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Abstract We investigate the persistence of front propagation for functional reaction-
diffusion equations

vτ = vxx + F(v)

where F is a given operator. By combining the upper and lower solution method with fixed
point techniques, we prove a general existence theorem for traveling waves. Our result applies
to reaction-diffusion equation with delayed or non-local reaction term.
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1 Introduction

The study of the existence and qualitative properties of traveling fronts for reaction-diffusion
equations is a widely investigated field of research, due to several applications in various
biological phenomena (see e.g. [14]). The usual Fisher–KPP equation modeling a reaction-
diffusion process (see [4,10]) is
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vτ = vxx + f (v), τ ≥ 0, x ∈ R

where f ∈ C1[0, 1] satisfies f (0) = f (1) = 0, f (v) > 0 in (0, 1). The study of traveling
wave solutions (t.w.s.) connecting the stationary states 0 and 1 has a great relevance in the
investigation of the asymptotic behavior (for τ large) of a generic solution of the associated
initial value problem since it is known that in certain cases the solution evolves (in some
sense) towards the t.w.s. having minimal speed (see [9]). More in detail, a t.w.s. is a solution
of the equation having a constant profile: v(τ, x) = u(x − cτ) for some function u ∈ C2(R)

(the wave profile) and constant c (the wave speed). It is well-known that each t.w.s. is mono-
tone, and that there is a threshold value c∗ such that there exist fronts having speed c if
and only if c ≥ c∗ and the stable t.w.s. corresponds to the minimal speed c∗. This value is
unknown in general, but the following estimate holds (see, e.g., [1]):

2
√

f ′(0) ≤ c∗ ≤ 2

√

sup
u∈(0,1]

f (u)

u
.

Of course, when f is concave, the inequalities in the previous formula are actually equalities
and c∗ = 2

√
f ′(0). The research in this field has been carried out also for equations having

non-constant diffusivity or in the presence of a convective term. We refer to the monographs
[3,5,14,16] and references therein contained.

Recently, some models of non-local reaction-diffusion equations have been proposed by
Gourley (see [6]), in which the reaction term contains a convolution integral

vτ = vxx + v(τ, x)

⎛

⎝1 −
+∞∫

−∞
�(x − y)v(τ, y) dy

⎞

⎠

where the kernel� is even, non-negative, summable in R with unitary integral (normalized).
The classical local Fisher equation (with f (v) = v(1 − v)) can be considered as a particular
case, arising when the kernel � is the Dirac delta function.

In this setting the non-local term has the meaning of a weighted average of the density v
and models interactions between individuals competing not only with those localized at their
own point, but also with individuals in other points of the domain. A prototype kernel is the
so-called Laplace exponential distribution

�(ξ) := b

2
e−b|ξ |, b > 0

naturally arising from the model of the consumption of resources. Note that for large val-
ues of b the interaction is strong with close points, so the value 1

b can be considered as a
measure of the non-locality (see [6]). To the best of our knowledge, no rigorous analysis is
available for such equations. Actually, in [6] an approximate model has been investigated
from a qualitative point of view.

Another field having an increasing interest, is that of reaction-diffusion equations or sys-
tems with time-delay, in which the reaction term also depends on v(τ − T, x). In this area
several results have been obtained, but mainly for specific forms of the reaction term (see,
e.g., [2,7,8,17]). Moreover, some of the most recent ones present some problematic aspect
(see Remark 4.2).

The aim of the present paper is to propose a general unifying approach for dealing with
functional reaction-diffusion equations, including both the non-local equations and the de-
layed ones, and to enlarge the class of reaction terms to which one can apply the general
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existence result. More precisely, we consider the following general boundary value problem
{

u′′ + cu′ + F(u) = 0
u(−∞) = 1, u(+∞) = 0

where F : C(R) → C(R) is a given functional operator. Assuming the existence of a pair
of well-ordered upper and lower-solutions, we prove a general existence result (see Theo-
rem 4.3). Moreover, we show how it can be applied to reaction-diffusion equations having
non-local or delayed terms, showing that under certain limitations on the wave speed c, a
pair of upper and lower-solutions can be actually found (see Theorems 5.2, 5.3, 5.7).

In particular, our existence result can be fruitfully applied to delayed reaction-diffusion
equation of the type

vτ (τ, x) = vxx (τ, x)+ g(v(τ, x))v(τ − T, x)

or non-local equations of the type

vτ (τ, x) = vxx (τ, x)+ g(v(τ, x))

+∞∫

−∞
�(x − σ)v(τ, σ ) dσ,

where g is a generic Lipschitz function satisfying

0 < g(u) ≤ g(0)(1 − u) for every u ∈ [0, 1).

We underline that both in the non-local setting and in the delayed one, we obtain the exis-
tence of t.w.s. when the speed c lies in a certain interval [c∗

1, c∗
2]. We show that in both cases,

when the model tends to the usual Fisher–KPP one, for instance when the delay tends to 0 or
the kernel in the non-local equation tends to the Dirac delta function, then the left endpoint
c∗

1 tends to the threshold value c∗ of the non-functional equation and the right endpoint c∗
2

diverges to +∞.
Our approach is based on fixed point techniques combined to the method of upper and

lower-solutions, following an idea considered by Ma in [11] (see Sect. 2). In Sects. 3 and 4,
we present general existence results, which are applied to non-local or delayed equations in
Sect. 5. Finally, in Sect. 6, we discuss the results and the open problems.

2 An Auxiliary Problem

This section is devoted to some preliminary results related to an auxiliary linear problem.
Let c ∈ R, β > 0 be fixed. Given h ∈ L∞(R), in what follows we will consider the

function uh : R → R defined by

uh(t) := −eα1t

t∫

−∞
h(s)e−α1s ds − eα2t

+∞∫

t

h(s)e−α2s ds, t ∈ R, (2.1)

where α1 < 0 < α2 are the solutions of the algebraic equation x2 + cx − β = 0.
The following result concerns some properties of the function uh .

Lemma 2.1 Let h ∈ L∞(R). Then

(i) uh is a C1-function on R, with u′
h a.e. differentiable, and

u′′
h(t)+ cu′

h(t)− βuh(t) = (α2 − α1)h(t) for a.e. t ∈ R;
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(ii) if h(t) ≤ 0 for a.e. t ∈ R, then uh(t) ≥ 0 for every t ∈ R.
(iii) if −β ≤ h(t) ≤ 0 for a.e. t ∈ R, then 0 ≤ uh(t) ≤ α2 −α1 and |u′

h(t)| ≤ 2β for every
t ∈ R;

(iv) if h is monotone increasing, then uh is monotone decreasing.
(v) if h is continuous for |t | large and if h(±∞) exist, then uh(±∞) exist too and

uh(±∞) = −h(±∞) α2−α1
β

.

Proof First observe that uh is absolutely continuous on every compact interval of R, hence
it is differentiable for a.e. t ∈ R with

u′
h(t) = −α1eα1t

t∫

−∞
h(s)e−α1s ds − α2eα2t

+∞∫

t

h(s)e−α2s ds a.e. t ∈ R. (2.2)

The right-hand side of (2.2) is a continuous function on R, call it γ (t). So, since uh is
absolutely continuous in every compact interval, fixed t ∈ R we have uh(t) = uh(0) +∫ t

0 u′
h(s)ds = uh(0) + ∫ t

0 γ (s)ds hence uh ∈ C1(R) and (2.2) holds for every t ∈ R.
Therefore, u′

h is absolutely continuous in every compact interval and

u′′
h(t) = −α2

1eα1t

t∫

−∞
h(s)e−α1s ds − α2

2eα2t

+∞∫

t

h(s)e−α2s ds + (α2 − α1)h(t) a.e. t ∈ R.

Recalling that α1 and α2 satisfy the equation x2 + cx − β = 0, one gets u′′
h(t) + cu′

h(t) −
βuh(t) = (α2 − α1)h(t) for a.e. t ∈ R, and assertion (i) is proved.

Property (ii) is immediate. Let us prove (iii). If h(t) ≥ −β for a.e. t ∈ R, then for every
t ∈ R we have

uh(t) ≤ β

⎛

⎝eα1t

t∫

−∞
e−α1sds + eα2t

+∞∫

t

e−α2sds

⎞

⎠ = β

(
− 1

α1
+ 1

α2

)
= α2 − α1

(recall that α1α2 = −β). Furthermore, if −β ≤ h(t) ≤ 0 for a.e. t ∈ R, recalling that
α1 < 0 < α2, we have

|u′
h(t)| ≤ β

⎛

⎝α2eα2t

+∞∫

t

e−α2s ds − α1eα1t

t∫

−∞
e−α1s ds

⎞

⎠ = 2β for every t ∈ R.

As for property (iv), let us fix T > 0 and observe that

uh(t + T ) = −eα1t

t+T∫

−∞
h(s)e−α1(s−T ) ds − eα2t

+∞∫

t+T

h(s)e−α2(s−T ) ds

= −eα1t

t∫

−∞
h(σ + T ) e−α1σ dσ − eα2t

+∞∫

t

h(σ + T ) e−α2σ dσ.

with σ = s − T . Thus,

uh(t+T )−uh(t) = −eα1t

t∫

−∞
(h(s+T )−h(s)) e−α1sds−eα2t

+∞∫

t

(h(s+T )− h(s)) e−α2sds.
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Hence, if h is increasing, then h(s + T ) − h(s) ≥ 0 a.e. s ∈ R and consequently uh(t +
T )− uh(t) ≤ 0 for any t ∈ R, i.e. uh is decreasing.

Finally, let us prove (v). By the L’Hopital rule,

lim
t→±∞ uh(t)= lim

t→±∞

(
h(t)e−α1t

α1e−α1t
− h(t)e−α2t

α2e−α2t

)
=h(±∞)

(
1

α1
− 1

α2

)
=h(±∞)

α2 − α1

−β .

�	

Let BC(R) denote the space of all bounded continuous maps u : R → R. For every
ρ > 0, we can introduce a norm ‖ · ‖ρ in the space BC(R) by defining

‖u‖ρ := sup
t∈R

|u(t)|e−ρ|t | < +∞. (2.3)

From now on, BCρ(R) will denote the space BC(R) endowed with the norm ‖ · ‖ρ . As it is
easy to check, BCρ(R) is a Banach space.

Let us define the linear operator S in BCρ(R) by

S(h)(t) = 1

α2 − α1
uh(t), t ∈ R,

where uh was defined in (2.1).
By virtue of property (iii) of Lemma 2.1, if h(t) ∈ [−β, 0] for every t ∈ R, then 0 ≤

S(h)(t) ≤ 1 for every t ∈ R. Moreover, from the linearity of S and property (ii) of the
same Lemma we conclude that S is monotone decreasing with respect the partial ordering
in BC(R) induced by the cone K := {h ∈ BC(R) : h(t) ≥ 0 for every t ∈ R}, i.e.

h1(t) ≤ h2(t) for every t ∈ R ⇒ S(h1)(t) ≥ S(h2(t)) for every t ∈ R. (2.4)

Finally, from property (i) of Lemma 2.1, it follows that S(h) is a solution of the following
second order linear differential equation:

u′′(t)+ cu′(t)− βu(t) = h(t), a.e. t ∈ R. (2.5)

The next Lemma states that S is continuous with respect to the norm ‖ · ‖ρ for ρ > 0
small enough.

Lemma 2.2 The operator S is continuous in BCρ(R) for every ρ < min{−α1, α2}. More
precisely, there exists a constant k = k(ρ) such that

‖S(h1)− S(h2)‖ρ ≤ k‖h1 − h2‖ρ for every h1, h2 ∈ BC(R). (2.6)
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Proof By the linearity of S it suffices to prove the continuity at the origin. To this aim, notice
that

|uh(t)| ≤
t∫

−∞
|h(s)|eα1(t−s) ds +

+∞∫

t

|h(s)|eα2(t−s) ds

=
t∫

−∞
(|h(s)|e−ρ|s|)eα1(t−s)+ρ|s| ds +

+∞∫

t

(|h(s)|e−ρ|s|)eα2(t−s)+ρ|s| ds

≤
t∫

−∞
||h||ρeα1(t−s)+ρ|s| ds +

+∞∫

t

||h||ρeα2(t−s)+ρ|s| ds

= ||h||ρ
⎛

⎝
t∫

−∞
eα1(t−s)+ρ|s| ds +

+∞∫

t

eα2(t−s)+ρ|s| ds

⎞

⎠ .

Then,

|uh(t)|e−ρ|t | ≤ ||h||ρ
⎛

⎝
t∫

−∞
eα1(t−s)+ρ|s| ds +

+∞∫

t

eα2(t−s)+ρ|s| ds

⎞

⎠ e−ρ|t |. (2.7)

We now proceed distinguishing the two cases t ≥ 0 and t < 0. If t ≥ 0, by the upper
limitations on ρ we have

⎛

⎝
t∫

−∞
eα1(t−s)+ρ|s| ds +

+∞∫

t

eα2(t−s)+ρ|s| ds

⎞

⎠ e−ρ|t |

=
⎛

⎝
0∫

−∞
e−(α1+ρ)s ds +

t∫

0

e(ρ−α1)s ds

⎞

⎠ eα1t−ρt +
⎛

⎝
+∞∫

t

e(ρ−α2)s ds

⎞

⎠ eα2t−ρt

=
(

1

−(α1 + ρ)
+ e(ρ−α1)t − 1

ρ − α1

)

e(α1−ρ)t +
(

e(ρ−α2)t

α2 − ρ

)

e(α2−ρ)t

= e(α1−ρ)t

−(ρ + α1)
+ 1 − e(α1−ρ)t

ρ − α1
+ 1

α2 − ρ
≤ 1

−(α1 + ρ)
+ 1

ρ − α1
+ 1

α2 − ρ

= 2α1

ρ2 − α2
1

+ 1

α2 − ρ

since being α1 − ρ < 0 we get 0 < e(α1−ρ)t < 1 for every t ≥ 0. Therefore, by (2.7) we
obtain

|uh(t)|e−ρ|t | ≤ k+||h||ρ for every t ≥ 0 (2.8)

where k+ :=
(

−2α1
α2

1−ρ2 + 1
α2−ρ

)
> 0.
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Analogously, if t < 0 we have
⎛

⎝
t∫

−∞
eα1(t−s)+ρ|s| ds +

+∞∫

t

eα2(t−s)+ρ|s| ds

⎞

⎠ e−ρ|t |

=
⎛

⎝
t∫

−∞
e−(α1+ρ)s ds

⎞

⎠ e(α1+ρ)t +
⎛

⎝
0∫

t

e−(α2+ρ)s ds +
+∞∫

0

e(ρ−α2)s ds

⎞

⎠ e(α2+ρ)t

=
(

e−(α1+ρ)t

−(α1 + ρ)

)

e(α1+ρ)t +
(

−1 − e−(α2+ρ)t

α2 + ρ
+ 1

α2 − ρ

)

e(α2+ρ)t

= 1

−(α1 + ρ)
+ 1 − e(α2+ρ)t

α2 + ρ
+ e(α2+ρ)t

α2 − ρ
≤ 1

−(α1 + ρ)
+ 1

α2 + ρ
+ 1

α2 − ρ

= 1

−(α1 + ρ)
+ 2α2

α2
2 − ρ2

.

since being α2 + ρ > 0 we get 0 < e(α2+ρ)t < 1 for every t < 0. Thus, by (2.7)

|uh(t)|e−ρ|t | ≤ k−||h||ρ for every t < 0 (2.9)

where k− :=
(

1
−(α1+ρ) + 2α2

α2
2−ρ2

)
. Hence, setting k := 1

α2−α1
max{k+, k−}, by (2.8), (2.9)

and the definition of S we conclude

‖S(h)‖ρ ≤ k‖h‖ρ.
�	

In the sequel we will need to consider the operator S for varying values of c. In such
situations, we will write Sc to emphasize the dependence on the value c. The following
proposition concerns the behavior of the operator S with respect to c.

Proposition 2.3 Let (cn)n be a sequence of numbers converging to some c∗ ∈ R. Moreover,
let (hn)n be a sequence in BC(R) of equibounded functions, pointwise convergent to some
h∗. Then, the sequence (Scn (hn))n pointwise converges to Sc∗(h∗).

Proof Since the sequence (hn)n is equibounded, then there exists a positive value
K > 0 such that |hn(t)| ≤ K for every t ∈ R and n ∈ N. So, denoted byα1(cn) < 0, α2(cn) >

0 the two roots of the algebraic equation x2 + cn x − β = 0, we have α1(cn) → α1(c∗) < 0
and α2(cn) → α2(c∗) > 0 and by the dominated convergence theorem

t∫

−∞
hn(s)e

−α1(cn)s ds →
t∫

−∞
h∗(s)e−α1(c∗)s ds ,

+∞∫

t

hn(s)e
−α2(cn)s ds →

+∞∫

t

h∗(s)e−α2(c∗)s ds

as n → +∞. Hence, recalling the definition of the operator Sc we obtain Scn (hn)(t) →
Sc∗(h∗)(t) for every t ∈ R. �	
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Our approach for finding heteroclinic solutions is based on the method of super and sub-
solutions, which will serve as barriers. The following result states conditions which guarantee
that a function φ is a lower [upper] bound for the operator S.

Lemma 2.4 Let φ ∈ BC(R) be given. Assume that there exist −∞ = τ0 < τ1 < · · · <
τN < τN+1 = +∞ such that φ ∈ C2(τi , τi+1), with φ′, φ′′ bounded in (τi , τi+1), for every
i = 0, . . . , N. Moreover, assume that for every i = 0, . . . , N + 1 the (finite) limits φ′(τ−

i )

and φ′(τ+
i ) exist (of course for i = 0 just the right limit and for i = N + 1 just the left one).

Define h0 by

h0(t) = φ′′(t)+ cφ′(t)− βφ(t), for every t ∈ R, t �= τi , i = 1, . . . , N .

Then we have

(i) φ′(τ−
i ) ≤ φ′(τ+

i ) for every i = 1, . . . , N ⇒ S(h0)(t) ≥ φ(t) for every t ∈ R;
(ii) φ′(τ−

i ) ≥ φ′(τ+
i ) for every i = 1, . . . , N ⇒ S(h0)(t) ≤ φ(t) for every t ∈ R.

Proof Let us prove statement (i) (the other one being analogous). Fix t ∈ R \ {τi , i =
1, . . . , n} and k such that t ∈ (τk, τk+1). We have

uh0(t) = −eα1t

t∫

−∞
(φ′′(s)+ cφ′(s)− βφ(s))e−α1s ds +

− eα2t

+∞∫

t

(φ′′(s)+ cφ′(s)− βφ(s))e−α2s ds

= −eα1t
k−1∑

i=0

⎛

⎝
τi+1∫

τi

(φ′′(s)+ cφ′(s)− βφ(s))e−α1s ds

⎞

⎠+

− eα1t

t∫

τk

(φ′′(s)+ cφ′(s)− βφ(s))e−α1s ds +

− eα2t

τk+1∫

t

(φ′′(s)+ cφ′(s)− βφ(s))e−α2s ds +

− eα2t
N∑

i=k+1

⎛

⎝
τi+1∫

τi

(φ′′(s)+ cφ′(s)− βφ(s))e−α2s ds

⎞

⎠ .

Integrating by parts on each interval (τi , τi+1) and recalling that α1 < 0 < α2 are the
solutions of the equation x2 + cx − β = 0, we get

τi+1∫

τi

(φ′′(s)+ cφ′(s)− βφ(s))e−α1s ds = (α1 + c)[φ(τi+1)e
−α1τi+1 − φ(τi )e

−α1τi ] +

+ φ′(τ−
i+1)e

−α1τi+1 − φ′(τ+
i )e

−α1τi
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for every i = 0, . . . , k − 1 with the convention e−α1(−∞) = 0. Analogously,

τi+1∫

τi

(φ′′(s)+ cφ′(s)− βφ(s))e−α2s ds = (α2 + c)[φ(τi+1)e
−α2τi+1 − φ(τi )e

−α2τi ] +

+φ′(τ−
i+1)e

−α2τi+1 − φ′(τ+
i )e

−α2τi

for every i = k + 1, . . . , N with the convention e−α2(+∞) = 0. On the other hand,

t∫

τk

(φ′′(s)+ cφ′(s)− βφ(s))e−α1s ds = (α1 + c)[φ(t)e−α1t − φ(τk)e
−α1τk ] +

+ φ′(t)e−α1t − φ′(τ+
k )e

−α1τk

and analogously,

τk+1∫

t

(φ′′(s)+ cφ′(s)− βφ(s))e−α2s ds = (α2 + c)[φ(τk+1)e
−α2τk+1 − φ(t)e−α2t ] +

+φ′(τ−
k+1)e

−α2τk+1 − φ′(t)e−α2t .

Therefore, recalling that −c = α1 + α2, for every t �= τi , i = 1, . . . , N , we get

uh0(t) = −eα1t
k∑

i=1

(
(φ′(τ−

i )− φ′(τ+
i ))e

−α1τi
)+ (α2φ(t)− φ′(t))+

− eα2t
N∑

i=k+1

(
(φ′(τ−

i )− φ′(τ+
i ))e

−α2τi
)− (α1φ(t)− φ′(t))

= −eα1t
k∑

i=1

(
(φ′(τ−

i )− φ′(τ+
i ))e

−α1τi
)+

− eα2t
N∑

i=k+1

(
(φ′(τ−

i )− φ′(τ+
i ))e

−α2τi
)+ (α2 − α1)φ(t).

Since φ′(τ−
i ) ≤ φ′(τ+

i ) for i = 1, . . . , N , it follows that

S(h0)(t)− φ(t) = − eα1t

α2 − α1

k∑

i=1

(
(φ′(τ−

i )− φ′(τ+
i ))e

−α1τi
)+

− eα2t

α2 − α1

N∑

i=k+1

(
(φ′(τ−

i )− φ′(τ+
i ))e

−α2τi
) ≥ 0

for every t �= τi , i = 1, . . . , N . By the continuity of φ and uh0 , the statement holds for every
t ∈ R. �	
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3 An Existence Result

Consider the following functional equation:

u′′(t)+ cu′(t)+ F(u)(t) = 0, t ∈ R (3.1)

where c > 0, and F : C(R) → C(R) is a given operator.
In the sequel we assume that there exists β > 0 such that the following conditions hold:

(H1) 0 ≤ u(t) ≤ 1 for every t ∈ R ⇒ 0 ≤ F(u)(t)+ βu(t) ≤ β for every t ∈ R.

(H2) u monotone decreasing ⇒ F(u)+ βu monotone decreasing.

Fixed a value β > 0 in such a way that conditions (H1) and (H2) hold, define F : C(R) →
C(R) by

F(u)(t) = −F(u)(t)− βu(t), t ∈ R.

By using the operator F , Eq. (3.1) can be equivalently written as follows:

u′′(t)+ cu′(t)− βu(t) = F(u)(t), t ∈ R. (3.2)

Setting M := 2β√
c2+4β

, let us consider the following subset of BC(R):


 := {u ∈ C(R) : 0 ≤ u(t) ≤ 1 for all t ∈ R, u is decreasing, |u(t1)− u(t2)| ≤ M |t1 − t2|
for all t1, t2 ∈ R}.

By assumption (H1), we have F(u) ∈ BC(R) for every u ∈ 
, so we can define the
composition operator

G(u) := S(F(u)), for u ∈ 
.
Notice that a function u ∈ 
 is a fixed point for the operator G if and only if it is a solution

of Eq. (3.2). Hence the study of the existence of solutions of (3.1) reduces to the existence
of fixed points for the operator G, as we do in the following theorem.

Theorem 3.1 Assume that conditions (H1) and (H2) are satisfied. Moreover, assume that
the operator F : BCρ(R) → BCρ(R) is continuous for some 0 < ρ < min{−α1, α2}. Then,
Eq. (3.1) has a solution in 
.

Proof First note that as an immediate consequence of conditions (H1), (H2) and statements
(iii)–(iv) of Lemma 2.1, we have

G(
) ⊆ 
.

Moreover, G is continuous in
 with respect to the norm ‖ · ‖ρ , indeed if (un)n is a sequence
in 
 converging to u ∈ 
, then

‖G(un)− G(u)‖ρ = ‖S(F(un)− S(F(u))‖ρ ≤ k ‖F(un)− F(u)‖ρ
≤ k‖F(un)− F(u)‖ρ + kβ‖un − u‖ρ

where k = k(ρ) is the constant given by Lemma 2.2. Then, the continuity of G follows from
the continuity of F .

Observe now that 
 is a nonempty, convex subset of the Banach space BCρ(R), so in
order to apply the Schauder fixed point theorem it remains to show that 
 is compact.
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To this purpose, let (un)n be a given sequence in 
. By the definition of 
 we get that
(un)n is equibounded and equiuniformly continuous. So, by the Ascoli-Arzelà theorem, its
restriction to the interval I1 = [−1, 1] admits a subsequence (un1,k )k uniformly convergent
in I1 to a function v1(t). Similarly, in the interval I2 = [−2, 2] the sequence (un1,k )k admits
a further subsequence (un2,k )k uniformly convergent in I2 to a function v2(t). Of course,
v2(t) = v1(t) for t ∈ I1. By induction, for every m ∈ N the sequence (unm−1,k )k admits
a further subsequence (unm,k )k uniformly convergent in Im to a function vm(t) satisfying
vm(t) = vm−1(t) for t ∈ Im−1.

Consider now the “diagonal” subsequence (unk,k )k and the function v : R → R defined
by v(t) = vm(t) if t ∈ Im . Clearly, v is well defined, continuous and decreasing; moreover
0 ≤ v(t) ≤ 1 for any t ∈ R, and |v(t1)− v(t2)| ≤ M |t1 − t2| for and any t1, t2 ∈ R; that is,
v belongs to 
.

Finally, fix ε > 0 and choose L ∈ N such that e−ρ|t | < ε
2 for any t with |t | > L . We have

|unk,k (t)− v(t)|e−ρ|t | ≤ 2e−ρ|t | < ε, (3.3)

for any t with |t | > L . On the other hand, since {unL ,k (t)} converges to vL(t) = v(t)
uniformly on IL , and since {unk,k } is a subsequence of {unL ,k (t)}, we have

sup
t∈[−L ,L]

|unk,k (t)− v(t)| → 0, k → ∞.

Hence, there exists k̄ > L such that for any k > k̄ one has

|unk,k (t)− v(t)|e−ρ|t | ≤ |unk,k (t)− v(t)| < ε for every t ∈ [−L , L].
Consequently, taking (3.3) into account we get

||unk,k − v||ρ < ε for every k > k̄

i.e. the sub-sequence (unk,k )k converges to v with respect to the norm ‖ · ‖ρ and then 
 is
compact.

By applying the Schauder fixed point Theorem we achieve the existence of a fixed point
for the operator G and this concludes the proof. �	

The following Proposition concerning the asymptotical properties of the decreasing solu-
tions of Eq. (3.1), will be used in the sequel.

Proposition 3.2 Assume that conditions (H1) and (H2) are satisfied. Moreover, assume that
the operator F : BCρ(R) → BCρ(R) is continuous for some 0 < ρ < min{−α1, α2} and
has constant sign, i.e.

F(u)(t) ≤ 0 (or F(u)(t) ≥ 0) for every decreasing, non-negative u ∈ C(R),

and every t ∈ R. (3.4)

Then, if u ∈ C2(R) is a decreasing solution of Eq. (3.1), with 0 ≤ u(t) ≤ 1, it satisfies

u′(±∞) = u′′(±∞) = 0,

and the constant c has the same sign as the operator F.

Proof Fix τ < t . Integrating the Eq. (3.1) in (τ, t) we obtain

u′(t) = u′(τ )− c(u(t)− u(τ ))−
t∫

τ

F(u)(s) ds

123



578 J Dyn Diff Equat (2009) 21:567–593

and by the assumption (3.4) we deduce the existence in R∪{±∞} of the limit limt→+∞u′(t),
which has to be null by the boundedness of the function u(t). Similarly we can prove that
u′(−∞) = 0. Moreover, from the previous equation, taking the limits as t → +∞, τ → −∞
one derives that c has the sign of the operator F .

Finally, by assumptions (H1)-(H2) we have that F(u)(t)+βu(t) is a decreasing bounded
function, so there exist in R the limits F(u)(±∞). Hence, by Eq. (3.1) there exist in
R also the limits u′′(±∞), which have to be null owing to the boundedness of u′ as
|t | → +∞. �	

4 Boundary Value Problem

In this section, we finally investigate the solvability of the following boundary value problem:
{

u′′(t)+ cu′(t)+ F(u)(t) = 0, a.e. t ∈ R

u(−∞) = 1, u(+∞) = 0.
(4.1)

Note that the solution of Eq. (3.1) found in the proof of Theorem 3.1 may be trivial,
i.e. constant. In order to obtain heteroclinic solutions we need further conditions, such as the
existence of suitable super and sub-solutions. To this end, let us now introduce the following
definition.

Definition 4.1 A decreasing function φ ∈ BC(R) is said to be a super-solution [respectively
sub-solution] of (3.1) if there exist at most finitely many points, denoted by −∞ = τ0 <

τ1 < · · · < τN < τN+1 = +∞, such that:

(i) φ ∈ C2(τi , τi+1), with φ′, φ′′ bounded, for every i = 0, . . . , N ;
(ii) the limits φ′(τ−

i ), φ
′(τ+

i ) exist and satisfy φ′(τ−
i ) ≥ φ′(τ+

i ) [φ′(τ−
i ) ≤ φ′(τ+

i )],
i = 1, · · · , N ;

(iii) the following differential inequality holds:

φ′′(t)+ cφ′(t)+ F(φ)(t) ≤ 0 [φ′′(t)+ cφ′(t)+ F(φ)(t) ≥ 0]
for every t �= τi , i = 1, . . . , N .

Remark 4.2 The enlargement of the class of admissible super and sub-solutions to possible
non-smooth functions is motivated by the difficulty to find well-ordered smooth super and
sub-solutions, due to the lack of monotonicity of F (see [13] for recent comparison results
for non-functional equations). In this setting, the relation between the left and right deriv-
atives in the non-smoothness points (condition (ii)) is fundamental. Recently, some papers
appeared using a more general definition, without requiring (ii) (see [7,8,12,15,17]), but the
arguments there used do not work (see [18]).

The following theorem provides sufficient conditions for the solvability of problem (4.1).

Theorem 4.3 Assume that there exists β > 0 such that conditions (H1) and (H2) are satis-
fied. Moreover, assume that the following condition holds:

(H3) u1(t) ≤ u2(t) for every t ∈ R ⇒ F(u1)(t) + βu1(t) ≤ F(u2)(t) + βu2(t) for
every t ∈ R.

For fixed 0 < ρ < min{−α1, α2}, assume that the operator F : C(R) → C(R) is continu-
ous with respect to the norm ‖ · ‖ρ . Finally, assume that there exist a pair φ, ψ of sub and
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super-solutions of (3.1) such that 0 ≤ φ(t) ≤ ψ(t) ≤ 1 for every t ∈ R. Then, Eq. (3.1)
admits a decreasing solution u ∈ 
, such that

φ(t) ≤ u(t) ≤ ψ(t) for every t ∈ R.

If φ and ψ further satisfy

φ(−∞) = 1, ψ(+∞) = 0,

then u solves the boundary value problem (4.1) too.

Proof Let 
 and G be as in Sect. 3. Consider the following subset of BC(R):


̂ = {u ∈ 
 : φ(t) ≤ u(t) ≤ ψ(t)}.
Of course, 
̂ is also nonempty and convex. Moreover, since it is a closed subset of
, which
is compact, 
̂ is also compact in the Banach space BCρ(R).

Observe now that G(
̂) ⊆ 
̂. Indeed, we already proved that G(
) ⊆ 
, so it suffices to
show that

φ(t) ≤ G(u)(t) ≤ ψ(t) for every u ∈ 
̂, t ∈ R. (4.2)

Let us prove that G(u)(t) ≥ φ(t) for every t ∈ R (the other inequality being similar). Notice
that condition (H3) implies that F(u)(t) ≤ F(φ)(t) for every t ∈ R. So, defined η : R → R

by η(t) = φ′′(t) + cφ′(t) − βφ(t), a.e. t ∈ R, we have η ∈ L∞(R), and F(φ)(t) ≤ η(t)
a.e. t ∈ R as φ is a sub-solution. Moreover, S(η)(t) ≥ φ(t) for every t ∈ R by Lemma 2.4.
Consequently, by the monotonicity the of operator S we get

G(u)(t) = S(F(u))(t) ≥ S(F(φ))(t) ≥ S(η)(t) ≥ φ(t) for every t ∈ R.

Thus, G(
̂) ⊆ 
̂. Moreover, we already proved in Theorem 3.1 that G is continuous in 
.
So, by applying again the Schauder fixed point theorem it follows that G has a fixed point
u ∈ 
̂, which results to be a solution of Eq. (3.1).

Moreover, if 0 ≤ φ(t) ≤ u(t) ≤ ψ(t) ≤ 1 for every t ∈ R, the conditions φ(−∞) = 1
and ψ(+∞) = 0 respectively imply that u(−∞) = 1 and u(+∞) = 0 and, consequently, u
is a solution of problem (4.1). �	

Concerning the properties of the set of the values of the speed c for which problem (4.1)
admits solutions, we are able to prove that it is closed provided that the problem is autono-
mous, in the sense specified by the following definition.

Definition 4.4 We will say that the boundary value problem (4.1) is autonomous, if the
following property holds:

u(t) is a solution to (4.1) ⇒ u(t + k) is a solution to (4.1) too, for every k ∈ R.

Proposition 4.5 Let F : C(R) → C(R) be a continuous operator with respect to the norm
‖ ·‖ρ , satisfying assumptions (H1)-(H2) and (3.4). Assume that problem (4.1) is autonomous
and

There exist lim
t→±∞ F(u)(t) �= 0 for every decreasing function u ∈ C(R)

such that u(±∞) ∈ (0, 1). (4.3)

Let C denote the set of the admissible speeds for problem (4.1), i.e.

C := {c > 0 : problem (4.1) admits a decreasing solution}.
Then C is a closed set (possibly empty).
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Proof As we already observed in the previous section, a decreasing function u is a solution
to Eq. (3.1) if and only if it is a fixed point for the operator G. Since now the parameter c
is not fixed, from now on we use the notation Gc to make explicit the dependence on the
speed c.

Assume that C is nonempty and take a sequence (cn)n in C converging to a value c∗.
Let un(t) denote a decreasing solution to problem (4.1) for c = cn , satisfying un(0) = 1

2
(this is possible since the problem is autonomous). By Lemma 2.1, part (iii), we deduce that
|u′

n(t)| ≤ 2β√
c2

n+4β
≤ √

β for every t ∈ R. Hence, by the same argument used in the proof of

Theorem 3.1 for proving that 
 is compact, one can show that there exists a sub-sequence,
again denoted (un)n , uniformly converging in every compact set to a decreasing function u∗.

By the continuity of operator F and assumption (H1), we get that (F(un))n is an equi-
bounded sequence pointwise convergent to F(u∗). So, by Proposition 2.3 we deduce

Gc∗(u∗)(t) = lim
n→+∞Gcn (un)(t) = lim

n→+∞un(t) = u∗(t).

Therefore, the function u∗ is a fixed point for the operator Gc∗ and this means that it is a
solution of Eq. (3.1) for c = c∗. Moreover, u∗(0) = 1

2 , so u∗ is not one of the trivial solutions
u(t) ≡ 0 or u(t) ≡ 1.

Let us denote by �− := u∗(−∞) ≥ 1
2 and �+ := u∗(+∞) ≤ 1

2 . Since by Proposition 3.2
we have (u∗)′(−∞) = (u∗)′′(−∞) = 0, then by assumption (4.3) we deduce �− = 1 and
�+ = 0. Hence u∗ is a solution to problem (4.1) for c = c∗. �	
Remark 4.6 Notice that in the previous Proposition we have just proved that C is closed, but
actually we neither know if it is connected (an interval) nor if it is bounded or unbounded
(see Sect. 6 for a more detailed discussion on this subject).

5 Applications and Examples

In this section, we present some non-local reaction-diffusion equations which can be handled
by means of the approach we introduced here. More in detail, as mentioned in the Introduc-
tion, we refer to models whose reaction term has a retarded component or depends on a
convolution integral.

5.1 Reaction-Diffusion Equations with Delay

For fixed T ∗ > 0, let f : C([−T ∗, 0]) → [0,+∞) be a given continuous operator (with
respect to the usual topology in C([−T ∗, 0])). Let us consider the following partial differ-
ential equation

∂v

∂τ
= ∂2v

∂x2 + f (vτ (x)) (5.1)

where vτ (x) ∈ C([−T ∗, 0]) is the function defined by vτ (x)(θ) := v(τ + θ, x), for θ ∈
[−T ∗, 0].

In the sequel we will assume that the constant functions 0 and 1 are stationary states for
the Eq. (5.1), that is

f (1) = f (0) = 0

(here and later on, k denotes the constant function w(θ) ≡ k, θ ∈ [−T ∗, 0]).
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When searching for traveling wave solutions connecting the equilibria 0 and 1, put t :=
x − cτ, u(t) = u(x − cτ) and consider the functional boundary value problem

{
u′′(t)+ cu′(t)+ f (ut,c) = 0
u(−∞) = 1, u(+∞) = 0

(5.2)

where ut,c ∈ C([−T ∗, 0]) is the function defined by

ut,c(θ) := u(t − cθ).

In order to treat such a problem by means of the approach presented here, we deal with
reaction terms having the following structure:

f (w) = f1(w) · f2(w(0))

where f1 : C([−T ∗, 0]) → [0,+∞), f2 : R → [0,+∞) are continuous and satisfy the
following conditions.

(F1-A): f1(0) = 0, f1(k) > 0 for every k > 0;
(F1-B): f1 is increasing, that is f1(u) ≤ f1(v) whenever u(θ) ≤ v(θ) for every

θ ∈ [−T ∗, 0];
(F2-A): f2(1) = 0, f2(s) > 0 for every s ∈ [0, 1);
(F2-B): f2 is Lipschitzian with Lipschitz constant L .

For every c > 0 let Fc : C(R) → C(R) denote the operator defined by

Fc(u)(t) := f (ut,c) = f1(u(t − cθ)) f2(u(t)).

Of course, the operator Fc is continuous (with respect to the norm ‖ · ‖ρ).
The following Lemma concerns the applicability of the method presented in the previous

sections.

Lemma 5.1 Assume that the operator f satisfies the properties listed above. Then for every
c > 0 the operator Fc satisfies assumptions (H1)-(H3) with the constant β := L f1(1) > 0.

Proof As for property (H1), since f (w) ≥ 0 for everyw ∈ C([−T ∗, 0]), of course Fc(u)(t)+
βu(t) ≥ 0 for every u ∈ C(R). Moreover, by (F2-A) and (F2-B) we have f2(s) ≤ L(1 − s)
for every s ∈ [0, 1], so being f1(ut,c) ≤ f1(1) by (F1-B), we deduce f1(ut,c) f2(u(t)) ≤
β(1 − u(t)), that is Fc(u)(t)+ βu(t) ≤ β.

If u is monotone decreasing, then for fixed t1 < t2 we have u(t1 − cθ) ≥ u(t2 − cθ)
for every θ ∈ [−T ∗, 0], that is ut1,c(θ) ≥ ut2,c(θ) for every θ ∈ [−T ∗, 0]. Hence, by
assumption (F1-B) we get f1(ut1,c) ≥ f1(ut2,c). Moreover, by (F2-B) we have f2(u(t1)) ≥
f2(u(t2))− L[u(t1)− u(t2)], so

f1(ut1,c) f2(u(t1)) ≥ f1(ut2,c) f2(u(t2))− L f1(ut2,c)[u(t1)− u(t2)]
≥ f1(ut2,c) f2(u(t2))− β[u(t1)− u(t2)].

Hence,

f1(ut1,c) f2(u(t1))+ βu(t1) ≥ f1(ut2,c) f2(u(t2))+ βu(t2)

i.e. condition (H2).
Finally, if u, v ∈ C(R) satisfy u(t) ≤ v(t) for every t ∈ R then f1(ut,c) ≤ f1(vt,c) and

f2(v(t)) ≥ f2(u(t))− L[v(t)− u(t)], so

f1(vt,c) f2(v(t)) ≥ f1(ut,c) f2(u(t))− L f1(ut,c)[v(t)− u(t)]
≥ f1(ut,c) f2(u(t))− β[v(t)− u(t)],
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that is f (vt,c)+ βv(t) ≥ f (ut,c)+ βu(t), i.e. condition (H3). �	

The following existence result shows that a pair of ordered super- and sub-solutions can
be found under very mild assumptions on the non-functional term f2, provided that the func-
tional term f1 depends on a simple discrete delay. Moreover, we also obtain an estimate of
the rate of decay as t → +∞. In this context, we adopt the notation

u(t) ≈ e−λt ⇔ u(t)eλt → � ∈ (0,+∞) as t → +∞. (5.3)

Theorem 5.2 Let

f1(wt,c) := w(t + cT ) for some T ∈ [0, T ∗],
and let f2 satisfy conditions (F2-A), (F2-B), and

f2(s) ≤ f2(0)(1 − s) for every s ∈ [0, 1]. (5.4)

Then, for every c > 2
√

f2(0) there exists a positive value T0 = T0(c) such that if 0 ≤ T ≤ T0

the boundary value problem (5.2) with f (w) = f1(w)· f2(w(0)) admits a decreasing solution
u. Moreover, u(t) ≈ e−λt as t → +∞, for some λ ≤ 1

2 (c −√c2 − 4 f2(0)).

Proof In view of Lemma 5.1 and Theorem 4.3, we only need to find a pair of ordered super
and sub-solutions. To this aim, put K := f2(0) and let us consider the function

H(�, c, T ) := �2 − c�+ K e−c�T , for �, T ≥ 0; c > 2
√

K . (5.5)

Since H is a continuous function satisfying H(0, c, T ) = K > 0 and H( c
2 , c, T ) = c2

4 −
c2

2 + K e− c2
2 T ≤ K − c2

4 < 0, the set

Ac,T :=
{
� ∈

(
0,

c

2

)
: H(�, c, T ) = 0

}

is a nonempty closed set. Put

λ = λ(c, T ) := max Ac,T . (5.6)

As a consequence of the previous definition, for every c, T there exists a positive value
ε = ε(c, T ) < λ, such that

H(λ+ ε, c, T ) = (λ+ ε)2 − c(λ+ ε)+ K e−c(λ+ε)T < 0. (5.7)

Now, given M > 1, consider the function

φ(t) := max{0, (1 − Me−εt )e−λt }.
Let t∗ denote the positive value such that Me−εt∗ = 1. Observe that 0 = φ′(t∗−) <

φ′(t∗+), moreover if t < t∗ then φ′(t) = φ′′(t) = 0, so φ′′(t) + cφ′(t) + f (φt,c) ≥ 0.
Instead, if t > t∗ (and t + cT > t∗ too) then

φ′(t) = −λe−λt + M(ε + λ)e−(ε+λ)t ; φ′′(t) = λ2e−λt − M(ε + λ)2e−(ε+λ)t .

If L denotes the Lipschitz constant for f2, put h := L
K we have

f2(s) ≥ K (1 − hs) for every s ∈ [0, 1]. (5.8)
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Then,

φ′′(t)+ cφ′(t)+ f (φt,c) ≥ φ′′(t)+ cφ′(t)+ Kφ(t + cT )[1 − hφ(t)]
= e−λt {λ2 − M(ε + λ)2e−εt − cλ+ cM(ε + λ)e−εt +

+ K (1 − Me−εt e−εcT )e−cλT [1 − h(1 − Me−εt )e−λt ]}
≥ e−λt {(λ2 − cλ+ K e−cλT )− Me−εt [(ε + λ)2 − c(ε + λ) +

+ K e−c(ε+λ)T ] − K he−λt e−λcT }
= e−λt {H(λ, c, T )− Me−εt H(λ+ ε, c, T )− K he−λ(t+cT )}
≥ Me−(λ+ε)t

{
−H(λ+ ε, c, T )− L

M
e−λcT

}
,

since H(λ, c, T ) = 0 and (λ− ε)t > 0. By (5.7) we deduce that there exists a positive value
M0 such that if M ≥ M0 the last term in the previous chain of inequalities is positive, and
this implies that φ is a sub-solution for every M ≥ M0.

In order to find a super-solution, consider the function

ψ(t) := 1

1 + αeλt
with α > 0 and λ = λ(c, T ) defined in (5.6).

Of course, ψ is a decreasing function satisfying ψ(−∞) = 1, ψ(+∞) = 0.
Observe that

ψ ′(t) = −αλ eλt

(1 + αeλt )2
, ψ ′′(t) = αλ2eλt

(1 + αeλt )3
(αeλt − 1).

Therefore, by (5.4) we have

ψ ′′(t)+ cψ ′(t)+ f (ψt,c) ≤ ψ ′′(t)+ cψ ′(t)+ Kψ(t + cT )[1 − ψ(t)]
= αλ2eλt (αeλt − 1)

(1 + αeλt )3
− αλceλt

(1 + αeλt )2
+ K

αeλt

(1 + αeλt )(1 + αeλt ecλT )

= αeλt

(1 + αeλt )3(1 + αeλt ecλT )

{
λ2(αeλt − 1)(1 + αeλt ecλT )− λc(1 + αeλt ) ·

·
(

1 + αeλt ecλT
)

+ K (1 + αeλt )2
}
.

Hence, putting A(t) := αeλt

(1+αeλt )3(1+αeλt ecλT )
> 0 and recalling that λ2 − cλ+ K e−cλT = 0,

the last term in the previous chain of equalities becomes

A(t)
{
α2e2λt ecλT (λ2 − cλ+ K e−cλT )+αeλt [λ2 − cλ+ ecλT (−λ2 − cλ+ 2K e−cλT )]+

+ (K−cλ−λ2)
} = A(t)

{
−αeλt [K e−cλT +ecλT (2λc−3K e−cλT )]−(2cλ−K−K e−cλT )

}
.

(5.9)

Let us now consider the function h(c) := cλ(c, 0) = c
2 (c − √

c2 − 4K ), for c > 2
√

K .
Observe that h(c) is a strictly decreasing function, indeed

h′(c) = 1

2

(
c −

√
c2 − 4K

)
+ c

2

(
1 − c√

c2 − 4K

)
= 1

2

[
2c − c2

√
c2 − 4K

−
√

c2 − 4K

]

= c
√

c2 − 4K − c2 + 2K√
c2 − 4K

< 0.
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Then,

c · λ(c, 0) = h(c) > K = lim
c→+∞ h(c), for every c > 2

√
K . (5.10)

So, put

γ (c, T ) := K e−cλT + ecλT (2λc − 3K e−cλT ), δ(c, T ) := 2cλ− K − K e−cλT ,

by (5.10) we have γ (c, 0) = δ(c, 0) = 2(h(c)− K ) > 0. Hence, for every c > 2
√

K there
exists a positive value T0 = T0(c) such that γ (c, T ), δ(c, T ) > 0 if T ∈ [0, T0]. Therefore,
for such values of T we get that the term in (5.9) is negative for every t ∈ R and this means
that ψ is a super-solution.

Let us now show that if we take α < 1 − 1
M , then φ(t) < ψ(t) for every t ∈ R. Such a

relation is trivial for t ≤ t∗, whereas for every t ≥ t∗, since e−λt < e−εt ≤ e−εt∗ = 1
M , we

have

(1 − Me−εt )(e−λt + α) ≤ e−λt + α ≤ 1

M
+ α < 1,

hence φ(t) = (1 − Me−εt )e−λt < 1
1+αeλt = ψ(t) for every t ≥ t∗.

Therefore, by applying Theorem 4.3, we deduce that the differential equation in (5.2)
admits a decreasing solution u satisfying φ(t) ≤ u(t) ≤ ψ(t) for every t ∈ R. This imme-
diately implies that u(+∞) = 0, so it remains to show that u(−∞) = 1.

In order to do this, observe that by Proposition 3.2 we have u′(−∞) = u′′(−∞) = 0, so
also limn→+∞ f (u−n,c) = 0. Put � := u(−∞), it is easy to see that the sequence of function
(u−n,c(θ))n uniformly converges to the constant function u(θ) ≡ �. Indeed, for every fixed
ε > 0, let t̃ε be such that |u(t)− �| < ε for every t < t̃ε . So, if we take n̄ = n̄ε > cT ∗ − t̃ε
then for every n ≥ n̄ε and θ ∈ [−T ∗, 0] we have −n − cθ ≤ −n̄ε + cT ∗ < t̃ε , so

|u−n,c(θ)− �| = |u(−n − cθ)− �| < ε for every θ ∈ [−T ∗, 0], n ≥ n̄ε .

Thus, by the continuity of f we get f (�) = 0 and being � > 0, by assumptions (F1-A) and
(F2-A) we deduce � = 1.

Finally, as regards the rate of decay, since φ(t), ψ(t) ≈ e−λt as t → +∞, also u(t) does.
Moreover, since H(λ(c, 0), c, T ) < 0, we have λ ≤ λ(c, 0) = 1

2 (c − √
c2 − 4K ). �	

In the previous theorem, we fixed a generic speed c > 2
√

K and show that if the delay
T is sufficiently small there exists a front having speed c. In the following result we change
point of view, indeed we show that for every fixed delay T > 0 there exists a bounded interval
such that if the speed c belongs to it then there exists a traveling wave having speed c.

Theorem 5.3 Under the same assumption of Theorem 5.2, for every 0 < T < 1
f2(0)

log 4
3

there exists a value c∗ = c∗(T ) > 2
√

f2(0) such that for every c ∈ [2√
f2(0), c∗] the

boundary value problem (5.2) with f (w) = f1(w) · f2(w(0)) admits a decreasing solution
u. Moreover, u(t) ≈ e−λt as t → +∞ (see (5.3), where λ ≤ 1

2 (c − √c2 − 4 f2(0)), and
c∗(T ) → +∞ as T → 0.

Proof Put, as above, K := f2(0), and considered the function H(�, c, t) defined in (5.5),

observe that H(
√

K
2 , 2

√
K , T ) = K

4 −K +K e−K T = K (e−K T − 3
4 ) > 0, due to the assump-

tion on the upper limitation of T . Then, λ(2
√

K , T ) >
√

K
2 , i.e. 2

√
K · λ(2√

K , T ) > K .
Therefore, there exists a value c∗ = c∗(T ) > 2

√
K such that

c · λ(c, T ) > K for every c ∈ (2√
K , c∗). (5.11)
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The proof of the present result proceeds as that of Theorem 5.2 until formula (5.9). From
there on, observe that by (5.11) we get

K e−cλT + ecλT (2cλ− 3K e−cλT ) > K e−cλT + 2K ecλT − 3K

= K e−cλT (1 + 2e2cλT − 3ecλT ) > 0

and 2cλ − K e−cλT − K > K (1 − e−cλT ) > 0, implying again that ψ is a super-solution.
Hence, from now on the proof proceeds as that of the previous theorem.

The assertion for c = 2
√

K and c = c∗ is a consequence of the closure of the range of
the admissible speeds proved in Proposition 4.5.

Finally, as regards the behavior of c∗ for T small, observe that

c∗∗(T ) := sup{c : c λ(c, T ) > K }
is a continuous function of T taking value on R ∪ {+∞} and c∗∗(0) = +∞, by virtue of
(5.10). So, the assertion follows. �	

We present now an example of applications of the results in this section.

Example 5.4 Let us consider the delayed reaction-diffusion equation

vτ (τ, x) = vxx (τ, x)+ Kv(τ − T, x) (1 − v(τ, x))p , with p ≥ 1.

Put

f (w) := Kw(−T ) (1 − w(0))p , for w ∈ C([−T, 0],
we can apply Theorems 5.2 and 5.3 to deduce the existence of travelling fronts.

5.2 Non-Functional Fisher–KPP Equations

Despite the present research is motivated by the study of non-local reaction-diffusion equa-
tions, we wish to show how we can fruitfully treat also the non-functional case by means of
our approach.

Let us consider the classical equation

u′′ + cu′ + f (u) = 0 (5.12)

where f : [0, 1] → R is a Lipschitzian Fisher-type term, that is satisfying f (u) > 0 in
(0, 1), f (0) = f (1) = 0. We define F : C(R) → C(R) by

F(u)(t) =
{

f (u(t)) if u(t) ∈ [0, 1]
0 otherwise.

Notice that F is a continuous operator with respect the norm ‖ · ‖ρ , for every ρ > 0, since
f is a continuous function.

Set β := supu �=v
∣
∣
∣ f (u)− f (v)

u−v
∣
∣
∣ the Lipschitz constant of f , it is immediate to verify that

the operator F satisfies the assumptions (H1) − (H3). Moreover, as an application of
Theorem 4.3, we can derive the following result, which is well-known.

Proposition 5.5 Let f be a function as above, differentiable in a right neighborhood of 0
with f ′(0) > 0, such that there exist f ′′(0) > −∞ and

0 < f (u) ≤ f ′(0)u for every u ∈ (0, 1). (5.13)
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Then, for every c ≥ 2
√

f ′(0) there exists a decreasing solution u of the problem
{

u′′ + cu′ + f (u) = 0
u(−∞) = 1, u(+∞) = 0.

Moreover, u(t) ≈ e−λt as t → +∞ (see (5.3)), where λ = 1
2 (c −√c2 − 4 f ′(0)).

Proof Since f ′′(0) > −∞, then there exists positive values ν, δ > 0 such that f ′(u) ≥
f ′(0)− νu for every u ∈ [0, δ), with f ′(0) > 0 owing to assumption (5.13). So, integrating,
we deduce

f (u) ≥ f ′(0)u − ν

2
u2 = f ′(0)u

(
1 − ν

2 f ′(0)
u

)
for every u ∈ [0, δ).

Therefore, considered the function φ(t) := δmax{0, (1 − Me−εt )e−λt } ≤ δ (with λ =
1
2 (c −√c2 − 4 f ′(0))), by means of the same proof of Theorem 5.2 (rewritten for T = 0),
one deduce that the function φ is a sub-solution.

Moreover, let us consider now the function ψ(t) := min{1, e−λt }. Observe that 0 =
ψ ′(0−) > ψ ′(0+) and since f (1) = 0, it is immediate to verify that ψ ′′(t) + cψ ′(t) +
f (ψ(t)) = 0 for every t < 0. Instead, if t > 0 then

ψ ′′(t)+ cψ ′(t)+ f (ψ(t)) ≤ ψ ′′(t)+ cψ ′(t)+ f ′(0)ψ(t) = e−λt (λ2 − cλ+ f ′(0)) = 0.

Therefore, ψ is a super-solution. Finally, one can easily verify that φ(t) < ψ(t) for every
t ∈ R. Hence, by applying Theorem 4.3 we deduce the existence of a decreasing solution
u(t) satisfying φ(t) ≤ u(t) ≤ ψ(t) for every t ∈ R, implying u(+∞) = 0 with u ≈ e−λt as
t → +∞. Being f (u) > 0 for every u ∈ (0, 1) and applying Proposition 3.2, we necessarily
have u(−∞) = 1 and this concludes the proof. �	
5.3 Reaction-Diffusion Equations With Convolution Integrals

Let us consider the non-local reaction-diffusion equation

vτ (τ, x) = vxx (τ, x)+ f0(v(τ, x))

+∞∫

−∞
�(x − σ)v(τ, σ ) dσ,

where � : R → R is a continuous, non-negative map satisfying

+∞∫

−∞
�(s) ds = 1,

and f0 : R → [0,+∞) is a continuous function satisfying the following conditions:

(F0-A): f0(1) = 0, f0(s) > 0 for every s ∈ [0, 1);
(F0-B): f0 is Lipschitzian with Lipschitz constant L .

When searching for traveling wave solutions v(τ, x) = u(x − cτ), the change of vari-
able t = x − cτ leads to consider the functional boundary value problem (recall that the
convolution product is commutative)

{
u′′(t)+ cu′(t)+

( ∫ +∞
−∞ �(s)u(t − s) ds

)
f0(u(t)) = 0

u(−∞) = 1, u(+∞) = 0.
(5.14)

123



J Dyn Diff Equat (2009) 21:567–593 587

In order to treat such a problem by means of the approach presented here, define F : C(R) →
C(R) by

F(u)(t) =
⎛

⎝
+∞∫

−∞
�(s)u(t − s) ds

⎞

⎠ f0(u(t)), t ∈ R.

Notice that F is a continuous operator.
The following Lemma concerns the applicability of the method presented in the previous

sections.

Lemma 5.6 Assume that the function f0 satisfies the properties listed above. Then, the oper-
ator F satisfies assumptions (H1)-(H3) with β ≥ L.

Proof As for property (H1), assume 0 ≤ u(t) ≤ 1 for any t ∈ R. Then, F(u)(t)+βu(t) ≥ 0
for any t . Moreover, by (F0-A) and (F0-B) we have f0(s) ≤ L(1− s) for every s ∈ [0, 1], so

⎛

⎝
+∞∫

−∞
�(s)u(t − s) ds

⎞

⎠ f0(u(t)) ≤ L(1 − u(t)),

and, being β ≥ L , we deduce

−F(u)(t)− βu(t)+ β ≥ (β − L)(1 − u(t)) ≥ 0

for any t . Hence, condition (H1) holds.
Assume now that u ∈ C(R) is monotone decreasing and let us show that F(u) + βu is

monotone decreasing too. Fixed t1 < t2 we have u(t1) ≥ u(t2), so

+∞∫

−∞
�(s)u(t1 − s) ds ≥

+∞∫

−∞
�(s)u(t2 − s) ds,

and by (F0-B) we have f0(u(t1)) ≥ f0(u(t2))− L(u(t1)− u(t2)). Therefore,

F(u)(t2)−F(u)(t1) =
⎛

⎝
+∞∫

−∞
�(s)u(t2−s) ds

⎞

⎠ f0(u(t2))−
⎛

⎝
+∞∫

−∞
�(s)u(t1−s) ds

⎞

⎠ f0(u(t1))

≤
⎛

⎝
+∞∫

−∞
�(s)u(t2 − s) ds

⎞

⎠ [ f0(u(t2))− f0(u(t1))]

≤ L

⎛

⎝
+∞∫

−∞
�(s)u(t2 − s) ds

⎞

⎠ [u(t1)− u(t2)] ≤ β[u(t1)− u(t2)]

since β ≥ L . Hence, condition (H2) is satisfied. The proof of the validity of (H3) is
analogous. �	

In order to present a concrete application of our existence result, let us consider the par-
ticular function

�0(t) = b

2
e−b|t |, t ∈ R, for some b > 0. (5.15)
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The following result states that imposing some further conditions on the function f0 and the
constants b, c, a pair of ordered super and sub-solutions can be found and consequently the
boundary value problem (5.14) admits solutions.

Theorem 5.7 Let �0 be defined by (5.15) and let f0 satisfy conditions (F0-A) - (F0-B).
Assume that b > 2

√
f0(0) and

f0(s) ≤ f0(0)(1 − s) for every s ∈ [0, 1]. (5.16)

Then, for every c ∈ [c∗
1, c∗

2], where

c∗
1 :=

√

2

(
b2 − b

√
b2 − 4 f0(0)

)
, c∗

2 :=
√

2

(
b2 + b

√
b2 − 4 f0(0)

)
, (5.17)

the boundary value problem (5.14) admits a decreasing solution u. Moreover, u(t) ≈ e−λt

as t → +∞ (see (5.3)), for a suitable λ < c/2.

Proof In view of Lemma 5.6 and Theorem 4.3, we only need to find a pair of ordered super
and sub-solutions.

First of all, observe that it suffices to prove the assertion for c ∈ (c∗
1, c∗

2). Indeed, in the
present framework all the assumptions of Proposition 4.5 are satisfied and then the range of
the values of c for which the boundary value problem (5.14) is solvable is closed. So, from
now on we fix a constant c ∈ (c∗

1, c∗
2).

From now on, put K := f0(0). Moreover, if L denotes the Lipschitz constant of f0, put
h := L

K ≥ 1, we have

f0(s) ≥ K (1 − hs) for every s ∈ [0, 1]. (5.18)

Given M > 1, consider the function

φ(t) := max

{
0,

1

h
(1 − Me−εt )e−λt

}
,

where 0 < ε < λ and λ < λ+ ε < b. Let t∗ denote the positive value such that Me−εt∗ = 1.
Observe that 0 = φ′(t∗−) < φ′(t∗+), moreover if t < t∗ then φ′(t) = φ′′(t) = 0, and if
t > t∗ then

φ′(t) = −λ
h

e−λt + M

h
(λ+ ε)e−(λ+ε)t ; φ′′(t) = λ2

h
e−λt − M

h
(λ+ ε)2e−(λ+ε)t .

To show that φ is a sub-solution, taking (5.18) into account, we have to prove that

φ′′(t)+ cφ′(t)+
⎛

⎝
+∞∫

−∞
�0(s)φ(t − s) ds

⎞

⎠ f0(φ(t)) ≥ φ′′(t)+ cφ′(t)+

+
⎛

⎝
+∞∫

−∞
�0(s)φ(t − s) ds

⎞

⎠ K (1 − h φ(t)) ≥ 0

for every t in R. Now, for t < t∗ we have

φ′′(t)+ cφ′(t)+
⎛

⎝
+∞∫

−∞
�0(s)φ(t − s) ds

⎞

⎠ K (1 − h φ(t)) = K

+∞∫

−∞
�0(s)φ(t − s) ds ≥ 0.
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Instead, for t > t∗ we have

φ′′(t)+ cφ′(t)+
⎛

⎝
+∞∫

−∞
�0(s)φ(t − s) ds

⎞

⎠ K (1 − h φ(t)) = e−λt

h

⎧
⎪⎨

⎪⎩
λ2 − M(λ+ ε)2e−εt+

−cλ+ cM(λ+ ε)e−εt + K b

2
(1 − h φ(t))

t−t∗∫

−∞
eλs−b|s|(1 − Me−εt+εs) ds

⎫
⎬

⎭
.

Computing the integral in the last formula, and recalling that Me−εt∗ = 1, we obtain

t−t∗∫

−∞
eλs−b|s|(1 − Me−εt+εs) ds

=
0∫

−∞
eλs+bs(1 − Me−εt+εs) ds +

t−t∗∫

0

eλs−bs(1 − Me−εt+εs)ds

= 1

λ+ b
− Me−εt 1

λ+ ε + b
+ e(λ−b)(t−t∗) − 1

λ− b
− Me−εt e(λ+ε−b)(t−t∗) − 1

λ+ ε − b

= 2b

b2 − λ2 − Me−εt 2b

b2 − (λ+ ε)2
+ e(λ−b)(t−t∗)

(
1

b − (λ+ ε)
− 1

b − λ

)
.

Therefore,

K b

2
(1 − h φ(t))

⎛

⎝
t−t∗∫

−∞
eλs−b|s|(1 − Me−εt+εs) ds

⎞

⎠ = K b

2

(
1 − e−λt+

+ Me−εt−λt )
⎛

⎝
t−t∗∫

−∞
eλs−b|s|(1 − Me−εt+εs) ds

⎞

⎠ = (1 − e−λt + Me−εt−λt )
(

K b2

b2 − λ2 +

−Me−εt K b2

b2 − (λ+ ε)2
+ e(λ−b)(t−t∗) εK b

2(b − λ)(b − (λ+ ε))

)
.

Now, since λ < λ + ε < b, we get (b − λ)(b − (λ + ε)) > 0. Consequently, being
1 − hφ(t) ≥ 0 for every t , it follows

(
1−e−λt+Me−εt−λt )

(
K b2

b2−λ2 −Me−εt K b2

b2−(λ+ε)2 +e(λ−b)(t−t∗) εK b

2(b − λ)(b − (λ+ ε))

)

≥ (1 − e−λt + Me−εt−λt )
(

K b2

b2 − λ2 − Me−εt K b2

b2 − (λ+ ε)2

)
= K b2

b2 − λ2 +

− Me−εt K b2

b2 − (λ+ ε)2
− e−λt (1 − Me−εt )

(
K b2

b2 − λ2 − Me−εt K b2

b2 − (λ+ ε)2

)
.
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Since 1
b2−λ2 ≤ 1

b2−(λ+ε)2 and 0 ≤ 1 − Me−εt ≤ 1 for t > t∗, we have

e−λt (1 − Me−εt )

(
K b2

b2 − λ2 − Me−εt K b2

b2 − (λ+ ε)2

)

≤ e−λt (1 − Me−εt )2
(

K b2

b2 − (λ+ ε)2

)
≤ e−λt K b2

b2 − (λ+ ε)2
.

Finally,

(
1−e−λt+Me−εt−λt)

(
K b2

b2−λ2 −Me−εt K b2

b2 − (λ+ ε)2
+e(λ−b)(t−t∗) εK b

2(b − λ)(b−(λ+ε))
)

≥ K b2

b2 − λ2 − Me−εt K b2

b2 − (λ+ ε)2
− e−λt K b2

b2 − (λ+ ε)2
.

Hence, we get

λ2 − M(λ+ ε)2e−εt − cλ+ cM(λ+ ε)e−εt + K b

2
(1 − h φ(t))

⎛

⎝
t−t∗∫

−∞
eλs−b|s|(1+

− Me−εt+εs) ds

⎞

⎠ ≥ λ2 − M(λ+ ε)2e−εt − cλ+ cM(λ+ ε)e−εt + K b2

b2 − λ2 +

− Me−εt K b2

b2 − (λ+ ε)2
− e−λt K b2

b2 − (λ+ ε)2
= λ2 − cλ+ K b2

b2 − λ2 +

−Me−εt
(
(λ+ ε)2 − c(λ+ ε)+ K b2

b2 − (λ+ ε)2

)
− e−λt K b2

b2 − (λ+ ε)2

= Q(λ)− Me−εt Q(λ+ ε)− e−λt K b2

b2 − (λ+ ε)2
,

where Q(s) := s2 − cs + K b2

b2−s2 .
We claim that for a suitable choice of λ, ε and M the last term in the previous chain of

inequalities is non-negative. Indeed, notice that Q(0) = K . Moreover, conditions b > 2
√

K
and (5.17) imply that c < 2b and Q(c/2) < 0. Consequently, there exist positive numbers
λ = λ(c, b, K ), ε = ε(c, b, K ) satisfying ε < λ, λ+ ε < c/2, such that

Q(λ) = 0 and Q(λ+ ε) < 0. (5.19)

Moreover, since t > t∗ > 0, we have 0 < e−(λ−ε)t < 1, so

Q(λ)− Me−εt Q(λ+ ε)− e−λt K b2

b2 − (λ+ ε)2
= e−εt [−M Q(λ+ ε) +

− e−(λ−ε)t K b2

b2 − (λ+ ε)2

]
≥ e−εt

[
−M Q(λ+ ε)− K b2

b2 − (λ+ ε)2

]
≥ 0

provided that M > 0 is large enough.
Therefore, with the above choice of λ, ε,M = M(b, K , λ, ε) = M(c, b, K ), the function

φ(t) = max{0, 1
h (1 − Me−εt )e−λt } is a sub-solution.

In order to find a super-solution, consider the function

ψ(t) := min{1, e−λt }
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where the constantλ > 0 is the same as above. Observe that 0 = ψ ′(0−) > ψ ′(0+), moreover
if t < 0 then ψ ′(t) = ψ ′′(t) = 0, and if t > 0 then ψ ′(t) = −λe−λt , ψ ′′(t) = λ2e−λt .

To show that ψ is a super-solution we have to prove that

ψ ′′(t)+ cψ ′(t)+
⎛

⎝
+∞∫

−∞
�0(s)ψ(t − s) ds

⎞

⎠ f0(ψ(t))

≤ ψ ′′(t)+ cψ ′(t)+
⎛

⎝
+∞∫

−∞
�0(s)ψ(t − s) ds

⎞

⎠ K (1 − ψ(t)) ≤ 0

for every t in R. Now, for t < 0 we have ψ ′′(t)+cψ ′(t)+
( ∫ +∞

−∞ �0(s)ψ(t − s) ds
)

K (1−
ψ(t)) = 0.

Instead, for t > 0 we have

ψ ′′(t)+ cψ ′(t)+
⎛

⎝
+∞∫

−∞
�0(s)ψ(t − s) ds

⎞

⎠ K (1 − ψ(t))

= λ2e−λt − cλe−λt + K (1 − e−λt )e−λt

+∞∫

−∞
�0(s)e

λsds

= e−λt

⎛

⎝λ2 − cλ+ K (1 − e−λt )

+∞∫

−∞
�0(s)e

λs ds

⎞

⎠ .

Since 0 ≤ 1 − e−λt ≤ 1 for t > 0, taking account of (5.19), we deduce

λ2 − cλ+ K (1 − e−λt )

+∞∫

−∞
�0(s)e

λs ds ≤ λ2 − cλ+ K
b

2

+∞∫

−∞
eλs−b|s| ds

= λ2 − cλ+ K b2

b2 − λ2 = Q(λ) = 0.

Then, the function ψ(t) is a super-solution.
Finally, note that φ(t) < ψ(t) for every t ∈ R. In fact, this is trivial for t ≤ t∗, whereas

for every t ≥ t∗ we have

φ(t) = 1

h
(1 − Me−εt )e−λt < e−λt = ψ(t).

Therefore, by applying Theorem 4.3 we deduce that the differential equation in (5.14)
admits a decreasing solution u satisfying φ(t) ≤ u(t) ≤ ψ(t) for every t ∈ R. This immedi-
ately implies that u(+∞) = 0. Finally, by arguing as in the proof of Theorem 5.2, one can
prove that u(−∞) = 1 and the proof is complete. �	

Similarly to what we done in the case of delayed equation, we present now an example of
application of the previous result.
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Example 5.8 Let us consider the non-local reaction-diffusion equation

vτ (τ, x) = vxx (τ, x)+ K b

2
(1 − v(τ, x))p

+∞∫

−∞
e−b|x−σ |v(t, σ ) dσ, with p ≥ 1.

Put f0(s) := (1 − s)p , we can apply Theorem 5.7 and deduce the existence of travelling
fronts.

Remark 5.9 As we mentioned in the Introduction, the classical Fisher–KPP equation with the
reaction term f (u) = K u(1−u) can be viewed as a particular case of the equation governed
by the convolution integral when the kernel is the Dirac delta function and can be obtained
taking the limit as b → +∞. Notice that the threshold values c∗

1 = c∗
1(b, K ), c∗

2 = c∗
2(b, K )

given by (5.17) satisfy

lim
b→+∞ c∗

1(b, K ) = 2
√

K and lim
b→+∞ c∗

2(b, K ) = +∞

in accordance with the circumstance that the classical Fisher–KPP equation in this case admits
t.w.s. if and only if c ≥ c∗ = 2

√
f ′(0) = 2

√
K .

6 Final Discussion

First of all, we clarify that we limit ourselves to search for monotone fronts since when
considering functions takings values in [0, 1] they are the only possible solutions. In fact,
if the functional F satisfies the rather natural condition that F(u)(t) ≥ 0 on R for every
function u taking values on [0, 1], it is easy to verify that each possible solution is monotone
decreasing. Indeed, if u′(t) > 0 for every t in some interval J ⊂ R, then c ≥ 0 by virtue
of Proposition 3.2 and from Eq. (3.1) we derive that u′′(t) ≤ 0 for every t ∈ J , implying
that u′(t) > 0 for every t ∈ (−∞, sup J ), in contradiction with the boundary condition
u(−∞) = 1.

Nevertheless, in some nondimensionalised model, the dynamic can also have non-mono-
tone t.w.s., presenting a hump exceeding the value 1, as it is was shown in reference [6], by
means of a formal asymptotic analysis. A biological interpretation of this phenomenon was
presented in reference [6] in the context of biological invasion. Indeed, when an invasion
front moves out, individuals at the front are in competition only with those behind them
and so the population can get above the carrying capacity level, which is the maximum the
environment can sustain in the long term.

Comparing with the wide literature and the deep study developed for classical (non-func-
tional) reaction-diffusion equations, clearly this research is far from being complete, since
there are still many open problems and various aspects should be clarified. First of all, the
question of the uniqueness of the profiles. Indeed, in the classical case, it is well known that
for every admissible wave speed c the profile is unique (up to a shift of the variable). We do
not deal with this topic in the present paper and this question remains open. Secondly, in the
classical case the range C of the admissible wave speed is a closed half-line [c∗,+∞), while
in Proposition 4.5 we have just proved that it is a closed set and actually it is not clear whether
it is an interval (connected) and moreover whether it is unbounded. Perhaps the first question
can be handled by using some comparison argument, whereas the possible unboundedness is
more delicate. Indeed, we have not any non-existence result and consequently we are neither
able to characterize the set C, nor able to prove that it is bounded. However, in the applications
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presented in Sect. 5 (see Theorem 5.3, Theorem 5.7 and Remark 5.9) we have proved that
the range C contains a compact interval whose right-hand extremum tends to +∞ when the
functional model approaches (in some sense) the classical one.
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