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Abstract. We show that, under mild conditions, T -periodic retarded functional motion equations on

even-dimensional spheres admit forced oscillations. In this way we extend analogous results for the

undelayed case due to the last two authors. A crucial role in our argument is played by a quite general

continuation result, obtained in a recent paper, for forced oscillations of retarded functional motion

equations on compact topologically nontrivial boundaryless manifolds.
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1. Introduction

Let M ⊆ Rk be a smooth (i.e. C∞) compact boundaryless manifold, and let

F : R× C((−∞, 0],M)→ Rk

be a continuous map such that

F (t, ϕ) ∈ Tϕ(0)M , ∀ (t, ϕ) ∈ R× C((−∞, 0],M),

where, given q ∈ M , TqM ⊆ Rk denotes the tangent space of M at q. Assume that F is T -periodic in
the first variable and consider the retarded functional motion equation on M

x′′π(t) = F (t, xt), (1.1)

where x′′π(t) stands for the tangential component of the acceleration x′′(t) ∈ Rk at the point x(t) ∈ M ,
and xt ∈ C((−∞, 0],M) is the function s 7→ x(t+ s). We are interested in the problem of the existence
of forced oscillations of (1.1), namely, solutions of (1.1) which are globally defined on R and periodic of
the same period T as the forcing term F .

As a particular case of (1.1) we recover the undelayed differential equation

x′′π(t) = f(t, x(t)), (1.2)

which corresponds to the choice F (t, ϕ) = f(t, ϕ(0)) in (1.1). In a series of papers (see e.g. [2, 3, 4]),
the last two authors conjectured that equation (1.2) admits forced oscillations if the Euler–Poincaré
characteristic χ(M) of M is different from zero. The conjecture is suggested by the fact that when f is
autonomous the well-known Poincaré–Hopf Theorem (see e.g. [8]) implies that f vanishes at some point
q0 ∈M . So that q0 is an equilibrium point of (1.2) and is clearly a periodic solution of any period.

In the special case of the spherical pendulum (i.e. M = S2) an affirmative answer to the above
conjecture has been given in [3] and extended in [4] to the case M = S2n. A crucial argument in [3] is
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the use of the classical concept of winding number in order to assign in a continuous way an integer to
any T -periodic solution of (1.2) with sufficiently high energy. This integer, called rotation index, counts
the number of rotations that a curve on S2 makes in the subset of the sphere obtained by removing a
pair of antipodal points (depending only on the chosen curve).

The purpose of this paper is to extend the above results to the case of retarded functional motion
equations. Our main result, Theorem 3.1 below, asserts that, when M = S2, equation (1.1) admits
forced oscillations provided that F is bounded and satisfies a suitable Lipschitz-type assumption. Our
proof is based on a quite general continuation result for forced oscillations of parametrized retarded
functional motion equations on compact topologically nontrivial boundaryless manifolds, Theorem 2.2
below, that we have previously obtained in [1]. The strategy to prove the main result is similar to that
followed by the last two authors in the undelayed case. In particular, we adapt to the retarded case some
technical lemmas from [3, 4] strictly related to the geometry of the sphere. Finally, in Theorem 3.5 below
we extend the existence result to the case M = S2n.

Among the wide bibliography on retarded functional differential equations in Euclidean spaces we refer
to the works of Gaines and Mawhin [5], Nussbaum [9, 10], and Mallet-Paret, Nussbaum and Paraskevopou-
los [7]. For equations on manifolds we cite the papers of Oliva [11, 12]. For general reference we suggest
the monograph by Hale and Verduyn Lunel [6].

2. Preliminaries: continuation results for motion equations

Let M ⊆ Rk be a smooth boundaryless manifold. Given q ∈M , by TqM ⊆ Rk and (TqM)⊥ ⊆ Rk we
denote the tangent and normal space of M at q, respectively. Since Rk = TqM ⊕ (TqM)⊥, any vector
u ∈ Rk can be uniquely decomposed into the sum of the parallel (or tangential) component uπ ∈ TqM of
u at q and the normal component uν ∈ (TqM)⊥ of u at q. By

TM =
{

(q, v) ∈ Rk × Rk : q ∈M, v ∈ TqM
}

we denote the tangent bundle of M , which is a smooth manifold containing a natural copy of M via the
embedding q 7→ (q, 0). The natural projection of TM onto M is just the restriction (to TM as domain
and to M as codomain) of the projection of Rk × Rk onto the first factor.

As is well known, there exists a smooth map R : TM → Rk, called reactive force (or inertial reaction),
with the following properties:

(a) R(q, v) ∈ (TqM)⊥ for any (q, v) ∈ TM ;
(b) R is quadratic in the second variable;
(c) given (q, v) ∈ TM , R(q, v) is the unique vector such that (v,R(q, v)) belongs to the tangent space

T(q,v)(TM) of TM at (q, v);
(d) given any C2 curve γ : (a, b) → M , the normal component γ′′ν (t) of γ′′(t) at γ(t) equals

R(γ(t), γ′(t)).

By C((−∞, 0],M) we mean the metrizable space of the M -valued continuous functions defined on
(−∞, 0] with the topology of the uniform convergence on compact subintervals of (−∞, 0].

Given a continuous function x : J →M defined on a real interval J with inf J = −∞, and given t ∈ J ,
we adopt the standard notation xt : (−∞, 0]→M for the function xt(s) = x(t+ s).

Let F : R × C((−∞, 0],M) → Rk be a continuous map. We say that F is a functional field on M if
F (t, ϕ) ∈ Tϕ(0)M for all (t, ϕ) ∈ R× C((−∞, 0],M).
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Consider the retarded functional motion equation on M

x′′π(t) = F (t, xt), (2.1)

where x′′π(t) stands for the parallel component of the acceleration x′′(t) ∈ Rk at the point x(t). By
properties (a) and (d) above, equation (2.1) can be equivalently written as

x′′(t) = R(x(t), x′(t)) + F (t, xt). (2.2)

By a solution of (2.2) or, equivalently, of (2.1) we mean a continuous function x : J → M , defined on a
real interval J with inf J = −∞, which verifies eventually the equality x′′(t) = R(x(t), x′(t)) + F (t, xt).
This means that there exists t̄, with −∞ ≤ t̄ < sup J , such that x is C2 on the subinterval (t̄, sup J) of
J and verifies x′′(t) = R(x(t), x′(t)) + F (t, xt) for all t ∈ (t̄, sup J).

Notice that, in the case when F is identically zero, equation (2.2) reduces to the so-called inertial
equation

x′′(t) = R(x(t), x′(t)),

and one obtains the geodesics of M as solutions.

Equation (2.2) is equivalent to the retarded functional differential equation on TM{
x′(t) = y(t),
y′(t) = R(x(t), y(t)) + F (t, xt),

(2.3)

in the following sense: a function x : J → M is a solution of (2.2) if and only if the pair (x, x′) is a
solution of (2.3). For more details see [1].

Following [1], we say that a subset Q of C((−∞, 0],M) is a brush if there exists σ ≤ 0 such that

ϕ(s) = ψ(s),

for all s ≤ σ and ϕ,ψ ∈ Q. We will make the following assumption:

(H) Given t̄ > 0 and any compact brush Q of C((−∞, 0],M), there exists L ≥ 0 such that

‖F (t, ϕ)− F (t, ψ)‖ ≤ L sup
s≤0
‖ϕ(s)− ψ(s)‖

for all t ∈ [0, t̄] and ϕ,ψ ∈ Q.

Remark 2.1. Assumption (H) extends an analogous Lipschitz condition in [6], where the authors study
equations of the type

x′(t) = h(t, xt),

with h : R × C([−r, 0],Rk) → Rk Lipschitz in the second variable in any compact subset of R ×
C([−r, 0],Rk). In fact, if this condition is satisfied, the functional field F on Rk defined by

F (t, ϕ) = h(t, ϕ|[−r,0])

verifies (H).

As pointed out in [1], if F is bounded and verifies (H), then one gets existence and uniqueness results
of solutions for initial value problems associated to the retarded functional differential equation (2.3).
These assumptions are crucial in the proof of Theorem 2.2 (given in [1]) and, therefore, from now on we
will suppose that they are always satisfied.

Assume in addition that F is T -periodic in the first variable. By a T -periodic solution, or forced
oscillation, of equation (2.1) we mean a solution which is globally defined on R and T -periodic. Let us
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point out that it will be useful, for or purposes, to consider the forced oscillations of (2.1) as elements of
C1
T (M), the metric subspace of the Banach space C1

T (Rk) of the T -periodic C1 maps x : R→M .
In order to study the set of forced oscillations of (2.1), it is convenient to embed equation (2.1) into

the following family of parametrized equations, depending on λ ≥ 0:

x′′π(t) = λF (t, xt). (2.4)

We will say that (λ, x) ∈ [0,+∞)×C1
T (M) is a T -forced pair of (2.4) if x : R→M is a forced oscillation

of (2.4) corresponding to λ. Observe that the subset of [0,+∞)×C1
T (M) of all the T -forced pairs of (2.4)

is closed and, because of Ascoli’s Theorem, locally compact. Given q ∈M , we denote by q̄ ∈ C1
T (M) the

constant map t 7→ q, t ∈ R. Among the T -forced pairs we shall distinguish those of the type (0, q̄), q ∈M ,
that will be considered trivial. Notice that there may exist nontrivial T -forced pairs (0, x), provided that
x : R→M is a non-constant T -periodic geodesic in M .

The following continuation result has been proved in [1].

Theorem 2.2. Let M ⊆ Rk be a smooth compact boundaryless manifold whose Euler–Poincaré char-
acteristic χ(M) is different from zero, and F : R × C((−∞, 0],M) → Rk a functional field which is
T -periodic in the first variable. Suppose that F is bounded and verifies (H). Then, the equation (2.4)
admits an unbounded connected set of nontrivial T -forced pairs whose closure meets the set{

(0, q̄) ∈ [0,+∞)× C1
T (M) : q ∈M

}
of the trivial T -forced pairs.

3. Applications to forced oscillations

From now on we will adopt the following notation. The inner product of two vectors v and w in R3

will be denoted by 〈v, w〉, the vector product by v × w, and |v| will stand for the Euclidean norm of v
(i.e. |v| = 〈v, v〉1/2).

Let

S = {q ∈ R3 : |q| = r}

be the two-dimensional sphere centered at the origin with radius r > 0, and let F : R×C((−∞, 0], S)→ R3

be a functional field on S which is T -periodic in the first variable. Regarding F as a force acting on a
point of mass m constrained on S, consider the retarded functional motion equation on S

mx′′π(t) = F (t, xt). (3.1)

It is well known that in this case the reactive force (or force of constraint) at q ∈ S corresponding to the
velocity v ∈ TqS is given by R(q, v) = m(|v2|/r2)q and, consequently, (3.1) can be equivalently written
as

mx′′(t) = m(|x′(t)|2/r2)x(t) + F (t, xt). (3.2)

Let C1
T (S) denote the metric subspace of the Banach space C1

T (R3) of the T -periodic C1 maps x : R→ S,
endowed with the usual C1 norm ‖x‖1∞ = ‖x′‖∞ + ‖x‖∞, where, given a continuous T -periodic function
y : R→ R3, ‖y‖∞ stands for max{|y(t)| : t ∈ R}. Our result is the following.

Theorem 3.1. Let F : R×C((−∞, 0], S)→ R3 be a functional field on S which is T -periodic in the first
variable. Suppose that F is bounded and verifies (H). Then, the equation (3.1) admits a forced oscillation.
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In order to prove Theorem 3.1 we need some preliminary results. Namely, Lemmas 3.2, 3.3, 3.4 below.
First, let us briefly recall the notion of winding number.

Let γ : R → R2 \ {0} be a T -periodic C1 curve. Regarding R2 as the complex plane, let θ(t) be the
argument of γ(t). Notice that, while θ(t) is defined up to integer multiples of 2π, the rate of change θ′(t)
is a well defined function. The integer

w(γ) =
1

2π

∫ T

0

θ′(t) dt,

is called the winding number of the curve γ with respect to the origin. Roughly speaking, w(γ) represents
the number of counterclockwise rotations of γ around the origin in an interval of length T . It is well known
that the winding number depends continuously on γ. More precisely, the function w : C1

T (R2\{0})→ Z is
locally constant, where C1

T (R2\{0}) denotes the metric space of the T -periodic C1 maps γ : R→ R2\{0}.
Let now x ∈ C1

T (S). We say that x is admissible if for any τ, t ∈ R one has x′(τ) 6= 0 and ρτ (t) > 0,
where ρτ (t) denotes the distance of x(t) from the axis ατ through the origin spanned by the vector
product x(τ) × x′(τ). Clearly, the set of all the admissible curves is an open subset of C1

T (S). In the
sequel we will show that forced oscillations of (3.1) with sufficiently high energy are admissible.

Let x ∈ C1
T (S) be admissible. For any τ ∈ R, define v1(τ) = x(τ)/|x(τ)|, v2(τ) = x′(τ)/|x′(τ)|, and

v3(τ) = v1(τ)×v2(τ). Observe that {v1(τ), v2(τ), v3(τ)} is an orthonormal basis in R3 and for all τ, t ∈ R
we have ρτ (t)2 = 〈v1(τ), x(t)〉2 + 〈v2(τ), x(t)〉2 > 0.

Now, for τ, t ∈ R define
xτ (t) = (〈v1(τ), x(t)〉, 〈v2(τ), x(t)〉) ∈ R2.

Observe that xτ is a T -periodic C1 curve with values in R2 \ {0}. Thus, the winding number w(xτ ) is
well defined. Moreover, since w(xτ ) depends continuously on τ and is integer valued, it is independent
of τ . Hence, it makes sense to define the integer i(x) = w(xτ ), that will be called the rotation index of
the admissible curve x. This integer is clearly a locally constant function defined on the open subset of
C1
T (S) of all the admissible curves.

The following two lemmas provide some inequalities directly involving the mechanics of the considered
motion and will be crucial to prove our result. The proofs of Lemmas 3.2 and 3.3 are quite similar to the
undelayed case (see [3]), and will be given for the sake of completeness.

It is convenient to embed equation (3.2) into the following family of parametrized equations, depending
on λ ≥ 0:

mx′′(t) = m(|x′(t)|2/r2)x(t) + λF (t, xt). (3.3)

Lemma 3.2. Let x : R → S be a T -periodic solution of (3.3) corresponding to a given λ ≥ 0. Let
K = sup{|F (t, ϕ)| : t ∈ R, ϕ ∈ C((−∞, 0], S)}. Then the norm of the momentum vector p(t) = mx′(t) is
a Lipschitz function with constant λK. So, in particular, for any t1, t2 ∈ R, one has

m|u(t2)− u(t1)| ≤ λKT, (3.4)

where u(t) = |x′(t)|.

Proof. If for a given t ∈ R one has u(t) 6= 0, then

mu′(t) =
m〈x′(t), x′′(t)〉

u(t)
=
〈x′(t), λF (t, xt)〉

u(t)
.

Therefore, |mu′(t)| ≤ λK for all t ∈ R such that u(t) 6= 0.
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Consider now t1, t2 ∈ R, with t1 < t2. If u(t) 6= 0 in the interval (t1, t2), then the inequality (3.4)
follows from the above argument. Otherwise, without loss generality, we may assume u(t1) ≤ u(t2) and
u(t2) > 0. Let t̂ = max{t ∈ [t1, t2] : u(t) = 0}. Then, since the function u is nonnegative, one obtains

m|u(t2)− u(t1)| ≤ mu(t2) = m(u(t2)− u(t̂)) ≤ λK|t2 − t̂| ≤ λK|t2 − t1|.

Finally, since u is T -periodic we may assume |t2 − t1| ≤ T , and inequality (3.4) follows. �

Lemma 3.3. Let x, u, F,K be as in Lemma 3.2. Assume that mu(t) > λKT for each t ∈ R. Take
any τ ∈ R and let ατ be the straight line through the origin spanned and oriented by the vector product
x(τ)× x′(τ). Denote by ρτ (t) the distance of x(t) from ατ . Then, for any t ∈ R, the angular momentum
Mτ (t) with respect to the axis ατ is such that

(mu(t)− λKT )r ≤Mτ (t) ≤ (mu(t) + λKT )r. (3.5)

Moreover, ρτ (t) satisfies the inequality

ρτ (t) ≥ mu(τ)− λKT
mu(τ) + λKT

r.

So, in particular, x(·) lies in S \ ατ .

Proof. Since Mτ (t) is the orthogonal projection of the angular momentum x(t) ×mx′(t) onto the axis
ατ , one has

Mτ (t) ≤ mρτ (t)u(t), for all t ∈ R.
In particular,

Mτ (τ) = mru(τ).

In addition,
|M ′τ (t)| ≤ λρτ (t)|F (t, xt)| ≤ λKr,

and thus, for any t ∈ R,

|Mτ (t)−Mτ (τ)| =
∣∣∣∣∫ t

τ

M ′τ (s)ds
∣∣∣∣ ≤ λKrT,

so that
(mu(τ)− λKT )r ≤Mτ (t) ≤ (mu(τ) + λKT )r.

Finally, by applying the inequality (3.4) to t and τ , it follows

(mu(τ)− λKT )r ≤Mτ (t) ≤ mρτ (t)u(t) ≤ (mu(τ) + λKT )r.

This implies

ρτ (t) ≥ mu(τ)− λKT
mu(τ) + λKT

r,

and the proof is complete. �

In the following lemma (see [4] for the analogous result in the undelayed case) we show that a T -
periodic solution of (3.3) with high speed is admissible and makes a large numbers of turns around the
origin in each period.

Lemma 3.4. Let x, u, F,K be as in Lemma 3.2. Assume that ‖x′‖∞ > 2λKT/m. Then, x is admissible
and its rotation index i(x) satisfies the inequality

i(x) ≥ T

2π
(m‖x′‖∞ −KT )

mr
. (3.6)
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Proof. Let τ ∈ R be such that |x′(τ)| = ‖x′‖∞. By assumption

mu(τ)− λKT > λKT

and, by Lemma 3.2,

mu(t) ≥ mu(τ)− λKT

for any t ∈ R. Therefore, as a consequence of Lemma 3.3, we get that x is admissible.
To prove inequality (3.6) observe that, given τ ∈ R, the rate of change of the angle θ(t) = arg(xτ (t))

is given, with the notation of Lemma 3.3, by θ′(t) = Mτ (t)/mρτ (t)2. Hence, from (3.5) one obtains

θ′(t) ≥ (m|x′(τ)| − λKT )r
mρτ (t)2

≥ m|x′(τ)| −KT
mr

=
m‖x′‖∞ −KT

mr
,

so that

i(x) ≥ T

2π
(m‖x′‖∞ −KT )

mr
,

as claimed. �

We are now in a position to give the

Proof of Theorem 3.1. As we already pointed out, equation (3.1) is equivalent to (3.2). Let us associate
to (3.2) the parametrized equation (3.3). Since the Euler–Poincaré characteristic of S is χ(S) = 2 6= 0,
Theorem 2.2 implies that the equation (3.3) admits an unbounded connected set Σ ⊆ [0,+∞) × C1

T (S)
of nontrivial T -forced pairs whose closure intersects the set of the trivial T -forced pairs. We will prove
Theorem 3.1 by showing that Σ must contain a T -forced pair of the type (1, x). Suppose not. Thus Σ is
contained in [0, 1) × C1

T (S). So, necessarily, its projection onto C1
T (S) is unbounded. Let us prove that

this leads to a contradiction.
Since S is bounded, Lemma 3.4 implies the existence of a constant C > 0 such that any T -periodic

solution x of (3.3), corresponding to some λ ∈ [0, 1), is admissible provided that ‖x‖1∞ ≥ C. Consider
the closure Σ of Σ in [0,+∞)×C1

T (S). Observe that this is a set of (possibly trivial) T -forced pairs. Let
now

Y = {(λ, x) ∈ Σ : ‖x‖1∞ ≥ C}

and consider the continuous function η : Y → Z defined by η(λ, x) = i(x). Since Y is a closed subset
of the metric space Σ, the Tietze Extension Theorem implies the existence of a continuous extension
η̂ : Σ→ R of η. The inequality (3.6) of Lemma 3.4 shows that the image of η̂ is unbounded. In addition,
since Σ is connected, this image must actually be an unbounded interval. This is impossible because η̂
takes integer values outside of the set

Σ0 = {(λ, x) ∈ Σ : ‖x‖1∞ ≤ C},

which, due to Ascoli’s Theorem, is compact. This contradiction shows that there exists x0 ∈ C1
T (S) such

that (1, x0) ∈ Σ, as claimed. �

Arguing as in [4] and making use of some ideas and definitions contained therein, one can prove the
following generalization of Theorem 3.1 to retarded functional motion equations on even dimensional
spheres.
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Theorem 3.5. Let Sn = {q ∈ Rn+1 : |q| = 1} be the n-dimensional sphere, and F : R×C((−∞, 0], Sn)→
Rn+1 a functional field on Sn which is T -periodic in the first variable. Suppose that F is bounded and
verifies (H). Then, the equation

x′′π(t) = F (t, xt)

admits a forced oscillation provided that the dimension of Sn is even.
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