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Sunto. – Si prova un teorema di esistenza e unicità per un “problema ai limiti funzionale non-lineare”, ossia

un’equazione differenziale ordinaria con condizione al bordo non-lineare. La dimostrazione di questo risultato si

basa su un teorema di inversione globale di Ambrosetti e Prodi: tale teorema viene applicato all’operatore al bordo

ristretto alla varietà delle soluzioni globali dell’equazione differenziale ordinaria data. Questo risultato generalizza

un analogo teorema di G. Vidossich. Inoltre vengono forniti esempi che mostrano come tale generalizzazione sia

effettiva.

Abstract. – We prove an existence and uniqueness theorem for a nonlinear functional boundary value problem,

that is, an ordinary differential equation with a nonlinear boundary condition. The proof is based on a Global

Inversion Theorem of Ambrosetti and Prodi, which is applied to the boundary operator restricted to the manifold

of the global solutions to the equation. Our result is a generalization of an analogous existence and uniqueness

theorem of G. Vidossich, as it is shown with some examples.

1. – Introduction and preliminaries

We consider a functional boundary value problem (in short, BVP) of the form

(1) x′ = f(t, x), L(x) = r,

where f : [a, b] × Rn → Rn is a continuous map with continuous partial derivative with respect to the
second variable, and L is a nonlinear map from the space C([a, b],Rn) into Rn of class C1, i.e. Fréchet-
differentiable with continuous derivative

L′ : C([a, b],Rn) → L(C([a, b],Rn),Rn).

Our aim is to prove an existence and uniqueness theorem for the functional BVP (1), generalizing an
analogous result of Vidossich [4, Theorem 3].

For this purpose, we will use the following Global Inversion Theorem of Ambrosetti and Prodi [1,
Theorem 1.8, p. 47]. We recall that if X and Y are metric spaces and F : X → Y is a continuous map,
F is said to be proper if F−1(K) is compact for any compact set K ⊂ Y ; furthermore, F is said to be
locally invertible at a point x ∈ X if there exist neighborhoods U of x in X and V of y = F (x) in Y
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such that F is a homeomorphism of U onto V , and F is said to be locally invertible on X if it is locally
invertible at every point of X.

Theorem 1.1 (Global Inversion) – Let X and Y be metric spaces, and let F : X → Y be proper.
Suppose that the map F is locally invertible on X, the space X is arcwise connected, and the space Y is
simply connected. Then F is a homeomorphism of X onto Y .

Let us briefly set the notations which will be used in this paper. As usual, Rn denotes the euclidean
n-dimensional space, and if x = (x1, . . . , xn) is in Rn we set |x| =

∑n
i=1 |xi|. By Mn(R) we will denote

the space of n × n real-valued matrices, and if A = (aij) belongs to Mn(R) we set |A| =
∑n

i,j=1 |aij |.
Moreover, C([a, b],Rn) is the Banach space of the continuous maps from the closed and bounded real
interval [a, b] into Rn, with the supremum norm || · ||∞. For brevity, except in the statements, we will
often write C0 instead of C([a, b],Rn).

Let us recall that, if f : [a, b]×Rn → Rn is a continuous map, a solution x to the ordinary differential
equation

x′ = f(t, x)

is said to be maximal if it is not a proper restriction of another solution, and it is said to be global if it
is defined on the whole interval [a, b].

We will make use of some properties of Fredholm maps between Banach spaces (see e.g. Smale [3]).
We recall that, if T : X → Y is a linear and continuous operator between Banach spaces, T is said to be
a Fredholm operator if both Ker T and CoKer T = Y/ Im T are of finite dimension. If T is a Fredholm
operator, its index is defined by

ind T = dim KerT − dimCoKer T.

Let F : X → Y be a map of class C1 between Banach spaces. We say that F is a Fredholm map if its
Fréchet-derivative F ′(x) : X → Y is a Fredholm operator for any fixed x ∈ X. Moreover, a Fredholm
map F : X → Y is said to have index m if for every x ∈ X the derivative F ′(x) is a Fredholm operator
of index m. In particular, since the index is locally constant, if the space X is connected and F is a
Fredholm map we may define the index of F (and still denote it by indF ) as the index of F ′(x) for any
given x ∈ X.

2. – Existence and uniqueness theorem

The following is the main result of this paper.

Theorem 2.1 – Let f : [a, b]× Rn → Rn be continuous with continuous partial derivative

D2f : [a, b]× Rn → Mn(R),

and let L : C([a, b],Rn) → Rn be of class C1. Consider the ordinary differential equation in Rn

(2) x′ = f(t, x),

and assume that the following hypotheses hold:
(H1) For any global solution x to (2), the linearized functional BVP

y′ = D2f(t, x(t))y, L′(x)y = 0
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has only the trivial solution.
(H2) For every M > 0, the solution set of the problem

x′ = f(t, x), |L(x)| ≤ M

is bounded in C([a, b],Rn).
Assume that the set of the initial points of the global solutions to (2) is connected. Then, for every

r ∈ Rn the functional BVP

(3) x′ = f(t, x), L(x) = r

has a unique solution.

Proof. – Let
S = {x ∈ C0 : x′ − f(t, x) = 0}

be the set of the global solutions to the equation (2), and let A ⊆ Rn be the open set consisting of the
initial points of the global solutions to (2). We observe that, since the map f is locally Lipschitz with
respect to x, the solutions to (2) enjoy local uniqueness. Thus, by the continuous dependence of solutions
with respect to initial values, the set A is homeomorphic to S. Moreover, as we will show later (see
Lemma 3.1), the set S is closed in the space C0 and it is also a differentiable manifold of class C1 and
dimension n. Note that, consequently, S is an unbounded subset of C0; indeed, if we suppose S bounded,
then it must be compact because of Ascoli’s Theorem, but this is impossible since S is homeomorphic to
an open subset of Rn.

Now, consider the restriction L|S : S → Rn of the map L to S. We want to show that L|S is locally
invertible on S and proper.

(i) L|S is locally invertible on S.
By assumption, the map L is of class C1. Moreover, by Lemma 3.1 below, S is a C1-manifold of dimension
n. Hence, by the (local) Inverse Function Theorem, it is enough to show that the Fréchet-derivative

L′(x)|TxS : TxS → Rn,

where TxS ⊂ C0 is the tangent space to the manifold S at x, is a linear isomorphism for every x ∈ S.
Let x ∈ S be given, and let v ∈ C0 be such that v ∈ TxS and L′(x)v = 0. These two conditions imply
that v is a solution to the linearized problem

v′ = D2f(t, x(t))v, L′(x)v = 0.

By hypothesis (H1), this problem has only the trivial solution. Therefore v = 0 and TxS∩Ker L′(x) = {0}
for every x ∈ S. Since L′(x)|TxS is a linear map between two linear spaces of dimension n, then, being
injective, it is surjective as well. Hence we conclude that such an operator is an isomorphism for every
x ∈ S. Consequently, L|S is locally invertible on S.

(ii) L|S is proper.
Let K ⊂ Rn be compact; in particular K is bounded, i.e. there is a constant M > 0 such that for any
r ∈ K we have |r| ≤ M . Let x0 be an element of (L|S)−1(K), i.e. x0 ∈ S and L(x0) = r0 with r0 ∈ K

(we may assume that such a set is not empty). These two conditions imply that x0 is a solution to the
problem

x′ = f(t, x), |L(x)| ≤ M.

3



By hypothesis (H2), there is a constant δ > 0, independent of x0, such that ||x0||∞ ≤ δ. Consequently
the set (L|S)−1(K) is bounded in C0. We claim that this set is equicontinuous as well. Indeed, if we
denote by Dδ the closed ball centered at the origin with radius δ in Rn, we have

(t, x0(t)) ∈ [a, b]×Dδ

for any t ∈ [a, b] and x0 ∈ (L|S)−1(K). By the compactness of [a, b]×Dδ and the continuity of f , there
exists a constant γ > 0 such that

|x′0(t)| = |f(t, x0(t))| ≤ γ,

for any t ∈ [a, b] and x0 ∈ (L|S)−1(K). Hence, the elements of (L|S)−1(K) are equi-Lipschitz and in
particular the set (L|S)−1(K) is equicontinuous. By Ascoli’s Theorem, this set is relatively compact in
C0. Now we observe that, by Lemma 3.1 below, S is closed; consequently the set (L|S)−1(K), being
closed in S by continuity, is closed in the space C0 as well. Thus, being closed and relatively compact,
(L|S)−1(K) is compact. Since this fact holds for any K ⊂ Rn compact, we conclude that L|S is proper.

As we already pointed out, S is homeomorphic to the set A; in particular, since by hypothesis A

is connected, so is S. Hence the manifold S is arcwise connected, being connected and locally arcwise
connected. All the assumptions of Global Inversion Theorem 1.1 are verified: consequently L|S is a
bijection, and this fact implies that the functional BVP (3) has a unique solution for every r ∈ Rn, thus
proving Theorem 2.1.

3. – A geometrical lemma

As we observed in the proof of the previous theorem, we now have to show that the set S of the global
solutions to

x′ = f(t, x)

is an n-dimensional differentiable manifold of class C1, which is closed in the space C0. To this end, we
will apply the following known result about the regularity of the set of solutions (see e.g. Smale [3]).

Theorem 3.1 – Let Φ : X → Y be a Fredholm map between Banach spaces. If y ∈ Y is a regular value
for Φ, then S = Φ−1(y) is a differentiable manifold of class C1 and dimension equal to the index of Φ.

We will also denote by C0
0 the linear space consisting of the continuous maps x : [a, b] → Rn such

that x(a) = 0. We note that C0
0 is a subspace of C0 of codimension n, since it is the kernel of the linear

operator from C0 onto Rn defined by x 7→ x(a).

Lemma 3.1 – Let f : [a, b] × Rn → Rn be continuous with continuous partial derivative with respect to
the second variable. Then, the set

S = {x ∈ C0 : x′ − f(t, x) = 0}

of the global solutions to the equation
x′ = f(t, x)

is closed in the space C([a, b],Rn) and it is also a differentiable manifold of class C1 and dimension n.
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Proof. – Define F : C0 → C0
0 by

F (x)(t) = x(t)− x(a)−
∫ t

a

f(τ, x(τ))dτ, t ∈ [a, b].

Clearly F is continuous and S = F−1(0); consequently, S is closed.
Let us show that S is also a C1-manifold of dimension n. To apply the above Theorem 3.1, we have

to prove that F is a Fredholm map. The Fréchet-derivative F ′(x) : C0 → C0
0 of F at x ∈ C0 is given by

[F ′(x)h](t) = h(t)− h(a)−
∫ t

a

D2f(τ, x(τ))h(τ)dτ, t ∈ [a, b].

In particular, F ′ : C0 → L(C0, C0
0 ) is continuous. Now let x ∈ C0 be fixed; we claim that F ′(x) is

surjective and that Ker F ′(x) is isomorphic to Rn.
(i) F ′(x) is surjective.

We need to show that the equation

h(t)− h(a)−
∫ t

a

D2f(τ, x(τ))h(τ)dτ = g(t), t ∈ [a, b]

has a solution in C0 for any given g ∈ C0
0 . Searching for a particular solution h to this equation, which

verifies the additional condition h(a) = 0, we get the following Volterra equation:

h(t)−
∫ t

a

D2f(τ, x(τ))h(τ)dτ = g(t), t ∈ [a, b].

It is well-known that this equation has a unique solution in C0 for any g ∈ C0
0 ; consequently, the operator

F ′(x) is surjective.
(ii) KerF ′(x) is isomorphic to Rn.

Let h ∈ KerF ′(x); this means that h ∈ C0 is a solution to the linear integral equation

h(t)− h(a)−
∫ t

a

D2f(τ, x(τ))h(τ)dτ = 0, t ∈ [a, b].

In particular h is a C1-map and verifies

h′ = D2f(t, x(t))h.

Since the solutions to a homogeneous linear differential equation are in bijective correspondence with
their initial values, the kernel of F ′(x) is isomorphic to Rn.

From properties (i) and (ii) it follows that F ′(x) is a Fredholm operator of index n for any given
x ∈ C0. Hence, F is a Fredholm map of index n. Finally, since F ′(x) is surjective for any x ∈ C0, there
are neither critical points nor critical values. We then apply the above Theorem 3.1, and we conclude
that S = F−1(0) is a C1-manifold of dimension n = ind F .

4. – Existence and uniqueness theorem of Vidossich

In this section we state the following existence and uniqueness theorem of Vidossich [4, Theorem 3],
and then we show that Theorem 2.1 is a generalization of this result.
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Theorem 4.1 – Let f : [a, b]× Rn → Rn be continuous with continuous partial derivative

D2f : [a, b]× Rn → Mn(R),

and let L : C([a, b],Rn) → Rn be of class C1. Consider the ordinary differential equation in Rn

(4) x′ = f(t, x),

and assume that the following hypotheses hold:
(I1) Every maximal solution to (4) exists on [a, b].
(H1) For any global solution x to (4), the linearized functional BVP

y′ = D2f(t, x(t))y, L′(x)y = 0

has only the trivial solution.
(I2) The solutions z to the linearized functional BVPs

z′ = D2f(t, x(t))z, L′(x)z = c,

where c belong to the sphere Sn−1 and x is any global solution to (4), are uniformly bounded with respect
to the solutions x and c ∈ Sn−1.

Then, for every r ∈ Rn the functional BVP

x′ = f(t, x), L(x) = r

has a unique solution.

We recall that the proof of this result is based on the following Hadamard’s Global Inversion Theorem
(see Schwartz [2, Theorem 1.22]).

Theorem 4.2 (Hadamard) – Let X and Y be Banach spaces and let F : X → Y be of class C1.
Suppose that the linear operator F ′(x) is invertible for any x ∈ X, and that there is a constant α > 0
such that

‖(F ′(x))−1‖ ≤ α < ∞, ∀x ∈ X.

Then, F is a homeomorphism of X onto Y .

We also observe that, by the Local Inverse Function Theorem, F is actually a C1-diffeomorphism of
X onto Y .

Let us show that Theorem 4.1 is a particular case of the above Theorem 2.1. We consider the functional
BVP

(5)
{

x′ = f(t, x)
L(x) = r.

Assume that all the hypotheses of Theorem 4.1 hold; then, we want to prove that problem (5) satisfies all
the assumptions of Theorem 2.1 as well. In particular, we have to show that (I1) and (I2) imply (H2)
of Theorem 2.1.

Let u ∈ Rn be given, and consider the Cauchy problem

x′ = f(t, x), x(a) = u.
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By (I1), and by the fact that f is locally Lipschitz with respect to x, this problem has a unique solution
existing on [a, b], which we will denote by ϕ(·, u). Now, define T : Rn → Rn by

T (u) = L(ϕ(·, u)).

If all the assumptions of Theorem 4.1 hold, one can prove (see [4]) that the map T verifies the hypotheses
of Global Inversion Theorem 4.2. Consequently T is globally invertible and its inverse T−1 : Rn → Rn is
of class C1. For any r ∈ Rn, if we set u = T−1(r), we get (T−1)′(r) = (T ′(u))−1. Thus, by the properties
of T , even the derivative of its inverse is uniformly bounded with respect to r. Hence T−1 is Lipschitz,
and in particular it sends bounded sets into bounded sets.

Now, fix M > 0 and consider the open ball U centered at the origin with radius M in Rn. We have
seen that T−1(U) is a bounded subset of Rn. By definition, the boundedness of T−1(U) is equivalent to
the fact that the initial values u = x(a) of the solutions x to the problem

(6) x′ = f(t, x), |L(x)| ≤ M

are contained in a compact subset of Rn. By assumption (I1) of global existence, and by continuity with
respect to initial values, even the solutions to the problem (6) are contained in a compact subset of C0;
in particular they are bounded. Hence, we have shown that (I1) and (I2) imply the boundedness of the
solutions to (6).

Finally, from hypothesis (I1) of global existence it follows that the open set of the initial points of
the global solutions to the equation (4) coincides with Rn. In particular such a set is connected, and
consequently all the assumptions of Theorem 2.1 hold. This shows that Theorem 4.1 of Vidossich is a
particular case of Theorem 2.1.

5. – Remarks and examples

In this section we will make some considerations about the above existence and uniqueness results. In
particular, we will see two examples showing that Theorem 2.1 is actually more general than Theorem 4.1.

First, we observe that in Theorem 2.1 the assumption of connectedness of the set A, consisting of the
initial points of the global solutions, could be removed. In fact, with only minor changes in the proof,
one can prove that if k denotes the number of connected components of A, the functional BVP

x′ = f(t, x), L(x) = r

has exactly k solutions for every r ∈ Rn. The reason why we preferred to state our result assuming A

connected, is that we were not able to find an example of a problem which satisfies the assumptions (H1),
(H2) and such that k > 1.

In fact, the following example shows that there are equations for which the open set A may have an
arbitrary (even infinite) number of connected components.

Example 1 – Consider the following system:

(7)





x′ =
1 + x2

1 + y2

y′ = 0.

First, we study the behaviour of the solutions to (7) on the half-line [0, +∞). Setting the initial condition
{

x(0) = x0

y(0) = y0,
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we find that the unique solution to (7) is given by




x(t) = tan
(

t

1 + y2
0

+ arctan x0

)

y(t) = y0.

These solutions have a maximal interval of existence depending on the initial value, i.e. of the form
[0, ω(x0, y0)) where

ω(x0, y0) =
(π

2
− arctan x0

)
(1 + y2

0).

Restricting the variable t to an interval [0, h], that is, considering the system (7) in the strip [0, h]× R2,
the set A is given by the pairs (x0, y0) such that ω(x0, y0) > h. Setting for example h = 4, we get

A =
{

(x, y) :
(π

2
− arctanx

)
(1 + y2) > 4

}
,

a set which has two connected components (to see that A is not connected, observe that the x-axis does
not intersect it). More generally, considering a system of the form





x′ =
1 + x2

g(y)
y′ = 0,

we get
A =

{
(x, y) :

(π

2
− arctan x

)
g(y) > 4

}
,

and with a suitable choice of the function g(y), one can make the set A have an arbitrary (even infinite)
number of connected components.

We conclude this paper with two examples showing that Theorem 2.1 actually extends Theorem 4.1.
First, in the following Example 2 we see a problem which does not satisfy hypothesis (I1) of global
existence, while (H1) and (H2) of Theorem 2.1 still hold.

Example 2 – Consider the following equation in the strip [0, 1]× R:

(8) x′ = x2.

There exist maximal solutions to (8) which are not global, that is, they are not defined on [0, 1]. Indeed,
if we set the initial condition x(0) = α ∈ R, the solutions to (8) are given by

(9) x(t) =
α

1− αt
,

and these functions are defined on [0, 1] if and only if x(0) = α < 1; in other words, we have A = (−∞, 1).
Hence, hypothesis (I1) of Theorem 4.1 does not hold.

Now, consider the linear integral operator L defined by

Lx =
∫ 1

0

x(τ)dτ,

and the corresponding problem

(10)
{

x′ = x2 on [0, 1]
Lx = r,
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where r ∈ R. Let us show that this problem verifies all the assumptions of Theorem 2.1.
First, we have to prove that the linearized problems





y′ = 2x(t)y on [0, 1]∫ 1

0

y(τ)dτ = 0,

where x is any solution to (8) on [0, 1], have only the trivial solution. The solutions to the linear equation
y′ = 2x(t)y are of the form

y(t) = ce2
R t
0 x(τ)dτ ,

and the further condition
∫ 1

0
y(τ)dτ = 0 implies c = 0, thus y ≡ 0 and hypothesis (H1) holds.

Moreover, we have to consider the solution set of the problem

(11)





x′ = x2 on [0, 1]∣∣∣∣
∫ 1

0

x(τ)dτ

∣∣∣∣ ≤ M,

where M > 0 is fixed. By replacing the global solutions x to (8) with their explicit expression (9),
depending on the initial value α < 1, one can easily check that the condition of boundedness of the
integral implies that the solutions to (11) are bounded in the supremum norm on [0, 1]. Hence the
functional BVP (10) also verifies hypothesis (H2), as it was to prove.

Finally, in Example 3 below we see a problem such that hypothesis (I2) of Theorem 4.1 does not
hold, but again (H1) and (H2) are satisfied. Hence, Examples 2 and 3 show that we have weakened both
assumptions (I1) and (I2) of Theorem 4.1.

Example 3 – Consider the nonlinear integral operator L from C([0, 1],R) into R defined by

L(x) =
∫ 1

0

log
(
x(τ) +

√
1 + x2(τ)

)
dτ,

and the following problem:

(12)
{

x′ = 0 on [0, 1]
L(x) = r,

where r ∈ R. We claim that this problem verifies all the assumptions of Theorem 2.1. Indeed, for any x

in C([0, 1],R) we have

L′(x)y =
∫ 1

0

y(τ)√
1 + x2(τ)

dτ.

Since the solutions to x′ = 0 are the constants x ≡ x0, the linearized problems are given by




y′ = 0 on [0, 1]∫ 1

0

y(τ)√
1 + x2

0

dτ = 0,

and clearly these problems have only the trivial solution. Hence, hypothesis (H1) holds.
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Moreover, for any M > 0 the solutions to




x′ = 0 on [0, 1]∣∣∣∣
∫ 1

0

log
(
x(τ) +

√
1 + x2(τ)

)
dτ

∣∣∣∣ ≤ M

are given by the constants x0 ∈ R such that
∣∣∣∣log

(
x0 +

√
1 + x2

0

)∣∣∣∣ ≤ M.

These points are contained in a bounded interval, thus (H2) is verified as well.
Finally, let us show that problem (12) does not satisfy assumption (I2) of Theorem 4.1. We have to

study the behaviour of the solutions z to the linearized problems




z′ = 0 on [0, 1]∫ 1

0

z(τ)√
1 + x2

0

dτ = c,

where c ∈ R with |c| = 1. These solutions are the constants z ≡ z0 such that

z0 = ±
√

1 + x2
0.

Since these solutions are not uniformly bounded with respect to x0 ∈ R, hypothesis (I2) of Theorem 4.1
does not hold as it was to prove.
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