([VG(F(0)[* NNP~NRP*T)=n—2
F5' [VG(7(0))]* f~(5(0)) > 0 and [VG(F(0))]" f*+(7(0)) > 0.

We stress that, F4' is a generic condition since dim([VG(7(0))]*f N NP~ N
RP*1) < n—2. Moreover we observe that, if F5’ holds and n < 3 then F4' is
automatically satisfied as in the continuous case. Roughly speaking, condition
F4' amounts to the uniqueness (up to multiplicative constants) of bounded
solutions for the adjoint variational system. The geometrical meaning of F4' is
discussed in more detail in Section 3 of [3].

The first step in the proof of our main result is to state in this context a
lemma analogous to Lemmas 2.4 and 2.6 above.

Step 1. We find solutions T, T+ such that T~ (t + o, 7 ,a,€) € Q™ and is
orbitally close to ¥~ for t <0 and T+ (t + a, 77, a,e) € QF and is close to 7+
fort>0.

In this step we use the same ideas of Section 2 to locate trajectories. We
stress that this construction is not present in [3].

We sketch the argument just for ¢ < 0, the case t > 0 being analogous. First
of all we set Z(t) = Z~ (t + «) — J(t); then for t <0, Z(t) = Z(¢t, 7, a, &) solves

Z;: f;(?(t))z—’— (;(t;gva75>7 (32)

where

—

Hy (62, a,e) = [ (Z49() = [~ (1) = fo ()7 +ed(t + o, 2+ 7(t),¢)

and the existence of Z~ (-, 7, , &) is obtained rewriting (3.2) as a fixed point
equation, as in Section 2.

Remark 3.2. Let us note that, due to the term f~(Z + (t)), the right hand
side of (3.2) is defined only when Z(¢) + ¥(t) € ©~. In the following we will
actually see that the solutions of (3.2) we consider have this property. However,
for clarity, we observe the following. Let B(Z,r) denote the ball centered at &
of radius . The set Q= U B(5(0), p1) U B(0, p1) is an open neighborhood of the
compact set {0} U {§(t) | t < 0}. Hence p > 0 exists such that

U, == B(0,0) U |J BA(), p) € [~ UB((0), 1) UB(T, 1)
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If py is small enough, f~ can be extended to a C™ function on Q= UB(7(0), py)U
B(0, p1) and hence on U,. In this way the right hand side of equation (3.2) is
defined for ||Z]| < p. Therefore we look for solutions of (3.2) such that ||Z(¢)|| < p
for all t < 0. In other words, we can reformulate the fixed point equation and
look for solutions z = Z(-, 7, v, €)) such that ||Z(t, 7, a, )| < p for all ¢ < 0.
Later we show that Z(¢, 7, a,¢) +77(t) € Q for ¢ < 0 so that Z(-, 7, o, ¢) is
a solution of (3.1-), no matter of the extension of f we take.

In view of Remark 3.2, from now on we refer to (3.1-) to mean the same
equation in which the function f ~ is replaced by any continuous function fé_
which extends f~ on U,, and analogously for equation (3.14). As pointed out,
our argument does not depend on the extensions f;; and f;f we choose.

As in Section 2, we assume that condition GO holds. We consider the
spaces X and X~ and the functions z* (t) = ¥+ (t + a) — 7(t), where 7+ (t) =
T (t, 777, o, €) is a solution of the perturbed problem (3.14) while ¥(¢) is the
non-smooth homoclinic solution of the unperturbed problem. We observe that
4*(t) and % (t) belong to X*. Then, repeating the argument of Lemma 2.6,
we get the following.

Lemma 3.3. Assume that GO and FO',F1',F3’ hold. Then for any o € R there
are positive constants 1y, <o, c such that, for any 7= € NP~, 7+ € RPT with
N7~ N+ 17T 1 < no, and 0 < || < o, there are unique C"-solutions T~ (t, 17, a, €)
of (8.1-) defined for t < «, and T(t, 77T, a,¢) defined for t > a of (3.1+)
satisfying

sup;<o |77 (t+ s 77, a,8) = FH(H)lle™ e < [l ]| + [e]]
sup,so &5 (t + s i7F, @, €) = 77 ()| < || + [e]] -

Step 2. We select the solutions ©*(t, 7=, ) of Step 1 in such a way that
(o, 7, a,e) € Q°, 27 (4,7, a,¢) € Q fort < a and T (t, 7, a,¢) € QF
fort > a.

For this purpose it is enough to choose 7~ and #* in such a way that
(o, 7, a,e) € Q) ie., G (a,7F,a,¢)) = 0. Then from condition F5’
we find that the flow of (3.1) on #*(a, 7T, a, ) is transversal to 0 if ¢ is small
enough, hence, from a continuity argument and the results of Step 1, we easily
get that Z~(¢,7F, a,e) € Q7 for t < « and (¢, 77, a,e) € QT for t > a.

In order to apply the implicit function theorem we consider the functions
G(i* (o, 7TE, a, €)), observing that G(Z*(a,0, o, 0)) = G(5(0)) = 0. We denote
by S~ = NP~ N[VG((0))]* and by St = RPTN[VG(7(0))]*, and we write
7~ and 77t as 7t = it + pEYE(0) with i7, € S~ and 7j; € ST. Then, we
compute the derivatives of G(Z%(a, 7, o, €)) in the directions 7£(0) at € = 0
and 77F = 0. For example, in the case of G(Z (t,,a,e)) we get

0

- o o oxr~ -
&]jG(m (OMY 70575))|_(ﬁ*,e)=((_)‘,0):

G(z~ (cz70,cy,0))8t (o, 0,c,0) =
n

= VG(F(0)(I - P7).

<l
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Thus,

a%_c:(ma,nﬁa,e»uﬁ_,@:m 7(0) = VG ()" F~ (7(0)) > 0.

Hence using the implicit function theorem (compare also Lemma 2.6 in [3]) we
get the following.

Lemma 3.4. Assume that GO and FO',F1',F3',F5’ hold. Then, for any fized
acR,q € S_,ﬁir € 8T, e sufficiently small, there are unique C" functions
p (77 a,e) and pt (7T, a,€) such that

G(& (o 7]+ p~ (77, @, €)7(0), @
o (0%

,€)) =0
(3.3)
G@ (7] + pt (7], o, £)77(0), 0

€)=

along with a constant ¢ > 0 such that

™ (T s e)| < el + el |w* (T, e )] < clllfll + el

Step 3. We match together the solutions found at Step 2.
The existence of the homoclinic trajectory for (3.1) amounts to the existence
of a solution for the equation

3?+(Oé, 771_ + /“‘[’+(ﬁj:7a7€)r?+(0)’ 0,5)_
o o o o . (3.4)
— T (o, +p (7, 2,6)7(0),a,¢) = 0.

_ We consider the orthogonal projection ® : R"™ — R™ such that R® =
[VG(5(0))]* and NO = span[VG(7(0))]; we set

F(ifL it o e) i= O (o, T +u™ (777, @, )77 (0), @ €)=
=T (o7 +p” (7L, . €)7(0), o €)).

Since Q is a graph on RO it follows (see also Lemma 2.10 of [3]) that solving
(3.4) is equivalent to solve

F(if, i, a,e) =0. (3.5)

From F4' we know that there is ¢ € [VG(F(0)]* such that ¢ € Be EBS"’]l,
that is RO = span[¢)] DS~ P ST. We can assume w.Lo.g. that ||¢] = 1. We
recall that the existence of a vector 9 such that span[z[f] B[S +St] crRO
is always ensured. However F4’ requires that S™ NSt = @ and consequently
span[] DS~ P ST = RO (as in [3], in the case of multiple crossings of the
discontinuity levels, F4’ has to be replaced by more complicated transversality
conditions, see e.g. F4” below). Then we apply a Lijapunov-Schmidt reduction
method. So we introduce the projection IT : R® — RO such that RII =
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-

S @ ST and NII = span[y], and we rewrite equation (3.5) as the following
system

Fl(ﬂaﬁj__aa7€) ::H[F(ﬁlaﬁj:7a7€)] = 6a
=0.

o Lo (3.6)
FQ(nLaﬁi_aaag) 3:¢*[F(77J_777I7a75)]

The next step will be to solve implicitly the first of equations (3.6). For this
purpose, observe first that Fy ((_)’7 (1040) = 0. Then, as in (?7) we find, for any
acR, 7 e NP, 7t ¢ RPT,

&= o _ zt+ .
gﬁ* (o, 77" ,0,0) =1 — P~ and gnj(oz,nJr,a,O):P"‘. (3.7)

Thus, computing the derivative of the first of equations (3.3) with respect to 77|
at ¢ =0 and 77, =0 we get, for any 7€ S~

<

FeEON - P (54| |2 0.a0)] 1] 0)) -
1
Recalling that S~ C [VG(7(0))]*, since (I — P~)7 = ¢ and (I — P~)7(0) =
77(0), we find

P G0.0)] = g SOOI
o [VG(H(0))]*5(0)
whenever ¢ € §~. Similarly differentiating the second of equations (3.3) with re-

spect to 77}, and using the fact that P& =« and [VG(3(0))]*@ = 0 whenever
w e ST we find

ou~ = - out - -
%(0,a70)=0 and %(0,0[70):0.
o, oy
Consequently,
38%(67 0,0,0)7 = Ol — P~)7 = —¢ forany 7€ S .
4
Hence afi (6, 6,040) = —Ig-, and analogously af:}r (6, 6,04,0) = lIg+. So for
o, on

any fixed a € R and ¢ small enough, we can apply thJe_ implicit function theorem
and prove the existence of smooth functions 7] = 77| (o, €) and 77} = 7/ (a, €)
such that 77 (o, 0) = 0, 77 (a, 0) = 0 and F}(ﬁj(a,@, (e, €), a,¢) = 0, identi-
cally. Now we have to look for the zeroes of the following bifurcation function:

Fy(a,e) = Fa(i7] (a,€), 77T (v, €), a,€) .

Before going on, it is convenient to compute also the partial derivatives of
the functions u* with respect to .
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Arguing as in Remark 2.5 we find

G (@ila,0) = [7 PT(X () Mis + a7 (5),0)ds
% (0,0, 0,0) = — [;F°(I = PT)(X ()7 di(s + o, 77 (s), 0)ds

(3.8)

Differentiating the first of equations (3.3) with respect to ¢ we find

0x~

= * aw_ ~ 8,[1/_ ~ o .
(aa 07 a, O)W(Ov Qa, O>’7 (0) + ?(O‘a

VGO | 5o

=1

La,0)| =0 (3.9)

So using the fact that g?’;._ (a;0,0,0)7(0) = (I — P~)7(0) = 7~ (0) we get

[VGEON" Jy ™ (1= PH)(XH(5))"§(s + 7 (5), 0)ds
[VGEO)]7+(0)

on
Oe

)

(0,,0) =

(3.10)
In an analogous way, differentiating with respect to € the second equation in

(3.3), and using the fact that 2Z=(a;0,,0)7+(0) = P+5+(0) = ¥+(0) we

pras
obtain
— NZalty % 0 — — 1= o
O™ oy — TGO [ P(X () s+ 0 7(5). 00
e [VG(5(0))*5-(0)

_ Now, we go back to the bifurcation function Fy(a,e). We observe that
F5(a,0) = 0 for any a € R, so we consider the function:

Fa(oe) ife#£0
A(Q,E) = { 81:"28(04,0) ife=0

Oe

Our final step is to obtain a standard form for the Mel’nilov function.

Remark 3.5. We stress that if systems (3.1-) and (3.1+) are C" in the & variable
and C*® in the € variable, r > 1 and s > 2, then the functions 77 (c,¢) and
77T (o, ) are C" in the a variable and C® in the ¢ variable. On the other
hand, A inherits the regularity of F, in the a variable, so it is C" in a and
it is C*~! in e. If we find an g such that A(ap,0) = F(020.0) ) byt

Oe
o=
‘g—g(ao,()) = % # 0, we can apply the implicit function theorem and

we find a (unique) C" function a(e) such that a(0) = ag and Fy(a(e),e) = 0
whenever ¢ is small enough, if r > s — 1.

Remark 3.6. Till now « has been a fixed parameter. More precisely we have
fixed @ € R and then we have found £y and 7y (depending on «) for which
we have applied the implicit function theorem. In fact ey and 7y are uniformly
positive as long as |¢| is finite but they tend to 0 as |&| — +o00. From now on we
let o vary; however we work with values of a bounded, say o € [ag—1, ap+1], so
that €y and 79 are uniformly positive and may be regarded as positive constants
(depending on o which will be fixed later).
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In order to compute the derivative of F, with respect to € we introduce the
following maps. We define Rt, R~ : R” — R" by

VGHON* T -, L VGHFON*T -
SICEONT sy g [TCOONT o)
[VG((0))]*7+(0) (VG(7(0))]*7~(0)
Observe that Rt, and R~ are projections with RRET = RO and NR* =

span[y(0)].
Let us set, for brevity, u

Rtw=w-

*(a,e) == pF (T (e, ), , ) and consider

~ -,

FQ(O{,E) = w*G)[f""(a;ﬁi(a,a)—i—u*‘(a,g)}y""(O), a75>_
= (77 (a,8) + p~ (e, E)}y’_ (0), v, €)].

From (3.8), we see that (3.10) and (3.11) can be rewritten using the projections
R* in the following way:

8ui S o + a.’fi =
(@) =07 (0) = (RE — D5 (a:0.0,0). (3.12)

Furthermore, for any (a,e) we have 7j (o, e) € RPY, i (a,e) € NP~, and
Ot (o, e) = 7T (a,e) € * C [¢]*. Thus
P*OPYi (a,e) =0 and *O(1 — P7)i (a,e) =0,

identically. In particular, we get

-

B} o7t , 0
FOPTHL (0] =0 ad F[O@-PT)FE(0,0]=0. (313)

Now, from (3.7) we get

2 [0rt (st (0,) + it (0,237 (0), )] Lo

o [@(gj}i(a; 0, a,O)%(a,O) + %(a; 0, a,O))] =
o [@ (P’L%(a, 0) + %(a; d,a, 0))] .

On the other hand, (3.12) and (3.13) imply

P* {9P+@(a, 0)} = [@%(% O)?*(O)] =

Oe Oe
- ort o
— ohy* + _ M2 (A
_ @{(R Do (a,o,a,())]
Consequently,
9 - .
0[O (a7 (0, 2) + 1 (0, )7 (0), €)oo=

(3.14)

5 [orH (2 (@:.0.0))] = 7 [BH (2 (@:d.00))]



Mel’nikov methos and homoclinic orbits in discontinuous systems 24

In an analogous way we get

% 7 @7 (a5 L (0, 2) + 1 (0, )7 (0), ) | Lemo=

1/7* [@R_ (%(OL; 0,, O))} = 77/7* [R_ (%(a; 0, a, 0))} .

Therefore, using (3.8) as well as (3.14) and (3.15) we find

(3.15)

613‘2(a,0) 7 o
Oe =¥ B

y(a, 07 (0N 0)

Tt , - _0¥, - }

+o0 N
=" /0 [RXF(s)) G5 + 0,77 (5),0)]ds+  (3.16)

0
[ RO+ (), 0))ds,

— 00

Here we have used the fact that by construction

U*RTPt =0 and ¢*R-(I1—P)=0.

Hence, the Mel'nilov function M (a) = 788—%(04, 0) and its derivative M’ (o) =
—gigé (, 0) take the standard form:

+oo | +oo | 6§
M(a) = P (0)F(t+o,5(t),0)dt,  M'(a) = V() 5, (e, 7(t), 0)dt

co X @R it <0
W)_{ ([(X+®)] " [RT] ift > 0.

Summing up we have the following.

Theorem 3.7. Assume that FO',F1',F2' F3',F4' F5 and GO hold, and that
there is g such that M (ag) = 0 and M’ («g) # 0. Then there exists g > 0 such
that for any 0 < |e| < eo system (3.1) admits a unique continuous, piecewise
C"=1 solution Ty(t;€) bounded on R and homoclinic to the origin, and there is
a C™71 function a(e), with a(0) = ag with the following property:

sup | Zp(t + a(e);e) = F(@#)|| = 0 ase — 0. (3.17)
teR

3.1 The case of multiple crossings

We stress that our existence results can be further generalized to the case in
which the unperturbed homoclinic crosses two or more discontinuity levels. Ob-
viously computations become longer and a bit cumbersome, so we do not re-
produce all of them here: the results can be obtained combining the ideas of
[3] with the procedure explained in this paper, in particular Step 1 of the proof
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Figure 3: A sketch of the piecewise smooth homoclinic trajectory ¥(¢) defined
in (3.19) of the unperturbed problem (1.1): we assume that f is as in (3.19)
and ’;(t) has two jump discontinuities.

of Theorem 3.7, i.e. Lemma 2.6. Here we give a very brief sketch of the con-
struction (in the case of two discontinuity surfaces) leaving the details to the
interested reader.

Let G1,G5 : R™ — R be smooth functions and denote by

Q7 = {ZeR"|G1(Z) < 0 & Go(F) <0} QF := {ZF € R"|G1(%) > 0}

OF = {F e R"|G1(T) < 0 & Go(T) > 0}

Q0 = (FE€R" |G (F) < 0& Go(?) =0} Q0= {Z € R"|G,() = 0}
(3.18)

see figure 3, and by

(@) ifFeqQ () e ift<-T
f@ =< f#@) ifzeq# ,  Ft) =< F#W) e f-T<t<T
fr@ ifzeqt Frt) et ift>T
(3.19)

where f=, f#, f* are C" functions with r > 1, £ (¢t) is a solution of = f*(Z),
and 7#(t) is a solution of # = f#(T).

We assume that 0 € 9, and that F=(0) = f+(0) = 0. It follows that 7(t) is
a homoclinic trajectory for # = f(&).

We consider Hypotheses FO', F1', F2', F3', and we adapt to this setting the
transversality hypothesis F5' as follows

G VG(FH(-T)) > 0, [f#(F(-T))]*VC1((~T)) > 0 and
:); *

F5" | ]
(F(T)]*VG(F(T)) <0, [fH(F(T)]*VGL(F(T)) < 0.

f:,
[f*
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Hypothesis F4’ needs more discussion (we sum up [3]). We denote by X~
the fundamental matrix of the variational system # = fo (3(t))Z, defined for t <
—T and such that X —(—T) = I; analogously we denote by X T the fundamental
matrix of & = 5 (3(t))@, defined for ¢ > T and such that X+(7T) = I, and
by X# the fundamental matrix of ¥ = f#(5(t))&, defined for —T < t < T
and such that X#(-7) = I. From Hypotheses FO',F1',F2’' F3' we know
that the variational systems admit an exponential dichotomy for ¢ < —T and
t > T, with projections P—, Pt and constant k. We denote by S~ := NP~ N
[VG1(7(~T))]* and by V* := RP+ N [VGL(F(T))*. From F5” it follows
that dim(S~) 4 dim(V+) = n — 1. Let us introduce the projections RE from
R” onto [VGy (F(£T))]* such that N'RE = span(7=(£T)), the projection R#
onto [VG1(F(T))]* such that N'R# = span(7#(T)), i.e.:

RY*5=7- — ) “5(£T),

and

[V (F(T))]*7#(T)

We denote by V'~ := (R# X#(T)S~)N[VG1(F(T))]* : since X#(T) is invert-
ible it follows that V= 4 V* is a subset of [VGy(7(T))]* having codimension
at least 1, i.e. dim(V~ 4+ V1) < n — 2. We require that dim(V~ N V*) =0, so
they cross transversally, or equivalently

F4” dim(V-@V*t)=n—2.

Hence, up to a multiplicative constant, there is a unique vector ¢ € [VGy (F(T'))]*
such that ¢ € [V~ @ V*]+; sowe have [V~ @ V+ @span(y)] = [VG1(F(T))]*.

We can assume w.l.o.g. that ||[¢)]| = 1, and we can define the analogous of the
bounded solution of the adjoint variational system for this context, i.e.,
) (X)) [RJ(XHI)(RA it < T
V(t) =9 [[X#@)] [ X#(T)*[R#]*y if -T<t<T (3.20)
[(X+))] (R ift>T.

Finally we set

+oo | +oo | —
M) = [T F@gera 0.0, @ = [ 5 0Larasw.0

Now we are ready to state the generalization of Theorem 3.7 to this context.

Theorem 3.8. Consider the perturbed system

—

"?: f(f) + €§(t,f, 5)
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with f as in (8.19), and assume that, for e = 0, it admits a possibly not smooth
homoclinic solution ¥(t) as in (3.19). Assume that FO',F1’' F2' F3' F4" F5"
and GO hold, and that there is cg such that M(ag) =0 and M'(ag) # 0. Then
there exists 9 > 0 such that for any 0 < |e| < &g such a system admits a unique
continuous, piecewise C" 1 solution T (t; €) bounded on R and homoclinic to the
origin, and there is a C"~! function a(e), with a(0) = aq satisfying:

sup ||@p(t + afe);e) =) =0 ase —0. (3.21)
teR

4 Examples

This section is devoted to the application of our results to some examples. Let
us first consider the following Hamiltonian system:

() =(o ) () () )

where a > 0, b > 0 and ¢ > 2. It is easy to check that system (4.1) admits a
trajectory J(t) = (y1(¢),¥2(¢)) homoclinic to the origin, given by

1 (t) = A(eCt 4 = Ct)=V2a/C 2 (t) = (1), (4.2)

where C' = \/%‘12;2 and A = (%)1/(q_2). Observe that, due to the translation
invariance in ¢ of (4.1), such a system admits in fact a one parameter family of
homoclinic trajectories, given by ¥'(t,a) = J(t — ). All these solutions have
the same graph, which is contained in the zero level set of the Hamiltonian

EXE

H(xy, o) := 5

— a|zq|* + bloy|7.

Notice that (0) = ((a/b)*/(4=2) 0) and the point 7 (0, &) moves along the level
set H(Z) = 0. Furthermore we have also the symmetric family of homoclinic
trajectories given by —77(0, a), but we will not consider it in these examples.

We start from a continuous equation, so our purpose is to localize the ho-
moclinic trajectory of the perturbed system. Let us consider the following per-
turbed equation:

( i; ) - ( 0 ) ( - >+( _(Hw(g)zl‘zl‘q,g ) (4.3)

where ¢ : R — R is a smooth bounded function.

Let us point out (see also [11]) that the existence of trajectories w(t) =
(w1 (t),w2(t)) of (4.3), homoclinic to the origin and satisfying ws (¢t) > 0 for any
t € R, is equivalent to the existence of positive radial ground states u(y) with
fast decay for the equation

Au+[1+ e n(|7)]u(@) u@|"* =0,  FeR". (4.4)
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In fact a solution Z(t) = (x1(t),x2(t)) of (4.3) can be obtained from a radial
solution u(r) of (4.4) setting z1(t) = u(e*)eV24t. By a ground state we mean
a solution u of (4.4) which is well defined and positive and tends to 0 as |§] —
oo, and we say that it has fast decay if u(i)|7]*>~" has positive finite limit as
|§] — oo. When a = (N —2)2/8 and ¢ = 2N/(N —2), equation (4.4) and system
(4.3) are known as scalar curvature equation and the existence of ground states
amounts to the existence of conformal metrics having 1 + e¢In(|g]) as scalar
curvature. Equation (4.4) finds application in many different areas, such as
quantum mechanics, and usually it is required that u is positive, or equivalently
for (4.3) z1 > 0, in order to have physically meaningful solutions.

Note that for € = 0 system (4.3) reduces to (4.1) with b = 1/¢. Consequently,
it admits a one parameter family of homoclinic trajectories 7' (¢, ) as above.

It is not difficult to prove that FO, F1, F2, F3 and GO hold. We recall that
condition F4 (as well as F4') is automatically satisfied if n < 3 and that the
Mel'nikov integral takes a simpler standard form if n = 2. More precisely, if
~(t) is the homoclinic trajectory of the unperturbed problem (2.1) we have

AM@-/%me“mswmﬂﬂtCMAﬁﬁ@Mmt (4.5)

Here A stands for the cross product in R2?, that is, if @ = ( Zl ) and b =
2

( Zl ), then @A b = a1by — asby. Then, following Lemma 6.1 in [11] we find
2

+o0 1 +oo |
M@) == [ oltpat - )bt - )t = o [ d@)n(e - )

1 [tee .
O R G
qJ-

Thus, if there exists «g such that M(ap) = 0 and M'(«g) # 0, we can apply
Theorem 2.9 and we find that, for £ > 0 sufficiently small, system (4.3) admits a
homoclinic solution #(t) such that ;1 (¢) > 0 for any ¢ € R. So, the corresponding
solution u(r) is positive for any r > 0 and it is a ground state with fast decay.

We stress that the positivity of the solution u(r) of (4.4) was already proved
in [11] via standard transversality and geometrical techniques. Let us point
out that the 2-dimensional examples in this section are given for illustrative
purposes. However, in our opinion the main advantage of our method (in the
continuous case) lies in the possibility to be used in higher dimensions.

The next example shows an application of Theorem 3.7. Let us consider the
discontinuous system

(2)=Cater ) (2)* (i) 49

~( )_ 1 1fa:220
UML) = 4 ifay <0

where



Mel’nikov methos and homoclinic orbits in discontinuous systems 29

It is easy to check that system (4.6) still admits a homoclinic trajectory 5(t) =
(71(t),42(t)) which is not C! (even if its graph is smooth), given by

() = A e TVEIC, Fa(t) = (1), (47)
where A = 41/(4=2) is again a constant while

V2 ;
C_C<t)_{\/§(q—2) ift <0

is a discontinuous function. The graph of §(t) is contained in the set {# € R? |
~ ~ 2

H(#) =0, &1 > 0}, where H(&) = 2 — a(z2) (|21 |* — |21]9).

We perturb (4.6) by adding to the discontinuous right hand side the term
eg(t, Z,e), where

g(tv f? E) = (Oa ¢(t)$1 ‘x1|q72)*'
Again ¢ is smooth and bounded. It is not difficult to prove that the perturbed
system verifies FO',F1’,F2' F3' F5' GO; then F4’ follows from F5’ and the
fact that the system is 2-dimensional. Moreover the formula for the Mel’nikov
function M(a) is again given by (4.5):

=L [T2 oM — a)adt, M'(a) =1 [T d(t)[Fn(t — o))edt

where we have used the fact that Ef is still continuous. So if ay is a simple zero for
M («) we can apply Theorem 3.7 to conclude the existence of a piecewise smooth
homoclinic trajectory @ (¢, ¢) for ¢ > 0 sufficiently small, and of a function «(e)
satisfying (3.17).

We conclude this section with a 3-dimensional discontinuous example. We
stress that this is just an illustrative example. We would like also to point out
that that through piecewise linear systems it is possible to obtain homoclinic
trajectories which are explicitly computable, so that our perturbation arguments
can be easily applied.

We consider the following piecewise linear system

& =atz T=—z
y=—bty for (x,y,2) € QF; y=x+y+z-2 for(z,y,z2)eQ”,
—(b* + )z z=1-y
(4.8)
where a®, b*, ¢t are positive constants

Q# = {(:r,y,z) | Gl(xvyvz) > 0}7 Qi = {(m,y,z) ‘ Gl(xayvz) < Oa :I:Gg(amy,Z) > 0}7
92:{(Iay7z) |G1(.§C,y,2):0}, Q?:{(xayvz) |G1(xay7z)<0a GQ('rava):O}
and Gi(z,y,2) =x+y+ 2z —2, Go(x,y,2) = —x + y, see figure 3. It is easy to

check that system (4.8) admits a piecewise smooth homoclinic trajectory (t)

¥~ (t) = (2expla™(t + 7/2)],0,0) fort < —m/2
F(t) =< F°(t) = (1 —sin(t), 1 + sin(t), cos(t)) for [t| < m/2
FT(t) = (0, 2exp[—bT (t — 7/2)],0) for t > /2
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Here and in the following we will adopt the same notation as in Section 3. It
is straightforward to check that FO',F1’,F2',F3',F5" are satisfied; moreover
F4" follows from F5"” and the fact that (4.8) has dimension less than 4.

It is easy to check that RPE = span{(0,1,0); (0,0,1)} and N'P* = span{(1,0,0)},
sothat S~ = NP~ ﬁ[ﬁGl( (—=m/2))]* = {0}. Therefore V- = R# X#(1/2)S~ =
{0} St = (RPT)N [VGl( (m/2)]*+ = span[(O,l, 1)], and we can choose
Y = f( —1,-1), so that ¢ L 8T and ¢ @St = [VG4(F(r/2))]*. From a
straightforward computation we find Rt (z,y, 2) = (z, —x— 2, 2), R¥(z,y,2) =
(z,y,—x —vy), R~ (x,y,2) = (—y — 2,9, z). Further,

e +cos(t)—sin(t) et —cos(t)—sin(t)

. - 5 - 5 — sin(t)
X#(t _ 5) _ e 7cos(;)+51n(t) e +Cos(;)+sm(t) Sin(t)
_ et+cosét)+sin(t) — et+cosét)—sin(t) cos(t)
sin(t)+cos(t)+e”?  —sin(t)—cos(t)+e”*  —sin(t)+cos(t)—e”"
([X#(t — g)]—l]* — sin(t)fcozs(t)+e_t 7sin(t)+<:20$(t)+e_t sin(t)Jrcon(t)fe_t
sin(t) — sin(t) cos(t)

where X#(t) is the fundamental matrix of (4.8) for (z,y,2) € Q¥ such that
X#(—m/2) = . Moreover we easily find

o exp[ —a*(t F )] 0 0
{(xXE@®) "} = 0 exp[b*(t F 3] 0
0 0 exp[(b* + ¢*)(t F §)]

From a straightforward computation we find (R+)* = %(3, 0,0) = (R#)*1),
and

—

U(57) = [X#(n /2 (R#)* v = ( " —1,e"+1,0)
U(=57) = (R [X#(n/2)]"(R ) 575(0.2,—€" +1)

Therefore, using (3.20) we find

26 (0,2e0 (F3) (—e™ 4 1) elb” +e)(t+3)) ift< -2
Z—(t) =< (e™/2 4 sin(t) — cos(t), eTTTT/2 —sin(t) — cos(t), —2cos(t)) f —F <t<Z
(2e72"(t=%) 0,0) ift>7

Let us choose g(t,Z,€) such that ¢1(¢,Z,¢) = g3(t,%,¢) = —g2(t,Z,¢e) =
sin(t)[z3 + 23 + 23] + O(e); then we find

M (a) = Asin(a) + B cos(a)
M'(a)) = Acos(a) — Bsin(c)
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where A, B are given by
A=A +A°+A", B=B +B°+ Bt
2v/6 N V6(e™ —1)

A_ =
(2a=4+b7)2+1 (2a=+b-+c)2+1
13v/67
0 _ —
A= 16
A w6
(at +2b%)2+1
B — 2v6(2a~ +b7)  V6(em —1)(2a" +b" +c7)
 (2a +b7)2+1 (26~ +b=+c)2+1
B0 — 1567
16

Bt _ 2V6(at +2b7)
~(at4+20M)2 41

Now, whenever A2 + B? # ( there are two values of the parameter a in (—m, 7],
say af and o2, such that M(a} + 2kr) = 0 and M'(a® + 2kr) # 0, i = 1,2, for
any k € Z. Moreover by construction we have that FO', F1’,F2,F3',F4" F5"
and GO hold; thus we can apply Theorem 3.8 and we get the existence of gg
such that for ¢ = 1,2 and any 0 < £ < ¢y the piecewise linear system (4.8)
admits a unique continuous, piecewise smooth solution Zj(¢; k,€), bounded on
R and homoclinic to the origin, and there are smooth function «}(¢), with
a}‘c = o} + 2k, i = 1,2, satisfying

sup |7} (t;€) — J(t — ak(e))] =0 ase — 0.
teR

A Appendix

In this appendix we give the explicit proof of a roughness result in exponential
dichotomies, which is probably known by the experts but for which we are not
able to give a precise reference.

Let t — A(t) be a piecewise continuous n x n matrix valued function defined
on R. We recall that the linear differential equation

= AT (A1)

is said to have an exponential dichotomy on an interval J if there are projections
P and positive constants k, oy, ag such that

X (t)PX 1 (s)|| < ke~1(t=9) for s,t € J with s <t

) (A2)
[X(t)(I—P)X(s)|| < ke (=D for s,t € J with t < s '
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where X(t) is the fundamental matrix of equation (A.1).
Assume that system (A.1) has an exponential dichotomy on J with constant
k and exponents aq, as, and let 31, B2 be positive constants such that 51 < ay
and By < as. The well known roughness property of exponential dichotomies
(see e.g. [19, p. 133]) implies that if ¢ — B(t) is a piecewise continuous n x n
matrix valued function such that ||B(:)||cc < d, then for ¢ sufficiently small the
perturbed system _
Z=[A(t) + B(t)]Z (A.3)

has an exponential dichotomy on J with projection Q, constant k&’ and exponents
B1, Ba. We want to show that if we further assume that the function B is L!
then equation (A.3) has an exponential dichotomy on J with the same exponents
a1,09.

More precisely we will prove the following result.

Proposition A.1. Assume that system (A.1) has an exponential dichotomy
on J = [0,+00) with projection P, constant k and exponents oy, as. Let B €
L]0, +00) be a piecewise continuous n x n matrix valued function, and fix T > 0
such that [ || B(7)||dr < £. Then there is &y such that if [B(-)lloo <6 < do
the perturbed system (A.3) has an exponential dichotomy on [T,4o00) (and,
consequently, on J) with projection @, constant k' and the same exponents
a1, Q2.

First of all we prove the following Gronwall-like lemma.

Lemma A.2. Let ¢ : [T,+00) — R be a bounded, continuous function such
that, fort > T,

t 00
O(t) < ke 1t 4 ky / e~ =Mp(r) (1) dr + ko / e~ 2(=0p(r)g(7) dr,

T t
where ki, ka, a1, az are positive constants, b € L]0, +00) is a nonnegative
piecewise continuous function, and T > 0 is such that ng><> b(r)dr < ﬁ. Then,
there is ¢ > 0 such that

B(t) < ckye ™t t>T.

Proof. Consider the corresponding integral equation

T

t o
P(t) = ket 4 ky / e~ =Tp(T)(7) dT + ko / e~ 2T Dp(r)y(7) dr,
t
B (A.4)
for t > T. Then, any bounded continuous solution 1 is twice differentiable and

is in fact a solution of the differential equation
P+ (a1 — a2) — [aras — ka(an + a2)b(t)][¥(t) = 0.
We have

t

Z/J(t) =C1 eialt +c2 e"‘zt + ko /

(efal(th) _ ea2(t*"')> b(T)’l)[}(T) dT, t Z Ta
T
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Since we are assuming that v is bounded we have

cy = ko /Oo e~ *2Tb(r)y(r) dr,

T
thus

v = <k / e Thny(n) dT) et

v

¢
+ <cl+k2/ e“Th(T)Y(T) d7'> e 1t t>T,

T

Let us show that 1(t) = O(e~*") as t — +o0. For this purpose we define the
Banach space

Xy = {d) € C((T,+00),R) | sup(|s(t)]e™] < OO}
t>T
endowed with the norm [|o, = supl|(t)]e*"].

t>T
We define a linear operator 7 acting on X; as follows

T = (ke [ b ar) e

Y

— T’

T

t
+ <Cl + kg/ e“Th(T)Y(T) d7'> e~ ot t
Let us show that 7 is a contraction. We have

IT@)ON < (ex + 2k2lbll (17 ooy I¥llay) €, =T,

therefore the operator 7 is well defined. Moreover if ¥1,12 € X; we have
1T (W2)(t) = T (1) (O] < 22l 1 (7 ooy I¥2 = Villay 7, £ T

Since 2ko fj—?i b(r)dr < % by assumption, 7 is a contraction, hence has a unique
fixed point ¥ € X;. It follows that

P(t) < ckye ™t t>T

for some constant c. i
1

ka1 = 16l (7, 40)))

we have

Moreover for any constant L >

t
L> ke ot +k2/

e~ =T Ldr + ko / e~ 2=y L dr,
T t

for any ¢ > T. So if we choose L > sup,7 ¢(t) by the upper lower solution
method we find a solution (t) of (A.4) such that ¢(t) < Y(t) < Lforanyt >T.

Since ) (t) is uniquely determined we find 1(¢) = 1 (t) and the result follows. m
With a similar argument we prove the following lemma.
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Lemma A.3. Let k1, k2, an, az, b and T be as in Lemma A.2.
1) Let ¢ : [T, 4+00) — R be a bounded, continuous function such that, for all
t>s>T,

t )
B(t) < kpe (=) 4k, / e TP p (1) dr + kg / e 2(T=Dp(1) (1) dr,
S t

then, there is ¢ > 0 such that
o(t) < ckq e_al(t_s), t>s>T.
2) Let ¢ : [T, +00) — R be a bounded, continuous function such that, for all
s>t>1T,

t

¢(t) <k e—az2(s—1) + kZ/ e—a1(t—7’)b(7_)¢(7.) dr + ko /s e—az(T—t)b(T)(b(T) dr,

T t

then, there is ¢’ > 0 such that

Vv
v
N

B(t) < ky e 2571, s
We now give the

Proof of Proposition A.1. Assume that §y < .

We define a linear operator 7, acting on the Banach space of bounded con-
tinuous functions CP ([T, +oc), R"™) with the standard supremum norm | - ||oc.
Let £ € R™ be fixed and let

T(@)(t) =X (1) PE+ / X(#) PX~(r)B(r)ii(r) dr—

T.

Y

_ /t T XM= PIX (D) B(i(r) dr,

Then,

t

t [e'e)
IT@ O] < ket ] + ( [ ke sars [ ke_QZ(T_t)5d7> il
T
- 2k . _
<kl + o)., 21
Moreover,

17 (@) (t) = T(@)O] < —dllde — @, t=T.

2k
Since —§ < 1 it follows that 7 is a contraction and hence has a unique fixed

point.
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Such a fixed point i verifies, for t > s > T,
At =X () PX 1 (s)i(s) + /T X () PX~1(r)B(r)i(r) dr—
- /too X(H)[I — P X' (7)B(r)i(r) dr .

Then we have, for any t > s > T,
t

1)) < ke~ ||d(s)|| + k / e~ 1= B(r)|[||i(7)| dr+

+k / =20 | B(7)|||ii(7)] dr
t

We apply Lemma A.3 with ||@(¢)|| in place of ¢(t) and || B(t)|| in place of b(t).
Hence there is ¢ > 0 such that

@t < cke =) Jlas)l,  t=s>T.
Analogously, one can prove that there is ¢ > 0 such that
@@ < ke Jla(s)|,  s>t>T.

Following an argument similar to [19, Lemma 7.4] we obtain the estimates of
the exponential dichotomy on [T, +00) and, consequently, on [0, 4+00). [

We recall that when A(t) = A is a constant function, we have that (A.1)
admits exponential dichotomy in the whole of R if and only if A has no eigen-
values with real part equal to 0. Let us denote by A, and As the eigenvalues
of A respectively with smallest positive real part and with largest negative real
part. If A, and A, are real and simple then the exponents of the dichotomy are
exactly A\, and Ag and the constant is 1. Similarly if A\, and A\s are semisim-
ple (as we assume in this paper), that is, A\, = a + ib and Ay = —c + id with
a,c > 0, then the exponents of the dichotomy are again exactly Re(\,) = a
and Re(As) = —c. On the other hand, if A, and As have algebraic multiplicity
larger than geometric multiplicity, then (A.1) admits exponential dichotomy in
the whole of R but with exponents AT and A\~ where 0 > A~ > —Re()\;) and
0 < AT < Re(\y).
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