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Abstract. We study retarded functional differential equations on manifolds of the type x′(t) = f(t, xt),

where f is a T -periodic vector field. Using the fixed point index theory on ANRs, we prove the existence

of T -periodic solutions.

As an application, we show the existence of forced oscillations of motion problems on topologically

nontrivial compact constraints. The result is obtained under the assumption that the frictional coefficient

is nonzero, and we conjecture that it is still true in the frictionless case.

1. Introduction

Let M ⊆ Rk be a smooth manifold, possibly with boundary, and let f : R× C((−∞, 0],M) → Rk be
a continuous map which is T -periodic in the first variable and such that

f(t+ T, ϕ) = f(t, ϕ) ∈ Tϕ(0)M , ∀ (t, ϕ) ∈ R× C((−∞, 0],M),

where, given p ∈M , by TpM ⊆ Rk we denote the tangent space of M at p. Such a map will be called a
T -periodic vector field on M . The vector field f will be said inward to M if f(t, ϕ) belongs to the tangent
cone of M at ϕ(0) for all (t, ϕ) ∈ R× C((−∞, 0],M).

We are interested in the existence of T -periodic solutions of the following retarded functional differential
equation (RFDE for short) on M :

x′(t) = f(t, xt). (1.1)

Here, given t ∈ R, we adopt the standard notation xt : (−∞, 0] → M for the function defined by
xt(θ) = x(t+ θ).

Among the wide bibliography on RFDEs, we cite the works of Gaines and Mawhin ([13]), Nussbaum
([23, 24]) and Mallet-Paret, Nussbaum and Paraskevopoulos ([19]) about equations in Euclidean spaces
as well as of Oliva ([25]) about equations on manifolds. For general reference we suggest the monograph
by Hale and Verduyn Lunel ([16]).

Our main result (see Theorem 3.3 below) states that, if M is compact with nonzero Euler–Poincaré
characteristic, and f is a T -periodic inward vector field on M which is bounded and verifies a suitable
Lipschitz-type assumption, then the equation (1.1) admits a T -periodic solution. To prove this result we
apply the classical fixed point index theory for locally compact maps on ANRs to a suitable Poincaré-type
T -translation operator acting in the Banach space C([−T, 0],Rk).

The idea of considering the Banach space C([−T, 0],Rk) instead of the metrizable space C((−∞, 0],M)
spread out from a fruitful discussion with Matteo Franca who pointed out to us that to know a T -periodic
solution on the whole past one just need to know it starting from a suitable not too far away past.
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This paper is strictly related to our recent ones ([1, 3, 4]) in which we study delay differential equations
of the type

x′(t) = f̃(t, x(t), x(t− 1)), (1.2)

where f̃ : R×M ×M → Rk is a continuous map which is T -periodic in the first variable and tangent to
M in the second one; i.e.

f̃(t+ T, p, q) = f̃(t, p, q) ∈ TpM , ∀ (t, p, q) ∈ R×M ×M.

Equation (1.2) is a so-called constant time lag equation. In this type of equations the derivative x′(t)
depends on the states x(t) and x(t − 1), while in the RFDE (1.1) the right-hand side depends on the
whole function xt. Roughly speaking, in equation (1.2) the delay could be uniformly distributed in the
whole past (−∞, 0]. In addition, we observe that the equation with constant time lag (1.2) is a special
case of the RFDE (1.1); to see this, given f̃ : R × M × M → Rk as above, define the vector field
f : R× C((−∞, 0],M) → Rk by

f(t, ϕ) = f̃(t, ϕ(0), ϕ(−1)).

Actually in [1, 3, 4] we do not limit ourselves to the study of the existence of T -periodic solutions,
but we focus on the structure of the set of pairs (λ, x), where λ is a real parameter and x a T -periodic
solution of the equation

x′(t) = λf̃(t, x(t), x(t− 1)),

and we obtain global bifurcation results. Here we are merely concerned with existence results, leaving
the study of bifurcation to future investigation.

We conclude the paper with an application to motion problems for forced constrained systems. Pre-
cisely, we consider the following retarded functional motion equation on a boundaryless manifold X ⊆ Rs:

x′′π(t) = F (t, xt)− εx′(t), (1.3)

where

(1) x′′π(t) stands for the tangential part of the acceleration x′′(t) ∈ Rs at the point x(t) ∈ X,
(2) the frictional coefficient ε is a positive constant,
(3) the applied force F : R× C((−∞, 0], X) → Rs is a continuous, T -periodic vector field on X.

We prove (see Theorem 4.1 below) that the equation (1.3) admits at least one forced oscillation, i.e. a T -
periodic solution, provided that the constraint X is compact with nonzero Euler–Poincaré characteristic
and the vector field F is bounded and verifies a suitable Lipschitz-type assumption. To get Theorem 4.1
we apply Theorem 3.3 to a RFDE on the noncompact tangent bundle TX ⊆ R2s which is equivalent to
(1.3).

Theorem 4.1 generalizes analogous results given in [2] and [4] for equations with constant time lag (see
also [10] for the undelayed case). As far as we know, when the frictional coefficient ε is zero, the problem
of the existence of forced oscillations of (1.3) is still open, even in the undelayed case. An affirmative
answer, in the undelayed situation, regarding the special constraint X = S2 (the spherical pendulum)
can be found in [11] (see also [12] for the extension to the case X = S2n).
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2. Preliminaries

2.1. RFDE. Let M be an arbitrary subset of Rk. We recall the notions of tangent cone and tangent
space of M at a given point p in the closure M of M . The definition of tangent cone is equivalent to the
classical one introduced by Bouligand in [6].

Definition 2.1. A vector v ∈ Rk is said to be inward to M at p ∈M if there exist two sequences {αn}
in [0,+∞) and {pn} in M such that

pn → p and αn(pn − p) → v.

The set CpM of the inward vectors to M at p is called the tangent cone of M at p. The tangent space
TpM of M at p is the vector subspace of Rk spanned by CpM . A vector v of Rk is said to be tangent to
M at p if v ∈ TpM .

To simplify some statements and definitions we put CpM = TpM = ∅ whenever p ∈ Rk does not
belong to M (this can be regarded as a consequence of Definition 2.1 if one replaces the assumption
p ∈ M with p ∈ Rk). Observe that TpM is the trivial subspace {0} of Rk if and only if p is an isolated
point of M . In fact, if p is a limit point, then, given any {pn} in M\{p} such that pn → p, the sequence{
αn(pn − p)

}
, with αn = 1/‖pn − p‖, admits a convergent subsequence whose limit is a unit vector.

One can show that in the special and important case when M is a smooth manifold with (possibly
empty) boundary ∂M (a ∂-manifold for short), this definition of tangent space is equivalent to the classical
one (see for instance [20], [15]). Moreover, if p ∈ ∂M , CpM is a closed half-space in TpM (delimited by
Tp∂M), while CpM = TpM if p ∈M\∂M .

Let, as above, M be a subset of Rk. We denote by D a nontrivial closed real interval with maxD = 0;
that is, D is either (−∞, 0] or [−r, 0] with r > 0. By C(D,M) we mean the metrizable space of the
M -valued continuous functions defined on D with the topology of the uniform convergence on compact
subintervals of D.

Given a continuous function x : J → M , defined on a real interval J , and given t ∈ R such that
t+D ⊆ J , we adopt the standard notation xt : D →M for the function defined by xt(θ) = x(t+ θ).

Let h : R×C(D,M) → Rk be a continuous map. We say that h is a vector field on M if h(t, ϕ) ∈ Tϕ(0)M

for all (t, ϕ) ∈ R×C(D,M). In particular, h will be said inward (to M) if h(t, ϕ) ∈ Cϕ(0)M for all (t, ϕ).
If M is a closed subset of a boundaryless smooth manifold N ⊆ Rk, we will say that h is away from N\M
if h(t, ϕ) 6∈ Cϕ(0)(N\M) for all (t, ϕ) ∈ R × C(D,M). Notice that this condition is satisfied whenever
ϕ(0), which is a point of M , is not in the topological boundary of M relative to N since, in that case,
Cϕ(0)(N\M) = ∅.

In this paper we are interested in retarded functional differential equations (RFDE for short) of the
type

x′(t) = h(t, xt), (2.1)

where h : R× C(D,M) → Rk is a vector field on M .
By a solution of (2.1) we mean a continuous function x : J → M , defined on a real interval J with

inf J = −∞, which verifies eventually the equality x′(t) = h(t, xt). That is, x is a solution of (2.1) if
there exists t̄, with −∞ ≤ t̄ < supJ , such that x is C1 on the subinterval (t̄, supJ) of J and verifies
x′(t) = h(t, xt) for all t ∈ J with t > t̄.

Observe that, when D = [−r, 0], there is a one-to-one correspondence between our notion of solution
and the classical one which can be found e.g. in [16] (see also [25]). The correspondence is the one that
assigns to any solution of (2.1) its restriction to the interval [t̄− r, supJ).
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Remark 2.2. Any equation of the form (2.1) with D = [−r, 0] can be regarded as an equation of
the same type with D = (−∞, 0], in the sense that to any equation (2.1) with D = [−r, 0] can be
associated an equivalent equation of the same type with D = (−∞, 0]. In other words, given a vector
field h : R × C([−r, 0],M) → Rk, there exists a vector field g : R × C((−∞, 0],M) → Rk such that the
equation

x′(t) = g(t, xt) (2.2)

has the same set of solutions as (2.1). To see this, it is enough to define g : R×C((−∞, 0],M) → Rk by

g(t, ϕ) = h(t, ϕ|[−r,0]),

for any (t, ϕ) ∈ R× C((−∞, 0],M).

As a consequence of Remark 2.2, it is not restrictive to study the broader class of RFDE’s of the type

x′(t) = g(t, xt), (2.3)

where g : R× C((−∞, 0],M) → Rk is a vector field on M . Therefore, from now on we will focus on this
kind of equations.

2.2. Initial value problem. We are now interested in the following initial value problem:{
x′(t) = g(t, xt), t > 0,
x(t) = η(t), t ≤ 0,

(2.4)

where M is a subset of Rk, g : R× C((−∞, 0],M) → Rk is a vector field on M , and η : (−∞, 0] →M is
a continuous map.

A solution of problem (2.4) is a solution x : J → M of (2.3) such that sup J > 0, x′(t) = g(t, xt) for
t > t̄ = 0, and x(t) = η(t) for t ≤ 0.

The following technical lemma regards the existence of a persistent solution of problem (2.4).

Lemma 2.3. Let M be a compact subset of a boundaryless smooth manifold N ⊆ Rk, and g a vector
field on M which is away from N\M . Suppose that g is bounded. Then problem (2.4) admits at least one
solution defined on the whole real line.

Proof. We define a suitable extension g̃ : R × C((−∞, 0],Rk) → Rk of g. Let U ⊆ Rk be a tubular
neighborhood of N and let ρ : U → N be the associated retraction (if N is an open subset of Rk, then
U = N and ρ is the identity). Fix δ > 0 such that Mδ = {p ∈ U : dist(p,M) ≤ δ} is a compact
neighborhood of M in U .

We extend g to a vector field g̃ : R× C((−∞, 0],Rk) → Rk with the following properties:

i) g̃ is bounded;
ii) g̃(t, ϕ) = 0 if dist(ϕ(0),M) ≥ δ;
iii) g̃(t, ϕ) ∈ Tρ(ϕ(0))N for all (t, ϕ) ∈ R× C((−∞, 0],Rk) such that ϕ(0) ∈Mδ.

Observe that the existence of a map g̃ satisfying the first two properties is ensured by the Tietze Extension
Theorem. In fact, C((−∞, 0],M) and {ϕ ∈ C((−∞, 0],Rk) : dist(ϕ(0),M) ≥ δ} are two disjoint closed
subsets of the metrizable space C((−∞, 0],Rk). Moreover, we may assume that g̃ has the additional
property iii). In fact, if this is not the case, it is sufficient to consider the orthogonal projection of g̃(t, ϕ)
onto the space Tρ(ϕ(0))N .
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Now, consider the following auxiliary problem depending on n ∈ N:{
x′(t) = g̃(t, xt− 1

n
), t > 0,

x(t) = η(t), t ≤ 0.
(2.5)

Clearly problem (2.5) has a solution defined on (−∞, 1/n] and, given a solution on (−∞, β], one can
extend it to the interval (−∞, β + 1/n]. Thus, problem (2.5) has a global solution xn : R → Rk. By
Ascoli’s Theorem we may assume that, as n → ∞, {xn(t)} converges to a continuous function x(t),
uniformly on compact subintervals of R.

Observe that problem (2.5) is equivalent to the following integral equation:

x(t) = η(0) +
∫ t

0

g̃(s, xs− 1
n
) ds, t ≥ 0.

Moreover, for any given t > 0, the sequence {g̃(t, xn
t− 1

n

)} converges to g̃(t, xt). Thus, g̃ being bounded,
from Lebesgue’s Dominated Convergence Theorem we get

x(t) = η(0) +
∫ t

0

g̃(s, xs) ds, t ≥ 0.

Therefore, x′(t) = g̃(t, xt) for all t > 0, and the assertion follows if we prove that x(t) lies entirely in M .
Let us show first that x(t) ∈ N for all t ≥ 0 (this could be false if g̃ were an arbitrary continuous

extension of g). Clearly x(t) ∈ Mδ for all t ≥ 0 (recall that g̃(t, ϕ) = 0 if ϕ(0) 6∈ Mδ). Thus, the C1

function
σ(t) = ‖x(t)− ρ(x(t))‖2

is well defined for t ≥ 0 and verifies σ(0) = 0. Assume, by contradiction, that x(t) /∈ N for some t > 0.
This means that σ(t) > 0 for some t > 0 and, consequently, its derivative must be positive at some τ > 0.
That is,

σ′(τ) = 2
〈
x(τ)− ρ(x(τ)), g̃(τ, xτ )− w(τ)

〉
> 0,

where 〈·, ·〉 denotes the inner product in Rk, and w(τ) is the derivative at t = τ of the curve t 7→
ρ(x(t)). This is a contradiction since both the vectors g̃(τ, xτ ) and w(τ) are tangent to N at ρ(x(τ)) and,
consequently, orthogonal to x(τ)− ρ(x(τ)).

It remains to show that x(t) ∈ M for all t > 0. Let s = inf{t > 0 : x(t) ∈ N \M}, and assume
by contradiction s < +∞ (here we adopt the convention inf ∅ = +∞). Note that x(s) ∈ M since M is
compact. Let {tn} be a sequence converging to s and such that x(tn) ∈ N\M . We have tn > s for all n
and

lim
n→∞

x(tn)− x(s)
tn − s

= x′(s) = g̃(s, xs) ∈ Cx(s)(N\M).

Now, the function xs takes values in M and, consequently, we have g(s, xs) = g̃(s, xs) ∈ Cx(s)(N\M),
contradicting the fact that the vector field g is away from N\M . �

From now on M will be a compact ∂-manifold in Rk. In this case one may regard M as a subset of
a smooth boundaryless manifold N of the same dimension as M (see e.g. [17], [21]). It is not hard to
show that a vector field g on M is away from the complement N\M if and only if it is strictly inward ;
meaning that g is inward and g(t, ϕ) 6∈ Tϕ(0)∂M for all (t, ϕ) ∈ R×C((−∞, 0],M) such that ϕ(0) ∈ ∂M .

We say that a subset Q of C((−∞, 0],M) is a brush if there is σ ≤ 0 such that

ϕ(θ) = ψ(θ), θ ≤ σ

for all ϕ,ψ ∈ Q. We will make the following assumption:
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(H) Given δ > 0 and any compact brush Q of C((−∞, 0],M), there exists L ≥ 0 such that

‖g(t, ϕ)− g(t, ψ)‖ ≤ L sup
s≤0

‖ϕ(s)− ψ(s)‖ (2.6)

for all t ∈ [0, δ] and ϕ,ψ ∈ Q.

Remark 2.4. Assumption (H) extends the one given in [16]. Indeed, in that monograph the authors
study equations of the type

x′(t) = h(t, xt),

where h : R × C([−r, 0],Rk) → Rk is Lipschitz in the second variable in each compact subset of R ×
C([−r, 0],Rk). Now, define g : R× C((−∞, 0],Rk) → Rk by

g(t, ϕ) = h(t, ϕ|[−r,0])

and observe that the vector field g clearly verifies (H).

We will use the following folk result, whose proof is given for the sake of completeness.

Lemma 2.5. Let α : [0, b] → Rk be a C1 function such that α(0) = 0 and

‖α′(t)‖ ≤ c sup
0≤s≤t

‖α(s)‖, t ∈ [0, b]

for some constant c ≥ 0. Then, α(t) = 0 for all t ∈ [0, b].

Proof. Let 0 < δ ≤ b be such that δc < 1. Let τ ∈ [0, δ] be such that ‖α(τ)‖ = max
0≤s≤δ

‖α(s)‖. We have

‖α(τ)‖ = ‖α(τ)− α(0)‖ ≤ τ sup
0≤s≤τ

‖α′(s)‖ ≤ δc‖α(τ)‖.

Being δc < 1, this inequality is verified if and only if α(τ) = 0. Thus α(t) = 0 for any t ∈ [0, δ], and the
assertion follows in a finite number of steps. �

The following proposition regards existence and uniqueness of solutions of problem (2.4) in the case
when g is inward, bounded, and verifies (H).

Proposition 2.6. Let M ⊆ Rk be a compact ∂-manifold and g an inward vector field on M . Suppose
that g is bounded. Then, problem (2.4) admits a solution defined on the whole real line. Moreover, if g
verifies (H), then the solution is unique.

Proof. As already pointed out, we may regard M as a subset of a smooth boundaryless manifold N of
the same dimension as M . Define ν : M → Rk as follows. Given p ∈ ∂M , let µ(p) be the unique unit
vector belonging to CpM ∩ (Tp∂M)⊥. Then, extend µ : ∂M → Rk by Tietze’s Theorem to a map from
M to Rk and consider its orthogonal projection ν(p) onto the space TpM for any p ∈M . For any n ∈ N
define the strictly inward vector field gn : R×C((−∞, 0],M) → Rk by gn(t, ϕ) = g(t, ϕ)+ 1

nν(ϕ(0)), and
let xn : R →M be a solution of the initial value problem{

x′(t) = gn(t, xt), t > 0,
x(t) = η(t), t ≤ 0,

whose existence is ensured by Lemma 2.3. As in the proof of that lemma, one can show that {xn(t)}
has a subsequence which converges uniformly on compact subintervals of R to a solution of problem (2.4)
defined on the whole real line.
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Assume now that g verifies (H). Let x1, x2 : R →M be two solutions of problem (2.4), and let b > 0.
Then, the set {xit ∈ C((−∞, 0],M) : t ∈ [0, b], i = 1, 2} is a compact brush, being the image of two
curves in C((−∞, 0],M). Thus, for any t ∈ [0, b] we have

‖g(t, x2
t )− g(t, x1

t )‖ ≤ L sup
s≤0

‖x2
t (s)− x1

t (s)‖ = L sup
s≤t

‖x2(s)− x1(s)‖ = L sup
0≤s≤t

‖x2(s)− x1(s)‖.

Let now y = x2 − x1. We have ‖y(t)‖ = 0 for t ≤ 0 and

‖y′(t)‖ = ‖g(t, x2
t )− g(t, x1

t )‖ ≤ L sup
0≤s≤t

‖y(s)‖, t ∈ [0, b].

Hence, the assertion follows from Lemma 2.5. �

2.3. Fixed point index. Here we summarize the main properties of the fixed point index in the context
of absolute neighborhood retracts (ANRs). Let X be a metric ANR and consider a locally compact
(continuous) X-valued map k defined on a subset D(k) of X. Given an open subset U of X contained
in D(k), if the set of fixed points of k in U is compact, the pair (k, U) is called admissible. It is known
that to any admissible pair (k, U) we can associate an integer indX(k, U) - the fixed point index of k in
U - which satisfies properties analogous to those of the classical Leray–Schauder degree [18]. The reader
can see for instance [5], [14], [22] or [24] for a comprehensive presentation of the index theory for ANRs.
As regards the connection with the homology theory we refer to standard algebraic topology textbooks
(e.g. [7], [26]).

We summarize for the reader’s convenience the main properties of the index.

i) (Existence) If indX(k, U) 6= 0, then k admits at least one fixed point in U .
ii) (Normalization) If X is compact, then indX(k,X) = Λ(k), where Λ(k) denotes the Lefschetz

number of k.
iii) (Additivity) Given two disjoint open subsets U1, U2 of U such that any fixed point of k in U is

contained in U1 ∪ U2, then indX(k, U) = indX(k, U1) + indX(k, U2).
iv) (Excision) Given an open subset U1 of U such that k has no fixed points in U\U1, then indX(k, U) =

indX(k, U1).
v) (Commutativity) Let X and Y be metric ANRs. Suppose that U and V are open subsets of X

and Y respectively and that k : U → Y and h : V → X are locally compact maps. Assume that
one of the sets of fixed points of hk in k−1(V ) or kh in h−1(U) is compact. Then the other set
is compact as well and indX(hk, k−1(V )) = indY (kh, h−1(U)).

vi) (Homotopy invariance) Let H : [0, 1] × U → X be a locally compact map such that the set
{(λ, x) ∈ [0, 1]× U : H(λ, x) = x} is compact. Then indX(H(λ, ·), U) is independent of λ.

3. Existence of periodic solutions

From now on we will adopt the following notation. By M we mean a compact ∂-manifold in Rk. Given
T > 0, by C0([−T, 0],M) we mean the (complete) metric space of the continuous functions ϕ : [−T, 0] →
M such that ϕ(−T ) = ϕ(0), endowed with the metric induced by the Banach space C([−T, 0],Rk).

Since M is an ANR, it is not difficult to show (see e.g. [8]) that the metric space C0([−T, 0],M) is an
ANR as well. For the sake of simplicity, from now on, the metric space C0([−T, 0],M) will be denoted
by M̃0.

Let f : R × C((−∞, 0],M) → Rk be an inward vector field on M which is T -periodic in the first
variable. Assume that f is bounded and verifies (H). We are interested in the existence of a T -periodic
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solution of the RFDE

x′(t) = f(t, xt).

Given ϕ ∈ M̃0, we will denote by ϕ̂ the unique element of C((−∞, 0],M) obtained by considering the
T -periodic backward extension of the function ϕ; i.e. ϕ̂ is defined as follows:

ϕ̂(θ) = ϕ(θ + nT ) if θ ∈ [−(n+ 1)T,−nT ], n ∈ N.

Observe that M̃0 is bounded and closed as a subset of the Banach space C([−T, 0],Rk). Hence, M̃0

being an ANR, there exist a bounded open subset U of C([−T, 0],Rk) containing M̃0 and a retraction ρ
of U onto M̃0.

Now, given λ ∈ [0,+∞) consider the operator

Pλ : U → C([−T, 0],Rk)

defined as Pλ(ψ)(s) = x(s + T ), where x is the unique solution, ensured by Proposition 2.6, of the
following initial value problem: {

x′(t) = λ f(t, xt), t > 0,
x(t) = ρ̂(ϕ)(t), t ≤ 0.

(3.1)

The following two propositions regard some crucial properties of Pλ.
The proof of Proposition 3.1 is straightforward and, therefore, it is omitted.

Proposition 3.1. The set of fixed points of Pλ is contained in M̃0. Moreover, the fixed points of Pλ
correspond to the T -periodic solutions of the equation

x′(t) = λ f(t, xt)

in the following sense: ψ is a fixed point of Pλ if and only if it is the restriction to [−T, 0] of a T -periodic
solution.

Proposition 3.2. The map P : [0, 1] × U → C([−T, 0],Rk), defined by (λ, ψ) 7→ Pλ(ψ), is continuous
with compact image.

Proof. To show that P is continuous, let {ψn} be a sequence in U which converges to ψ, and let {λn} be a
sequence in [0, 1] converging to λ. Since ρ is continuous, we have ρ(ψn) → ρ(ψ). Thus, ρ̂(ψn)(θ) → ρ̂(ψ)(θ)
uniformly for θ ∈ (−∞, 0].

Now, let xn : R →M be the unique solution (ensured by Proposition 2.6) of the initial value problem{
x′(t) = λnf(t, xt), t > 0,
x(t) = ρ̂(ψn)(t), t ≤ 0.

As in the proof of Lemma 2.3, one can show that every subsequence of {xn(t)} has a subsequence which
converges uniformly on compact subintervals of R to the unique solution x(t) of problem (3.1). Therefore,
xn(t) → x(t) uniformly on compact subintervals of R and, consequently, P (λn, ψn) → P (λ, ψ). This shows
that the map P is continuous.

The compactness of the image of P follows from Ascoli’s Theorem. �

We are now ready to establish our existence result.
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Theorem 3.3. Let M be a compact ∂-manifold with nonzero Euler–Poincaré characteristic, and f :
R× C((−∞, 0],M) → Rk an inward vector field on M which is T -periodic in the first variable. Suppose
that f is bounded and verifies (H). Then, the equation

x′(t) = f(t, xt)

admits a T -periodic solution.

Proof. First we observe that, by Propositions 3.1 and 3.2, the set {(λ, ψ) ∈ [0, 1] × U : P (λ, ψ) = ψ} is
a compact subset of [0, 1]× M̃0. Hence, the fixed point index indE(Pλ, U), where E = C([−T, 0],Rk), is
well defined and independent of λ ∈ [0, 1].

Now, if λ = 0, given ψ ∈ U , problem (3.1) becomes{
x′(t) = 0, t > 0,
x(t) = ρ̂(ψ)(t), t ≤ 0.

Any solution of this problem for t ≥ 0 is constantly equal to ρ(ψ)(0). It follows that

P0(ψ)(s) = ρ(ψ)(0), s ∈ [−T, 0].

Hence, P0 sends U into the subset of the constant M -valued functions (which can be identified with M),
and its restriction P0|M : M → M coincides with the identity IM of M . By the commutativity and
normalization properties of the fixed point index we get

indE(P0, U) = indM (P0,M) = Λ(IM ) = χ(M) 6= 0.

Therefore, indE(P1, U) 6= 0 and the existence property implies that the operator P1 has a fixed point.
This completes the proof. �

We close this section with the following example.

Example 3.4. Let g : R × Rk → Rk be a continuous map which is T -periodic in the first variable and
locally Lipschitz in the second one. Consider the equation

x′(t) = g(t, x(t)) +
∫ t

−∞
es−tx(s) ds,

which is of the form x′(t) = f(t, xt), where f : R× C((−∞, 0],Rk) → Rk is the vector field defined by

f(t, ϕ) = g(t, ϕ(0)) +
∫ 0

−∞
eθϕ(θ) dθ.

Assume that there exists c > 0 such that 〈g(t, v), v〉 ≤ 0 for ‖v‖ = c and all t ∈ R. Let M = B(0, c),
where B(0, c) denotes the open ball in Rk centered at 0 with radius c. Then, χ(M) = 1 since M is
contractible. Now, the restriction of the map f to R×C((−∞, 0],M) is a T -periodic inward vector field
on the ∂-manifold M . Moreover, it is easy to check that this restriction is bounded and verifies (H).
Hence, Theorem 3.3 applies to the equation yielding the existence of a T -periodic solution.

Let us observe that an analogous existence result was obtained using different techniques by Gaines
and Mawhin (see [13]).



10 P. BENEVIERI, A. CALAMAI, M. FURI, AND M.P. PERA

4. Applications to second order delay differential equations on manifolds

In this section we apply the results obtained above to some motion problems for forced constrained
systems.

Let X ⊆ Rs be a boundaryless manifold. Given q ∈ X, let (TqX)⊥ ⊆ Rs denote the normal space of
X at q. Since Rs = TqX ⊕ (TqX)⊥, any vector u ∈ Rs can be uniquely decomposed into the sum of the
parallel (or tangential) component uπ ∈ TqX of u at q and the normal component uν ∈ (TqX)⊥ of u at
q. By

TX = {(q, v) ∈ Rs × Rs : q ∈ X, v ∈ TqX}

we denote the tangent bundle of X, which is a smooth manifold containing a natural copy of X via the
embedding q 7→ (q, 0). The natural projection of TX onto X is just the restriction (to TX as domain
and to X as codomain) of the projection of Rs × Rs onto the first factor.

Given a vector field F : R×C((−∞, 0], X) → Rs which is T -periodic in the first variable, consider the
following retarded functional motion equation on X:

x′′π(t) = F (t, xt)− εx′(t), (4.1)

where

i) x′′π(t) stands for the parallel component of the acceleration x′′(t) ∈ Rs at the point x(t);
ii) the frictional coefficient ε is a positive real constant.

By a solution of (4.1) we mean a continuous function x : J → X, defined on a real interval J with
inf J = −∞, which verifies eventually the equality (4.1). That is, x is a solution of (4.1) if there exists
−∞ ≤ t̄ < supJ such that x is C2 on the subinterval (t̄, supJ) of J and verifies

x′′π(t) = F (t, xt)− εx′(t)

for all t ∈ J with t > t̄. A forced oscillation of (4.1) is a solution which is T -periodic and globally defined
on J = R.

It is known that, associated with X ⊆ Rs, there exists a unique smooth map R : TX → Rs, called the
reactive force (or inertial reaction), with the following properties:

(a) R(q, v) ∈ (TqX)⊥ for any (q, v) ∈ TX;
(b) R is quadratic in the second variable;
(c) any C2 curve γ : (a, b) → X verifies the condition

γ′′ν (t) = R(γ(t), γ′(t)), ∀t ∈ (a, b),

i.e., for each t ∈ (a, b), the normal component γ′′ν (t) of γ′′(t) at γ(t) equals R(γ(t), γ′(t)).

The map R is strictly related to the second fundamental form on X and may be interpreted as the
reactive force due to the constraint X.

By properties (a) and (c) above, equation (4.1) can be equivalently written as

x′′(t) = R(x(t), x′(t)) + F (t, xt)− εx′(t). (4.2)

Notice that, if the above equation reduces to the so-called inertial equation

x′′(t) = R(x(t), x′(t)),

one obtains the geodesics of X as solutions.
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Equation (4.2) can be written as a RFDE on TX as follows:{
x′(t) = y(t),
y′(t) = R(x(t), y(t)) + F (t, xt)− εy(t).

This makes sense since the map

G : R× C((−∞, 0], TX) → Rs × Rs, G(t, (ϕ,ψ)) = (ψ(0), R(ϕ(0), ψ(0)) + F (t, ϕ)− εψ(0)) (4.3)

is a vector field on TX. Indeed, observe that the condition

G(t, (ϕ,ψ)) ∈ T(ϕ(0),ψ(0))TX

is verified for all (t, (ϕ,ψ)) ∈ R× C((−∞, 0], TX) (see, for example, [9] for more details).

Theorem 4.1 below extends two results obtained in [2] and [4]. The proof is based on Theorem 3.3
above.

Theorem 4.1. Let X ⊆ Rs be a compact boundaryless manifold whose Euler–Poincaré characteristic
χ(X) is different from zero, and F : R×C((−∞, 0], X) → Rs a vector field which is T -periodic in the first
variable. Suppose that F is bounded and verifies (H). Then, the equation (4.1) has a forced oscillation.

Proof. As we already pointed out, the equation (4.1) is equivalent to the following first order system on
TX: {

x′(t) = y(t),
y′(t) = R(x(t), y(t)) + F (t, xt)− εy(t).

(4.4)

Define G : R× C((−∞, 0], TX) → Rs × Rs as in (4.3). Then, G is a T -periodic vector field on TX.
Given c > 0, define

Mc =
{
(q, v) ∈ TX : ‖v‖ ≤ c

}
.

It is not difficult to show that Mc ⊆ TX is a compact ∂-manifold in Rs × Rs with boundary

∂Mc =
{
(q, v) ∈Mc : ‖v‖ = c

}
.

Now, let Gc be the restriction of the map G to R×C((−∞, 0],Mc). Clearly, Gc is a T -periodic vector
field on Mc which verifies (H). Let us show that Gc is bounded. Indeed, the map F is bounded by
assumption, and the compactness of Mc implies that the restriction of the map (q, v) 7→ (v,R(q, v)− εv)
to Mc is bounded as well. Therefore Gc is bounded, being the sum of two bounded maps.

We claim that, if c > 0 is large enough, then Gc is inward on Mc. To see this, observe that the inward
half-subspace of T(q,v)(Mc) = T(q,v)(TX) at (q, v) ∈ ∂Mc is

T−(q,v)(Mc) =
{
(q̇, v̇) ∈ T(q,v)(TX) : 〈v, v̇〉 ≤ 0

}
,

where 〈·, ·〉 denotes the inner product in Rs. Thus we have to show that, if c > 0 is large enough, then
Gc(t, (ϕ,ψ)) belongs to T−(ϕ(0),ψ(0))(Mc) for any t ∈ R and any pair (ϕ,ψ) ∈ C((−∞, 0],Mc) such that
(ϕ(0), ψ(0)) ∈ ∂Mc. That is, we need to prove that, for any t and any pair (ϕ,ψ) with ‖ψ(0)‖ = c, we
have〈
ψ(0), R(ϕ(0), ψ(0)) + F (t, ϕ)− εψ(0)

〉
=

〈
ψ(0), R(ϕ(0), ψ(0))

〉
+

〈
ψ(0), F (t, ϕ)

〉
− ε

〈
ψ(0), ψ(0)

〉
≤ 0.

To see this, observe that
〈
ψ(0), R(ϕ(0), ψ(0))

〉
= 0 since R(ϕ(0), ψ(0)) belongs to (Tϕ(0)X)⊥. Moreover,〈

ψ(0), ψ(0)
〉

= c2 since (ϕ(0), ψ(0)) ∈ ∂Mc, and〈
ψ(0), F (t, ϕ)

〉
≤ ‖ψ(0)‖‖F (t, ϕ)‖ ≤ K‖ψ(0)‖,
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where K is such that ‖F (t, ϕ)‖ ≤ K for all (t, ϕ) ∈ R× C((−∞, 0], X). Thus,〈
ψ(0), R(ϕ(0), ψ(0)) + F (t, ϕ)− εψ(0)

〉
≤ Kc− εc2.

This shows that, if we choose c > K/ε, then Gc is a strictly inward vector field on Mc, as claimed.
Finally, observe that χ(Mc) = χ(X) 6= 0 since Mc and X are homotopically equivalent (X being a

deformation retract of TX), and χ(X) 6= 0 by assumption. Therefore, given c > K/ε, we can apply
Theorem 3.3 with M = Mc and f = Gc, and we get that system (4.4) admits a T -periodic solution in
Mc. This completes the proof. �
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