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Abstract. Using a topological approach, based on the fixed point index the-

ory for locally compact maps on metric ANRs, we prove the existence of
forced oscillations for retarded functional motion equations defined on topo-

logically nontrivial compact constraints, provided that the frictional coefficient

is nonzero. We do not know if an analogous result holds true in the frictionless
case.
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1. Introduction

Consider a compact boundaryless smooth manifold M ⊆ Rs and denote by
BU((−∞, 0],M) the space of bounded and uniformly continuous maps from (−∞, 0]
into M with the topology of the uniform convergence. In this paper we study a
retarded functional motion equation on M of the type

(1.1) x′′π(t) = f(t, xt)− εx′(t),

where

(1) x′′π(t) stands for the tangential part of the acceleration x′′(t) ∈ Rs at the
point x(t) ∈M ,

(2) the frictional coefficient ε is a positive constant,
(3) the applied force f : R × BU((−∞, 0],M) → Rs is continuous, T -periodic

in the first variable and such that f(t, ϕ) ∈ Tϕ(0)M for all (t, ϕ), where
TpM ⊆ Rs stands for the tangent space of M at a point p of M .

We will call functional field a continuous map f : R × BU((−∞, 0],M) → Rs
verifying the above tangency condition. In addition, let us recall that, given any
map x, defined on a real interval J with inf J = −∞, and given t ∈ J , xt denotes
the map θ 7→ x(θ + t), defined on (−∞, 0].

The main result of this work, Theorem 4.1 below, shows that the equation (1.1)
admits at least one T -periodic solution (a forced oscillation), provided that M has
nontrivial Euler-Poincaré characteristic and f is bounded and verifies a sort of
Lipschitz condition.

This result provides a positive answer to a conjecture recently formulated in [4].
A key tool that allowed us to solve our conjecture is Lemma 3.1 below, proved in
[10].

An existence result for a similar problem has been obtained in [1] (see also
[2, 3]), with the difference that, in [1], the function f is defined and continuous
on R × C((−∞, 0],M) endowed with the compact-open topology. The continuity
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assumption of f on R×C((−∞, 0],M) is more restrictive than the hypothesis of con-
tinuity on R×BU((−∞, 0],M), since the compact-open topology on C((−∞, 0],M)
induces on BU((−∞, 0],M) a topology which is weaker than that of uniform con-
vergence. This means that the existence of forced oscillations for (1.1), proved in
this paper, is not a byproduct of the analogous result given in [1], whose proof, in
addition, does not fit in the present context.

To get our main result we consider a first order retarded functional differential
equation (RFDE for short) on the tangent bundle TM ⊆ R2s, which turns out to
be equivalent to the above second order equation (1.1). More precisely, in the first
part of the paper we study a first order RFDE of the type

(1.2) x′(t) = g(t, xt),

where g : R×BU((−∞, 0], N)→ Rk is a functional field over a boundaryless smooth
manifold N ⊆ Rk.

Assuming that g is T -periodic in the first variable, we tackle the problem of the
existence of T -periodic solutions of equation (1.2). More generally, given a closed
subset X of N , we study the existence of confined T -periodic solutions, that is,
T -periodic solutions having image in X.

The main result of the first part of the paper, Theorem 3.2 below, states that the
equation (1.2) admits a confined T -periodic solution provided that X is a compact
absolute neighborhood retract (ANR), with nonzero Euler-Poincaré characteristic,
and the functional field g satisfies some additional conditions. The proof is given
by applying the fixed point index theory for locally compact maps on ANRs to a
sort of Poincaré T -translation operator acting in a suitable subset of the Banach
space C([−T, 0],Rk).

For general reference on RFDEs we suggest the monograph by Hale and Verduyn
Lunel [16]. For RFDEs with finite delay in Euclidean spaces, we refer also to the
works of Gaines and Mawhin [11], Nussbaum [22, 23] and Mallet-Paret, Nussbaum
and Paraskevopoulos [19]. For RFDEs with infinite delay in Euclidean spaces, we
recommend the article of Hale and Kato [15] and, book by Hino, Murakami and
Naito [17] and the recent paper by Oliva and Rocha [26]. Finally, for RFDEs with
finite delay on manifolds we cite the papers of Oliva [24, 25].

2. Preliminaries

Given a subset A of Rk, we will denote by BU((−∞, 0], A) the set of bounded and
uniformly continuous maps from (−∞, 0] into A with the topology of the uniform
convergence. Clearly, BU((−∞, 0], A) is a metric subspace of the Banach space
BU((−∞, 0],Rk) and is complete if and only if A is closed. For brevity, throughout
the paper we will use the notation

Ã := BU((−∞, 0], A).

Moreover, the norm in Rk will be denoted by | · | and the norm in R̃k by ‖ · ‖.
A vector v ∈ Rk is said to be inward to A at a given point p in the closure A of

A if there exist two sequences {αn} in [0,+∞) and {pn} in A such that

pn → p and αn(pn − p)→ v.

The set CpA of the inward vectors to A at p is called the tangent cone of A at p
(see [6]). One can easily check that the tangent cone is always closed in Rk. The
vector subspace of Rk spanned by CpA is the tangent space TpA of A at p, whose
elements are the tangent vectors to A at p.
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To simplify some statements and definitions we put CpA = TpA = ∅ whenever

p does not belong to A (this can be regarded as a consequence of the definition of
inward vector if one replaces the assumption p ∈ A with p ∈ Rk).

Observe that TpA is the trivial subspace {0} of Rk if and only if p is an isolated
point of A. In fact, if p is a limit point, then, given any {pn} in A\{p} such that
pn → p, the sequence

{
αn(pn − p)

}
, with αn = 1/|pn − p|, admits a convergent

subsequence whose limit is a unit vector. On the other hand, if p is an isolated
point of A, the unique inward vector is the null one since the unique sequence {pn}
in A convergent to p is the constant sequence coinciding with p.

One can show that, in the special and important case when A is a smooth
differentiable manifold with (possibly empty) boundary ∂A (a ∂-manifold for short),
this definition of tangent space is equivalent to the classical one (see for instance
[14, 20]). Moreover, if p ∈ ∂A, CpA is a closed half-space in TpA (delimited by
Tp∂A), while CpA = TpA if p ∈ A\∂A.

2.1. Initial value problem. Let N be a boundaryless smooth manifold in Rk. We

say that a continuous map g : R × Ñ → Rk is a retarded functional tangent vector

field over N if g(t, ϕ) ∈ Tϕ(0)N for all (t, ϕ) ∈ R× Ñ . To simplify the notation, in
the sequel we frequently call g a functional field (over N).

Let us consider a retarded functional differential equation (RFDE for short) of
the type

(2.1) x′(t) = g(t, xt),

where g : R× Ñ → Rk is a functional field over N . Here, as usual and whenever it

makes sense, given t ∈ R, by xt ∈ Ñ we mean the function θ 7→ x(t+ θ).
A solution of (2.1) is a function x : J → N , defined on an open real interval

J with inf J = −∞, bounded and uniformly continuous on any closed half-line
(−∞, b] ⊂ J , and which verifies eventually the equality x′(t) = g(t, xt). That is,
x is a solution of (2.1) if there exists τ , with −∞ ≤ τ < sup J , such that x is C1

on the subinterval (τ, sup J) of J , and verifies x′(t) = g(t, xt) for all t ∈ (τ, sup J).
Observe that the derivative of a solution x may not exist at t = τ . However, the
right derivative D+x(τ) of x at τ always exists and is equal to g(τ, xτ ). Also,
notice that, since x is uniformly continuous on any closed half-line (−∞, b] of J ,

then t 7→ xt is a continuous curve in Ñ .
A solution of (2.1) is said to be maximal if it is not a proper restriction of another

solution to the same equation. As in the case of ODEs, Zorn’s lemma implies that
any solution is the restriction of a maximal solution.

In what follows, given η ∈ Ñ , we will also consider the initial value problem

(2.2)

{
x′(t) = g(t, xt),
x0 = η .

A solution of (2.2) is a solution x : J → N of (2.1) such that sup J > 0, x′(t) =
g(t, xt) for t > 0, and x0 = η.

Moreover, given a relatively closed subset X of N , if one takes η ∈ X̃, then
problem (2.2) will be called the confined problem and any X-valued solution of
(2.2) a confined solution. For instance, X could be a ∂-manifold of the type {p ∈
N : F (p) ≤ 0}, where the “cutting function” F : N → R is smooth, having 0 ∈ R
as a regular value (this is the situation considered in Section 4). Furthermore, N
could be an open subset of Rk and X one of its connected components.

Following [4], we say that the functional field g : R × Ñ → Rk is away from N
at p ∈ X if either g(t, ϕ) 6∈ Cp(N\X) for all (t, ϕ) with ϕ(0) = p or g(t, ϕ) = 0
for all (t, ϕ) with ϕ(0) = p. We point out that this condition is obviously satisfied
whenever p, which is a point of X, is not in the topological boundary of X relative
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to N since, in that case, Cp(N\X) = ∅. Notice that this condition is also satisfied
when X = N , since Cp(∅) = ∅. If g is away from N at any p ∈ X, we say that g is
away from N in X.

Theorem 2.1 below is a particular case of a global existence result for the confined
case (see [4, Theorem 3.9]; see also [1, Lemma 2.1]).

Theorem 2.1 (confined global existence). Let X be a compact subset of a bound-

aryless smooth manifold N ⊆ Rk and g : R× Ñ → Rk a functional field away from

N in X. Assume that g(R × X̃) is bounded. Then, any maximal solution of the
confined problem (2.2) is defined on the whole real line.

The continuous dependence of the solutions on initial data is stated in Theorem
2.2 below and is a staightforward consequence of Theorem 4.4 of [4].

Theorem 2.2 (continuous dependence). Let N be a boundaryless smooth manifold

and g : R × Ñ → Rk a functional field. Assume the uniqueness of the maximal
solution of problem (2.2). Then, given T > 0, the set

D = {η ∈ Ñ : the maximal solution of (2.2) is defined up to T}
is open and the map that associates to any η ∈ D the restriction to [0, T ] of the
unique maximal solution of problem (2.2) is continuous.

2.2. Fixed point index. We recall that a metrizable space X is an absolute neigh-
borhood retract (ANR) if, whenever it is homeomorphically embedded as a closed
subset C of a metric space Y , there exists an open neighborhood V of C in Y and
a retraction r : V → C (see e.g. [5, 13]). Polyhedra and differentiable manifolds are
examples of ANRs. Let us also recall that a continuous map between topological
spaces is called locally compact if it has the property that each point in its domain
has a neighborhood whose image is contained in a compact set.

Let X be a metric ANR and consider a locally compact (continuous) X-valued
map k defined on a subset D(k) of X. Given an open subset U of X contained
in D(k), if the set of fixed points of k in U is compact, the pair (k, U) is called
admissible. It is known that to any admissible pair (k, U) we can associate an
integer indX(k, U) – the fixed point index of k in U – which satisfies properties
analogous to those of the classical Leray–Schauder degree [18]. The reader can see
for instance [7, 12, 21, 23] for a comprehensive presentation of the index theory for
ANRs. As regards the connection with the homology theory we refer to standard
algebraic topology textbooks (e.g. [8, 27]).

We summarize below the main properties of the fixed point index.

i) (Existence) If indX(k, U) 6= 0, then k admits at least one fixed point in U .
ii) (Normalization) If X is compact, then indX(k,X) = Λ(k), where Λ(k)

denotes the Lefschetz number of k.
iii) (Additivity) Given two disjoint open subsets U1, U2 of U such that any fixed

point of k in U is contained in U1 ∪ U2, then indX(k, U) = indX(k, U1) +
indX(k, U2).

iv) (Excision) Given an open subset U1 of U such that k has no fixed points
in U\U1, then indX(k, U) = indX(k, U1).

v) (Commutativity) Let X and Y be metric ANRs. Suppose that U and V are
open subsets of X and Y respectively and that k : U → Y and h : V → X
are locally compact maps. Assume that one of the sets of fixed points of
hk in k−1(V ) or kh in h−1(U) is compact. Then the other set is compact
as well and indX(hk, k−1(V )) = indY (kh, h−1(U)).

vi) (Homotopy invariance) Let H : U × [0, 1] → X be a locally compact map
such that the set {(x, λ) ∈ U × [0, 1] : H(x, λ) = x} is compact. Then
indX(H(·, λ), U) is independent of λ.
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3. Existence of periodic solutions

Let N ⊆ Rk be a boundaryless differentiable manifold and X ⊆ N a com-

pact ANR. Given T > 0, denote by X̂ := C([−T, 0], X) the metric subspace of

C([−T, 0],Rk) of the X-valued continuous function on [−T, 0] and by X̂0 the set{
ψ ∈ X̂ : ψ(−T ) = ψ(0)

}
. Observe that X̂ is complete since X is closed. Moreover,

it is not difficult to show that X̂ is itself an ANR.
Let g : R × Ñ → Rk be a functional field. Given T > 0, assume that g is T -

periodic in the first variable. We are interested in proving the existence of X-valued
T -periodic solutions of equation (2.1). To this end, let us consider the family of
RFDE

(3.1) x′(t) = λ g(t, xt)

depending on the parameter λ ∈ [0, 1]. Our aim is to define a parametrized
Poincaré-type T -translation operator whose fixed points are the restrictions to the
interval [−T, 0] of the T -periodic solutions of (3.1). For this purpose, we need to

introduce a suitable backward extension of the elements of X̂. The properties of
such an extension are contained in Lemma 3.1 below, obtained in [10]. In what
follows, by a T -periodic map defined on (−∞, 0] (or on (−∞,−T ]) we mean the
restriction of a T -periodic map on R .

Lemma 3.1. There exist an open neighborhood U of X̂0 in X̂ and a continuous

map from U to X̃, ψ 7→ ψ̃, with the following properties:

1) ψ̃ is an extension of ψ;

2) ψ̃ is T -periodic on (−∞,−T ];

3) ψ̃ is T -periodic on (−∞, 0], whenever ψ ∈ X̂0.

Let us now state our existence result.

Theorem 3.2. Let N ⊆ Rk be a boundaryless smooth manifold and g : R×Ñ → Rk
a T -periodic functional field. Let X ⊆ N be a compact ANR with Euler-Poincaré

characteristic χ(X) 6= 0. Assume that g is away from N in X and that g(R× X̃) is

bounded. Also assume that, for any η ∈ X̃, the maximal solution of problem (2.2)
is unique. Then, the equation x′(t) = g(t, xt) has a T -periodic solution in X.

Proof. Given η ∈ X̃ and λ ∈ [0, 1], let x(η, λ, ·) be the X-valued maximal solution
of the parametrized confined problem

(3.2)

{
x′(t) = λ g(t, xt),
x0 = η,

whose global existence is ensured by Theorem 2.1 (observe that λ g is still away

from N in X even for λ = 0). Let now U be an open neighborhood of X̂0 in

X̂ as in Lemma 3.1 and consider the homotopy P : U × [0, 1] → X̂ defined by

P (ψ, λ)(θ) = x(ψ̃, λ, T + θ), where ψ̃ ∈ X̃ is the continuous extension of ψ as in
Lemma 3.1.

By an argument similar to that used in [2, Proposition 3.2], we get that ψ ∈ U
is a fixed point of P (·, λ), λ ∈ [0, 1], if and only if it is the restriction to [−T, 0] of
a T -periodic solution of (3.1).

Let us show that P is admissible for the fixed point index.
P is continuous. Consider the problem

(3.3)


x′(t) = µ g(t, xt),
µ′(t) = 0,
x0 = η,
µ(0) = λ.
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The continuity of P follows immediately by Lemma 3.1 and by applying Theorem
2.2 to the auxiliary problem (3.3).

The image of P is contained in a compact subset of X̂. By assumption, there

exists c > 0 such that |g(t, ϕ)| ≤ c for any (t, ϕ) ∈ R × X̃. Hence, P (U × [0, 1])

is contained in the set K = {y ∈ X̂ : |y′(t)| ≤ c} which is compact by Ascoli’s

theorem, since X is bounded and X̂ complete.
The set {(ψ, λ) ∈ U × [0, 1] : P (ψ, λ) = ψ} is compact. Observe that, for any

λ ∈ [0, 1], the set {ψ ∈ U : P (ψ, λ) = ψ} is contained in K ∩ X̂0 that is clearly a
compact subset of U .

The three steps proved above imply that P is an admissible homotopy in U .
Consequently, by the homotopy invariance of the fixed point index, we get

indX̂(P (·, 1), U) = indX̂(P (·, 0), U).

Now, observe that P (·, 0) sends U onto the subset of X̂0 ⊆ U of the constant
X-valued functions, which will be identified with X itself. According to this iden-
tification, the restriction P (·, 0)|X coincides with the identity IX of X. Therefore,
by the commutativity and normalization properties of the fixed point index, we get

indX̂(P (·, 0), U) = indX(P (·, 0)|X , X) = Λ(IX).

As well-known, the Lefschetz number Λ(IX) coincides with the Euler-Poincaré char-
acteristic χ(X) of X that, by assumption, is nonzero. Hence,

indX̂(P (·, 1), U) = χ(X) 6= 0,

which implies that P (·, 1) has a fixed point in U . Thus, as previously observed,
this is equivalent to the existence of a T -periodic solution of equation (2.1), as
claimed. �

Remark 3.3. We believe that the above existence result is still valid without the
uniqueness assumption on the solutions of the initial value problem.

Remark 3.4. A functional field g : R× Ñ → Rk is said to be compactly Lipschitz

(for short, c-Lipschitz ) if, given any compact subset Q of R× Ñ , there exists L ≥ 0
such that

|g(t, ϕ)− g(t, ψ)| ≤ L‖ϕ− ψ‖
for all (t, ϕ) , (t, ψ) ∈ Q. Moreover, we will say that g is locally c-Lipschitz if

for any (τ, η) ∈ R × Ñ there exists an open neighborhood of (τ, η) in which g is
c-Lipschitz. In spite of the fact that a locally Lipschitz map is not necessarily
(globally) Lipschitz, one could actually show that if g is locally c-Lipschitz, then
it is also (globally) c-Lipschitz. As a consequence, if g is C1 or, more generally,
locally Lipschitz in the second variable, then it is additionally c-Lipschitz. In [4] we
proved that if g is a c-Lipschitz functional field, then problem (2.2) has a unique

maximal solution for any η ∈ Ñ . For a characterisation of compact subsets of Ñ
see e.g. [9, Part 1, IV.6.5].

4. Retarded functional motion equations

Let M ⊆ Rs be a boundaryless smooth manifold and let

TM =
{

(q, v) ∈ Rs × Rs : q ∈M, v ∈ TqM
}

be the tangent bundle of M . Given q ∈ M , let (TqM)⊥ ⊆ Rs denote the normal
space of M at q. Since Rs = TqM ⊕ (TqM)⊥, any vector u ∈ Rs can be uniquely
decomposed into the sum of the parallel (or tangential) component uπ ∈ TqM of u
at q and the normal component uν ∈ (TqM)⊥ of u at q.
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Consider the retarded functional motion equation on the constraint M

(4.1) x′′π(t) = f(t, xt)− εx′(t),

where x′′π(t) stands for the parallel component of the acceleration x′′(t) ∈ Rs at the

point x(t), the parameter ε > 0 is the frictional coefficient, and the map f : R×M̃ →
Rs is a functional field, T -periodic in the first variable. Any T -periodic solution of
(4.1) is called a forced oscillation.

Theorem 4.1 below gives a positive answer to the conjecture presented by the
authors in [4].

Theorem 4.1. Let M be a compact boundaryless smooth manifold with nonzero

Euler-Poincaré characteristic, and let f : R × M̃ → Rk be a T -periodic functional
field on M . Assume that f is locally Lipschitz in the second variable and has
bounded image. Then, the equation (4.1) has a forced oscillation.

Proof. Let us observe first that the equation (4.1) can be equivalently written as

(4.2) x′′(t) = r(x(t), x′(t)) + f(t, xt)− εx′(t),

where r : TM → Rs is a smooth map (the so-called reactive force or inertial reac-
tion) satisfying the following properties:

(a) r(q, v) ∈ (TqM)⊥ for any (q, v) ∈ TM ;
(b) r is quadratic in the second variable;
(c) given (q, v) ∈ TM , r(q, v) is the unique vector such that (v, r(q, v)) belongs

to T(q,v)(TM);

(d) any C2 curve γ : (a, b)→M verifies the condition γ′′ν (t) = r(γ(t), γ′(t)) for
any t ∈ (a, b), i.e. for each t ∈ (a, b), the normal component γ′′ν (t) of γ′′(t)
at γ(t) equals r(γ(t), γ′(t)).

Now, let us transform the second order equation (4.2) into the first order system

(4.3)

{
x′(t) = y(t),
y′(t) = r(x(t), y(t)) + f(t, xt)− εy(t).

System (4.3) is actually a first order RFDE on the noncompact manifold TM , since
it can be written as

(x′(t), y′(t)) = G(t, (xt, yt)),

where the map G : R× T̃M → Rs × Rs is the T -periodic functional field over TM
given by

G(t, (ϕ,ψ)) = (ψ(0), r(ϕ(0), ψ(0)) + f(t, ϕ)− εψ(0)).

It is easy to see that equation (4.2) and system (4.3) are equivalent in the sense that
a function x : J →M is a solution of (4.2) if and only if the pair (x, x′) : J → TM
is a solution of (4.3).

Given c > 0, consider the closed subset

Xc =
{

(q, v) ∈ TM : |v| ≤ c
}

of TM . It is not difficult to show that Xc is a ∂-manifold in Rs×Rs with boundary

∂Xc =
{

(q, v) ∈ Xc : |v| = c
}
.

Moreover, since M is a deformation retract of Xc, then the two spaces are homo-
topically equivalent. Thus, χ(Xc) = χ(M), so that χ(Xc) 6= 0.

Observe now that G(R× X̃c) is a bounded subset of Rs×Rs, since f is bounded
by assumption and Xc is compact.

Let us prove that if c is sufficiently large, then G is away from TM in Xc. To
this end, write Xc by means of the inner product 〈·, ·〉 in Rs, as

{
(q, v) ∈ TM :
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〈v, v〉 ≤ c2
}

and observe first that the tangent cone of Xc at (q, v) ∈ ∂Xc is the
half subspace of T(q,v)Xc given by

C(q,v)Xc =
{

(q̇, v̇) ∈ T(q,v)(TM) : 〈v, v̇〉 ≤ 0
}
.

Analogously,

C(q,v)(TM\Xc) =
{

(q̇, v̇) ∈ T(q,v)(TM) : 〈v, v̇〉 ≥ 0
}
.

Take any t ∈ R and any pair (ϕ,ψ) ∈ X̃c with |ψ(0)| = c and consider the inner
product

〈ψ(0), r(ϕ(0), ψ(0)) + f(t, ϕ)− εψ(0)〉 =

〈ψ(0), r(ϕ(0), ψ(0))〉+ 〈ψ(0), f(t, ϕ)〉 − ε〈ψ(0), ψ(0)〉.
Now,

〈ψ(0), r(ϕ(0), ψ(0))〉 = 0,

since r(ϕ(0), ψ(0)) belongs to (Tϕ(0)M)⊥. Moreover,

〈ψ(0), f(t, ϕ)〉 ≤ |ψ(0)| |f(t, ϕ)| ≤ K|ψ(0)|,

where K is such that |f(t, ϕ)| ≤ K for all (t, ϕ) ∈ R× M̃ . Finally,

〈ψ(0), ψ(0)〉 = c2,

since (ϕ(0), ψ(0)) ∈ ∂Xc. Therefore, by choosing c > K/ε, we get〈
ψ(0), r(ϕ(0), ψ(0)) + f(t, ϕ)− εψ(0)

〉
≤ Kc− εc2 < 0.

This shows that G(t, (ϕ,ψ)) /∈ C(q,v)(TM\Xc) for all (t, (ϕ,ψ)) with (ϕ(0), ψ(0)) =
(q, v) ∈ ∂Xc. Thus, G is away from TM in Xc as claimed.

Consequently, we are reduced to the context of Theorem 3.2 with Rk = Rs×Rs,
N = TM , g = G and the confining set X given by the compact ∂-manifold Xc.

Moreover, since f is locally Lipschitz in the second variable and r is smooth,
then G is locally Lipschitz as well. Therefore, taking into account Remark 3.4, we
get that the initial value problem

(4.4)

{
(x′(t), y′(t)) = G(t, (xt, yt)),
(x0, y0) = (ϕ,ψ)

has a unique maximal solution for any (ϕ,ψ) ∈ T̃M .
Thus, we can apply Theorem 3.2 to the first order equation (x′(t), y′(t)) =

G(t, (xt, yt)), obtaining that system (4.3) has a T -periodic solution and, equiva-
lently, that the motion equation (4.1) has a forced oscillation. �

Remark 4.2. We believe that the assertion of Theorem 4.1 still holds without the
Lipschitz assumption.

Remark 4.3. In the frictionless case (i.e. ε = 0) we do not know whether or not
the equation

(4.5) x′′π(t) = f(t, xt)

has a forced oscillation. As far as we know, the problem of the existence of forced
oscillations of (4.5) is still open, even in the undelayed situation. In the particular
case of the spherical pendulum, i.e. X = S2, or, more generally, in the case of
the even dimensional pendulum (i.e. X = S2n), the existence of forced oscillations
for equation (4.5) has been proved by the authors in [3], assuming the stronger
hypothesis of the continuity of the functional field f on R× C((−∞, 0], X).
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