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Abstract. We consider a class of semilinear elliptic equations of the
form

—Au(z,y) + W (u(z,y)) =0, (z,y) € R? (0.1)
where W : R — R is modeled on the classical two well Ginzburg-Landau
potential W (s) = (s*> — 1)2. We show, via variational methods, that
for any j > 2, the equation (0.1) has a solution v; € C?*(R?) with
lvj(z,y)] < 1 for any (z,y) € R? satisfying the following symmetric
and asymptotic conditions: setting 9;(p,0) = v;(pcos(d), psin(0)), there
results

@j(p, % +9) = _ﬂj(p7 % - 9) and ﬂj(p70+ ?) = _'Dj(pvg)7 V(p,a) e R xR

and ¥;(p,0) — 1 as p — 4oo for any 6 € [§ — %, 7).

1. INTRODUCTION

We consider semilinear elliptic equations of the form
—Au(z,y) + W'(u(z,y)) =0 (1.1)
for (x,y) € R?, where we assume
(W) W € C%*R) satisfies W(—s) = W(s), W(s) > 0 for any s € R,
W(s) > 0 for any s € (—1,1), W(£1) =0 and W”"(£1) > 0.
Examples of potentials W satisfying (W) are the Ginzburg-Landau poten-
tial, W (s) = (s®> — 1)?, and the Sine-Gordon potential, W (s) = 1 4 cos(ms),
used to study various problems in phase transitions and condensed state
physics. In these models, the global minima of W represent energetically

favorite pure phases of the material and the solutions u of (1.1) pointwise
describe the possible stationary states of the system.
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The problem of existence and multiplicity of entire bounded solutions of
(1.1) has been widely investigated in the mathematical literature.

A long-standing problem concerning (1.1) (or its analog in greater dimen-
sion) is to characterize the set of the solutions u € C?(R?) (or u € C?(R™)
with n > 2) of (1.1) satisfying |u(x, y)| < 1, Oyu(x,y) > 0 and the asymptotic
condition

lim u(z,y) = £1, y €R (or y e R"71). (1.2)

r—+00
This problem was pointed out by Ennio De Giorgi in [14], where he con-
jectured that, at least when n < 8 and W (s) = (s? — 1)2, the whole set of
solutions of (1.1)—(1.2) can be obtained by the action of the group of space
roto-translations on the unique solution ¢, € C?(R), of the one-dimensional
problem

—(z) + W'(q(z)) =0, q(0) = 0 and g(+o0) = £1. (1.3)

The conjecture was first proved in the planar case by Ghoussoub and Gui
in [16] also for a general (not necessarily even) potential W satisfying (W).
We refer also to [9], [10] and [15], where a weaker version of the De Giorgi
conjecture, known as the Gibbons conjecture, has been solved for all the
dimensions n and in more general settings. The De Giorgi conjecture has
been proved for a general potential W in dimension n = 3 in [8] (see also [2]),
and for the Ginzburg-Landau potential in dimension n < 8 in [20], papers
to which we refer also for an extensive bibliography on the argument.

A different and related problem concerning equation (1.1) is the existence
of saddle solutions, which was first studied by Dang, Fife and Peletier in
[13]. In that paper the authors consider potentials W satisfying

(W1) W € C3([-1,1]) satisfies W(—s) = W(s), W/(£1) = W'(0) = 0,
W"”(£1) > 0 > W"(0) and the function W’(u)/u is strictly increasing
on (0,1).
They prove that if (W1) is satisfied then (1.1) has a unique solution u €
C?(R?) such that

u(z, —y) = —u(z,y) and u(—z,y) = —u(z,y) on R?,
0<u(z,y)<lifz>0andy>0. (1.4)

By (1.4), the solution u has the same sign of the function zy and is called
a saddle solution. The monotonicity of the function W'(u)/u allows the
authors to prove their result by the use a supersolution-subsolution method.

Moreover, we refer to a work by Schatzman [21] where the stability of the
saddle solution is studied and to a recent paper by Cabré and Terra [12]
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where, in the case of the Ginzburg-Landau potential, the existence and sta-
bility of saddle solutions is studied in dimension greater than 2. A vectorial
version of the result in [13] has been obtained by Alama, Bronsard and Gui
in [1], where systems of equations of the type (1.1) have been studied.

We finally mention a work by Shi, [23], where the result in [13] has been
generalized to the case in which W € C3([—1,1]) is a more general potential
satisfying

(W2) Ja € (—1,1) such that W(£1) = W/(+1) = W (a) =0, W' (£1) >
0> W"(«a) and W (u)(u —a) <0if ue (-1,1)\ {a}.
In [23], using a bifurcation and a blow-up argument already developed in
[24], Shi proves that for these potentials (1.1) has a unique saddle solution
u € C?(R?) satisfying

u(z,y) =aif zy =0, (u(z,y) —a)ry > 0 if zy # 0,
u(z,y)| < 1, u(z,y) = u(y, z) and u(z,y) = u(~y, —z) on R®.  (1.5)

In both the papers [13] and [23] it is moreover showed that the saddle solution
enjoys the following asymptotic property:
for any m > 0 there results lim, o u(z, mz) = 1.

Gathering these results, specializing the one in [23] to the case of even poten-
tials, we recognize that the saddle solution u satisfies the following symmet-
ric and asymptotic conditions: setting u(p,0) = u(pcos(0), psin(f)) there
results
(52) a(p, 5 +0) = —u(p, 5 —0) and u(p,0+ %) = —u(p, ) for any (p,0) €
R x R.
Moreover, u(p,0) — 1 as p — +oc for any 0 € |

1 2)
In other words, in the angle variable, the saddle solution is odd (with respect
to ) and 7§ is an antiperiodic. Consequently, the half-lines 6 = 5 + k3
(k=0,...,3) are nodal lines for u. The asymptotic behavior of u between
two contiguous nodal lines is characterized moreover by the fact that for
k = 0,...,3 there results @(p,0) — (—1)**' as p — +oo whenever 0 €
(3 + 455 + 50,

In the present paper we generalize the property (S2) to define what we
can call saddle-type solutions of (1.1); i.e., solutions u € C?(R?) of (1.1)
such that for a certain j € N there results

(57) a(p, 5 +0) = —t(p, 5 —0) and u(p,0+ %) = —u(p,0) for any (p,0) €
R* x R.
Moreover, u(p,0) — 1 as p — +oo for any 6 € [§ — 77, 5).
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A saddle-type solution satisfying (Sj) is antisymmetric with respect to
the half-line § = 5, and QJl—periodic in the angle variable. It has 2j nodal
lines since u(p, 5 + k]—’r) =0forp>0,k=0,...,25 — 1, and its asymptotic

behavior is characterized by the fact that for k =0,...,27 — 1 there results
@(p,0) — (—1)*1 as p — +oo whenever 0 € (3 + k]—?r, 5+ (]H;.l)ﬂ).
Our main result is the following.

Theorem 1.1. If (W) holds true, then for any j > 2 there exists u € C%(R?)
a solution of (1.1) satisfying (Sj) and such that |u(x,y)| <1 for any (z,y) €
R2.

We remark that the validity of Theorem 1.1 was already conjectured by
Shi in [22] where the author named the saddle-type solutions as “pizza’
solutions.

We note moreover that the same kind of symmetry has already been con-
sidered by Van Groesen ([25]) and by Alessio and Dambrosio ([3]) in looking
for nonradial solutions of radially symmetric elliptic equations on the unit
disc in R2.

Since, as one plainly recognizes, the one-dimensional solution u(x,y) =
¢+ (z) of (1.1) satisfies the condition (S1), by Theorem 1.1 we see that for any
j € N there exists a saddle-type solution of (1.1). Moreover, the asymptotic
conditions characterizing a saddle-type solution guarantee that if v and v
respectively satisfy (Sj) and (Sk), with j # k, then u and v are geometrically
distinct; i.e., one is not the rotation of the other. Then, Theorem 1.1 gives
rise to the existence of infinitely many, nonradial and geometrically distinct,
bounded entire solutions of (1.1).

We note that we do not require any sign condition on W', as in (W1) and
(W2), and in this sense our result, specialized to the case j = 2, generalizes
the ones in [13] and [23]. On the other hand, the evenness of the potential,
which we need in our proof to get sufficient compactness in the problem, is
not required in (W2), and it should be interesting to understand whether it
is possible to establish an analog of Theorem 1.1 without that assumption.

Our proof of Theorem 1.1 is linked to but different from the one used
by Alama, Bronsard and Gui in [1]. While in [1] variational arguments
are used to find the saddle solution by an approximation procedure, using
bounded planar domains, in Section 3 we develop a direct variational pro-
cedure, inspired by the one introduced in [4], which allows us to find the
saddle-type solutions as minima of suitable renormalized action functionals

(for the use of renormalized functionals in different contexts we also refer to
(17, 18, 19, 6, 7]).
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Our approach leads to a very simple proof. For the sake of completeness,
we prove most of the intermediate results even if already present in the
literature. In Section 2, as a preliminary study, we recall and organize a list
of properties of the one-dimensional problem associated to (1.1). In Section 3
we build up the variational principle and then prove Theorem 1.1.

2. THE ONE-DIMENSIONAL PROBLEM

In this section we recall some results concerning the one-dimensional equa-
tion associated with (1.1). In fact, given L > 0, possibly L = 400, we focus
our study on some variational properties of the solutions to the problem

{_W) +W'(q(x)) =0, z€(~L,L),

d(—2) = —q(a), ve(~L,L). (21)

Remark 2.1. We make precise some basic consequences of the assumptions
on W, fixing some constants that will remain unchanged in the rest of the

paper. B
First, we note that since W € C%(R) and W”(41) > 0, there exists § €
(0,4) and @ > w > 0 such that

g
w > W"(s) > w for any |s| € [1 — 25,1+ 2] (2.2)

In particular, since W (£1) = W/(£1) = 0, setting x(s) = min{|1—s|, |1+s|},
we have that

S < W(s) <

v gl

x(s)? and |[W'(s)| < wx(s), V|s| € [1 — 26,1+ 24].
(2.3)
We consider the space
I'={q € H,.(R) : g(z) = —g(—) for any z € R},

and the functional
1,.
Fla) = | 3@+ Wla(@)do.

Moreover, if I is an interval in R, we set
1.
Fi(a) = [ SH@P + W(g(a)) da.

Remark 2.2. We note that F' and F7y, for any given interval I C R, are well
defined on H} (R) with values in [0, +oc] and weakly lower semicontinuous
with respect to the H} (R) topology.

loc
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We are interested in the minimal properties of F' on I', and we set
c:irllfF and K={¢gel:F(q) =c}.

Remark 2.3. We note that if ¢ € I is such that W(g(x)) > w > 0 for any
x € (0,7) C R, then

Flor)(@) 2 5753 1a(T) = a(0)* + w(r = 0) > V2w |q(7) — q(0)|.  (24)

In particular, if ¢ € T' and § > 0 are such that |¢(z)] < 1 — 6 for every
x € (o,7) C R, then

Fiom () = / P+ W(q) da > ws(r — o),

where

= min W(s)>0, 4§€(0,1). 2.5
ws = min (s) (0,1) (2.5)

Finally, we will denote

5 -
As = min{1; , /2w5/21; @%} and in particular A = A3, (2.6)
where § was fixed in Remark 2.1.
Lemma 2.1. If g € I is such that F(q) < c+ X, then ||q||poo@) < 1+ 26.

Proof. Let ¢ € T" and assume for the sake of contradiction that there
exists zg such that g(xg) > 1+ 20. Up to reflection, we can assume that
xo > 0. Since ¢(0) = 0 and ¢ is continuous, there exist x1,0,7 € R with
0 <z <o <7 <uxgsuch that g(z1) =1, q(c) =1+, q(7) = 1+ 25 and
1+0 < g(x) <1426 for any z € (o,7). By (2.3), W(q(x)) > %52 for any
z € (0,7), and then, by (2.4) and (2.6), we obtain F{, ;)(q) > 2X. Moreover,
since ¢ € I' and ¢(z1) = 1, we have also F(_,, ;,)(¢) > c. Then, we reach
the contradiction ¢+ A > F(q) > F(_y, 21)(q) + Flo.r)(q) > ¢+ 2. O
Note that, as a consequence of Lemma 2.1, using Remark 2.3 and the fact
that W (s) > 0 for any |s| < 1+ 26, |s| # 1, one plainly recognizes that

if ¢ € T is such that F(q) < ¢+ A then |¢(z)] — 1 as ¢ — F+o0.  (2.7)

Moreover, again by Lemma 2.1, we easily derive the following first compact-
ness result.

Lemma 2.2. Let (q,) C T be such that F(q,) < c+ X for alln € N. Then,
there exists ¢ € I' such that, along a subsequence, g, — q in LjS.(R) and
4n — G weakly in L*(R). Moreover, F(q) < liminf, . F(qn)-
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Proof. Since F(g,) < ¢+ A for any n € N, by Lemma 2.1 we find that
gnllpoer) < 1+ 26. Since [|gn| < 2(c + A) for any n € N, we obtain that
there exists ¢ € HZIOC(R) such that, along a subsequence, ¢, — ¢q weakly
in H. (R), so in L (R), and ¢, — ¢ weakly in L?(R). Moreover, since

loc

gn(—2) = —gqu(x) for any x € R, n € N, by pointwise convergence we obtain
qg(—z) = —q(x) for all x € R and so ¢ € T. Then, the lemma follows by
Remark 2.2. O

By Lemma 2.2, the Weierstrass theorem tells us that the functional F
attains its infimum value on T ie., K # (. Since W(s) = W(—s), it
is classical to derive that if ¢ € K then ¢ satisfies the equation —{(z) +
W'(q(z)) = 0, € R, and moreover, by (2.7), we have that |¢(z)] — £1 as
r — F00. A simple comparison argument shows moreover that ||q[[ oo ®) <
1. As proved e.g. in [5], Lemma 2.2, we know that the equation —g(z) +
W'(q(z)) = 0 admits, modulo translations, a unique solution on R satisfying
the conditions ¢ ze@®) < 1 and lim; 1o q(z) = £1. In addition, that
solution is increasing on R. This information and the symmetry of our
problem allow us to conclude the following.

Proposition 2.1. There exists a unique g* € T such that F(q") = ¢ and
g (x)x > 0 for all z € R. Moreover, gt € C?*(R) satisfies —G*(z) +
W'(¢g"(z)) = 0 for all x € R with ¢ (z) — 1 as * — +o00. Finally, set-
ting q~ () = —q*(z), there results K = {q*,q" }.

For our purposes, we need to better characterize the compactness proper-
ties of F'. In Lemma 2.3 below we first describe concentration properties of
the functions in the sublevels of F.

Remark 2.4. By Remark 2.3, for every d > 0 there exists £; > 0 such that
if Flo.r)(q) <c+1and |g(z)] <1—d for every x € (0,7), then 7 — 0 < {4
Given 6 € (0, 0] we fix d(6) € (0,3) such that (1 + w)d(5)? < A\s. We denote

Ls = £4(5) and in particular L= Ls.

Lemma 2.3. Let § € (0,0], ¢ € T and L > Ls be such that F_p 1(q) <
c+ As. Then |q(x)| >1—40 for all x € [Lg, L].

Proof. By the choice of Ls in Remark 2.4, since

Forn(@) < Fpn(g) <c+ s <c+1,
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there exists € [0, Ls| such that |¢(Z)] > 1 — d(d). Up to a reflection, we
can assume ¢(Z) > 1 — d(d) and we set
(

-1 ife <-z-—1,

—q@)+ (1 —-q@)(z+2) ifre[-z-1,-7]
a(x) = ¢ q(x) if x € [-7,7],

@)+ (1 —q@)(x—z) ifzelz,z+1]

1 if v >+ 1.

Since by (2.3) we have
W(q(x)) < §(1 - q(2))* < §(1 - q(2))? < §d(8)? for any « € [z,7 + 1],
a direct estimate tells us that Flz ;11)(q) < $(1 +w)d(6)%. Hence, since
g € ', by symmetry and the choice of d(d) in Remark 2.4, we obtain
¢ < F(q) < Fzz(q) + (1 +0)d(8)* < Fi_z 5(q) + As. (2.8)

Assume now for the sake of contradiction that there exists £ € [Lg, L] such
that ¢(¢) < 1-—0. Then by continuity there exists an interval (o, 7) C (Z, &)
such that q(0) = 1 -5, g(r) =1 -5 and 1 -6 < ¢(x) < 1 — § for all
x € (o,7). By (2. 4) and (2 6), we obtain
)

0)(@) = Flomy (@) = 1/2ws/05 > 225,

and then, by symmetry and (2.8), ¢+ As > F_r1)(q9) = F_z2(q)
2F(3,1)(q) = ¢ — A5 +4Xs = ¢+ 3\, a contradiction.

O+

Remark 2.5. Note that if ¢ € I’ and F(q) < ¢+ A, then Fi_y 1y(¢) <c+ A
for any L > L. Then, by Lemma 2.3, we have |¢(x)| > 1 — 6 for all z > L.

By Lemma 2.3 we derive the following compactness property of F.
Lemma 2.4. If (¢,) C T satisfies F(qgn) — ¢, then distg(g)(gn, £) — 0.

Proof. To show that disty1(g)(gn, K) — 0 we prove that given any subse-
quence of ¢, we can extract from it a sub-subsequence along which

diStHl(R) (qn, ,C) — 0.

Fixed any subsequence of (gy), still denoted (g,), let 7 € N be such that
F(gn) < c+ Afor all n > n. By Remark 2.5 we obtain that

lgn(z)]| > 1= forall x > L, n > n. (2.9)

Moreover, Lemma 2.2 implies that there exists ¢ € I' and a subsequence
of (gn), still denoted (gy), such that ¢, — ¢ in L{S.(R), ¢, — ¢ weakly in
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L?(R) and F(q) = c. In particular, ¢ € K, and by the pointwise convergence,
lg(x)] >1—6 for all z > L.

Up to a reflection, we can assume that along this subsequence there results
qn(z) > 1 —06 for all z > L, n > n. This implies that g(z) > 1 — ¢ for all
x> L, and since ¢ € K = {q~,q"} we derive ¢ = ¢©. The lemma will follow
once we show that ||g, — ¢ g1 () — 0.

Let us first prove that ¢, — ¢* in L2(R). Since ¢, — ¢+ weakly in L?(R),
it is sufficient to derive that ||¢n|lz2@®) — 147 |lr2@). By the weak semi-
continuity of the norm, we have that liminf, . oo [lgnll2@)y > 14" I L2R)-
Moreover, since W (s) > 0 for all s € R, by pointwise convergence and Fa-
tou’s lemma we obtain

hmlnf/an dx>/W

Hence,

lim sup ||¢n| 2wy = limsupZ(F qn) /W qn) dx)

n—-+00 n—-—+o0o

—202hm1nf/an ) dx <2c—2 /W ) do = ||¢" ”LQ(R

n—-+o0o

proving as we claimed that ¢, — ¢+ in L?(R)

Let us now show that ¢, — ¢* — 0 in L? (R) First note that by the weak
convergence in H}, (R), there results ||¢, — ¢ || 12((~ 1,1y — 0 for any L > 0.
Moreover,

1. L.
[ Wlan@) dz = Pla) = iz — (@) = 316 lzae

- / W(gH(x) de
R

and since for any L > 0

+oo +oo
W(q") dr < liminf W(gyn) dx,
L n—+oo J,
we derive that
+oo “+o0o
W(qy) dz — W(g") dz for all L > 0.
L L

Then, given any € > 0, let L > L be such that fLJroo W(q") dz < e and let
nog > 1 be such that fLJroo W(gn) dx < 2¢ for all n > ng.
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Now, by Lemma 2.1 and (2.9), we have that 1 —§ < g, (z) < 1+ 2 for all
n >0, z > L, and hence, by (2.3), W(gn(z)) > 2(1 — gn(z))? for all z > L,
n > n. Then, for all n > ng we obtain

+o00 +oo
[ aa@ra<d [ W) do<
L L

s &

Moreover, by pointwise convergence, we obtain also 1 — 5 < qt(z) <1+ 20
for all x > L, and therefore, as above, we derive
+00

+oo
/ (1—q¢"(2)?dzs <2 W(q"(z)) do < .
L —JL -
Then, for all n > ng we conclude
lan = 0" 22y = lan— a1y + 200 — 0" Bz sooy

o(1) + 2llgn = ¢ 172 (2. 4o0))
0o(1) +4(llan = UZ2(z oo + 11 = a" 17211 100y)
o(1) + 210—45,

IN

IN

where o(1) — 0 as n — +00, and then, as we claimed, [l¢gn — ¢*||L2) —
0. O

Note that Lemma 2.4 is actually equivalent to saying that for all » > 0
there exists p, > 0 such that

if ¢ € I satisfies distzi(g) (g, K) > 7, then F(q) > ¢+ py. (2.10)
Fixing any L > 0, we now consider the functional F, = F(_r, 1) on the space
Iy ={g€ H'((-L, L)) : q(x) = —q(~=) for any x € (—L, L)},

and we set ¢y, = infp, Fr, and K, = {q € T'r, : Fr(¢) = c1}, noting that
¢>cr >0 for any L > 0.

Proposition 2.2. For every L > 0 there results Ki, # 0, and if ¢ € Ky,
then q € C*((—L, L)) satisfies —j(z)+W'(q(z)) = 0 for allx € (—L, L) and
G(£L) = 0. Moreover, if L > L, then 1 — 6 < |q(z)| for all x € [L, L] and

0<1—q(z) <ov2eVEE vz e (L, L.

Proof. Fixing L > 0, let (¢,) C I'r, be such that Fr(g,) — cr. Note that
it is not restrictive to assume that ||qn || g ((—r,)) < 1 for all n € N. Indeed,
setting G, (x) = max{—1; min{1;¢,(z)}} for all z € R and n € N, we obtain
that ¢, € I't, F(Gn) < Fr(gn) and ||Gnllpoc((—1,2)) < 1.
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Since ||qn||lpo((~1,0)) < 1 and ‘|qn||L2((—L,L) < 2(er, + 1) for any n € N
sufficiently large, we obtain that there exists ¢ € H'((—L, L)) such that,
along a subsequence, ¢, — ¢ weakly in H'((—L, L)) and hence strongly in
L>*((—L,L)). Then, ¢(—x) = —q(z) for all x € (—L, L), and hence q € T'f,
and Fr(q) > cr. By Remark 2.2, we conclude that ¢ € K. Then, it is
standard to show that

L .
/_ @+ W@ de =0, Vi € C (L))

and hence that ¢ € C?((—L, L)) satisfies —g(z) + W'(g(z)) = 0 for all
x € (—L,L) and ¢(£L) = 0.

Note that if L > L and ¢ € K, then Fr(¢) = ¢, < ¢ < ¢+ A, and by
Lemma 2.3 we derive that |¢(z)| > 1~ for all z € [L, L].

To complete the proof we have now to show the exponential estimate.
Consider the function

o) = {q(a:) if z € [L, L]
q(2L —x) ifz € [L,2L — L.

Observe that, since ¢(L) = 0, we have v € C*([L, 2L — L]) and, by definition,

1 -0 < |v(z)| for all x € [L,2L — L]. Moreover, —i(x) + W'(v(z)) = 0 for

all z € (L,L)U(L,2L — L), and we find that v € C*([L,2L — L]) solves the

equation on the entire interval (L,2L — L). B

We set ¢(z) = (1 —v(x))?, 2 € [L,2L — L]. Then we have 0 < ¢(x) < 6
for all x € [L,2L — L], and, by (2.3),

o(z) = —2(1-v(x )) z) +20%(z) > —2W'(v(z))(1 - v(@))
= 2(W'(1) = W'(v(2))(1 - v(z)) = 2w(l — v(2))* = 2wo(x).
L))
)

Defining ¢(z) = 52%, for x € (L,2L — L), noting that (L) =

L
V(2L — L) = 6% and that ¢(z) = 2wy (x) for all z € (L,2L — L), one
recognizes that the function n(z) = ¥ (x) — ¢(x) satisfies

{ﬁ(m) < 2uwn(z), ve (L,2L L),

’\A

2
Thus, n(x) > 0; i.e., Y(x) > ¢(z), for all x € [L,2L — L], and so

< [ cos w(z— 1/2 7 7
OSl—U(Jﬁ)Sé(%) for all x € [L,2L — LJ.
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Since for # € [L, L] there results v(z) = g(x) and 2cosh(y/2w(z — L)) <
2eV2u(L=2) and since 2 cosh(y/2w(L — L)) > eV2u(l- L), we find

0<1—qlz) <5v2eVEE gelL L]
and the lemma follows. OJ

Thanks to Proposition 2.2 we can better characterize the behavior of the
function L — cy,.

Lemma 2.5. The function L — cy, is monotone increasing with ¢y, — ¢ as
L — +o00 and precisely

OSC—CLSC'G*@L, VL > 0.

Proof. To prove the monotonicity of L +— cr, fix L; < L9 and let ¢ € Kr,;
one has c¢r, < Fr,(q) < Fr,(q) = cr,. Analogously ¢, < ¢ for any L > 0
since cp, < Fr(¢7) < F(¢™) =c.

Let us prove now the exponential estimate. For ¢ € K, L > L, assuming
(without restriction) that g(z) > 1 — 6 for x € [L, L], we set
(

-1 ife<-L—-1

1+ (-L)+1)(L+1+z) ifxe[-L—-1,-L]
4(z) = < q(x) ifxe(—L,L)

1+ (¢(L) —1)(L+1-2x) if x € [L,L+1]

1 if o> L+1,

\
noting that ¢ € I and so F(§) > ¢. Moreover, by symmetry, F(§) = cr +
2F (1, 1.+1)(9), and we deduce that ¢ —cp, < 2F (7, 111)(q)-
To evaluate Fir, 1,11)(¢) we simply note that
L+1 1 5
Fuam@= [ 5l —aDF + W@
and that by (2.3)
- w -

W(q(z)) < 5 (1= q(@))* <
By Proposition 2.2 we have 1 — ¢(L) < 6\/_6\/—(L L) and so Fir+1(q) <
(1 +w)d%eV?2(L=L)  from which we conclude

0<c—cp<2(1+w)s2eV?le V2l yr > [

(1—q(L))?, for all z € [L, L +1].

MISI

Since ¢ — ¢, < ¢, we then obtain the existence of a constant C' > 0 such that,
as we stated, 0 < c¢— ¢, < Ce V2wl {4 any L > 0. O



SADDLE-TYPE SOLUTIONS 373

To proceed to study the elliptic problem on R?, we finally need to state a
further compactness property concerning the functionals F7,.

Lemma 2.6. Let y, — +oo and (gn,) C Iy, be such that Fy, (gn) — ¢y, — 0
as n — +o0o. Then,

diStHl((—ynyn)) (qn, IC) — 0.

Proof. As in Lemma 2.4 we show that given any subsequence of ¢,, we can
extract from it a sub-subsequence along which distg((—y, 4.))(@n, K) — 0.
So, we fix a subsequence of (g,), denoted again (gy,).

Fixing a sequence 0, — 0, let Lj, be given by Remark 2.4 and \s, by (2.6).
Since y, — +oo and since Fy, (gn) — ¢y, — 0, there exists an increasing
sequence (ng) C N such that for any k& € N there results y,, > Ls, and
Fy, (an,) < ¢y, +As,. Then, by Lemma 2.3, we have that ¢y, (Yn, )| > 1—0.
Assuming, up to reflection, that g, (yn,) > 1 — dx, we set

-1 ife < —yp, —1

14 (q(=yny) + V(L + 14 2) i 2 € [=yn, —1,—yn;]
(jnk (1:) = 3 9n; (x) S [_ynkaynk]

1+ (q(yn,) = D)(yn, +1 —2) if € [Yny» Y, +1]

1 ite >yp, +1,

\

noting that ¢,, € I' and hence F(gn,) > c for any k € N. Moreover, by
(2.3),

. - 1 . -
F(Gn) = Fy (Gn) + / L2+ WG, do
ynk§|$|§ynk+1 2

Fy, (an,) + (1 +0)5; < ¢y, + As, + (1 +W)05.

N
Since ¢y, — ¢, we have F(Gn,,) — c and so, by Lemma 2.4, distg1(g)(Gn,,, K)
— 0. In particular, distg1((—y, 4, ))(@n, K) < distgig)(Gn,, ) — 0. O

By the previous lemma we obtain in particular that for all » > 0 there
exist v > 0 and M, > 0 such that for all L > M,,

if ¢ € I'f, satisfies disty1((_r, 1)) (¢, K) > 7 then F(q) > cp + v (2.11)

3. SADDLE-TYPE SOLUTIONS

We fix j € N, j > 2. Setting a; = tan(%), from now on, given y > 0, with
abuse of notation we denote I, = (—a;y, a;y), I'y = Loy, ¢y = Cajy, and for
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q € T'y, we set Fy(q) = Fy;y(q). We define
T={(z,y) eR*: 2 €I, y> 0},
M={ue H} (T):u(z,y) = —u(—z,y) for a.e. (z,y) € T}.

We consider on M the functional

400
e = [ 10 + (Fylut) = ) dy

Note that if u € M then u(-,y) € I'y for almost every y > 0, and so
Fy(u(-,y)) — ¢y > 0 for almost every y € R. Hence we find that ¢ is well
defined on M with values in [0,4o00]. Moreover, as in [4], Lemma 3.1, one
can prove that ¢ is weakly lower semicontinuous with respect to the H, (T
topology. We apply the direct method of the calculus of variations to look for
a minimum of ¢ on M. This problem is meaningful since, as a consequence
of the following simple lemma, there results

=infp < .
m 1/1\14 p < +00
Lemma 3.1. Setting ut(z,y) = q*(z) for any (z,y) € T, there results
ut € M and p(ut) < +oo, where g7 is defined in Proposition 2.1.

Proof. Note that, trivially, «* € M and [|0yu™ (-, y)|l12(z,) = 0 for any
y > 0. Then, by Lemma 2.5

+00 +oo
o) = [ R e dy < [P C) — ey dy
+oo +oo
:/ c—cydng/ eV Jy < foo,
0 0
and the lemma follows. OJ

We remark that if u € M and (o, 7) C RT, then defining Q, ;) = I X
(o,7), we have u € HI(Q(U,T)). This implies that for almost every = € I,
the function u(z,-) is absolutely continuous on [0, 7]. In particular,

T 2 T
ue.1) —ulz,0)P = | [ outeg)dy] < -0) [ 1outa)?d,
and so integrating on I, we obtain
(o) = (o) 2,y < (7 = )yl ) (3.1)

By (3.1) we find in particular that given any bounded interval I C R and any
u € M, if § > 0is such that I C I then the function y > 5 — u(-,y) € L*(I)
is continuous.
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Another important observation for our construction is an estimate con-
cerning the functional ¢, analogous to the one we gave in (2.4) for the one-
dimensional functional F. Given (¢,7) C Ry and u € M we let

Plon®) = [ 10 ) Bagr, + (Fifu9) - ) do

Note that, if u € M is such that Fy(u(-,y)) — ¢y, > p > 0 for almost every
y € (o,7) C R, then

Cantt) = grmslul.r) = uC. ), +ulr =)
> \/ZHU@T)—U(HU)HB(IU)- (3.2)

The estimate (3.2), together with Lemma 2.6, allows us to characterize
the asymptotic behavior, as y — +oo, of the functions u € M such that
o(u) < +o0. Precisely,

Lemma 3.2. If u € M and p(u) < +0o0, then, fizing any bounded interval
I C R, we have

distz2(py(u(-,y), K) — 0 as y — +oo.

Proof. Since p(u) < 400 and Fy(u(-,y) — ¢, > 0 for almost every y > 0, we
plainly derive that there exists an increasing sequence y, — +oo such that
Fy (u(-,yn)) — ¢y, = 0. Fixing any bounded interval I C R, by Lemma 2.6
we obtain that distzz(r)(u(+;yn), K) — 0 as n — +o0. Possibly considering
the function —u, it is not restrictive to assume that along a subsequence, still
denoted (yy), we have [lu(,yn) — ¢*||2(;) — 0 as n — +o00. We claim that
in fact ||u(-,y) —q+HL2(I) — 0 as y — 4o0. Indeed, arguing by contradiction,
by (3.1) we obtain the existence of a sequence of intervals (o, 7,), a positive
number 79 > 0 and a positive integer n; € N such that I C I, and for
n > n1 there results

1) (on, ™) C (Yn, Ynt1),

i) fu(-;7n) = u, 00)llL2(r) = 7o,

iii) distz2(py(u(:,y),K) > ro, for any y € (0, Tn)-
By (2.11) and (iii) we find that there exists vy > 0 and ny > n; such that
Fy(u(-,y)) — ¢y > 1 for any y € (op, ™) and n > ny. Using now (3.2) and
(ii) we find that ¢, -.)(u) > /270 > 0 for any n > 72z and so, by (i), we
conclude p(u) > >° <5 ¥(o, ) (1) = +00, a contradiction which proves the
lemma. D

We can now prove the following existence result.
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Proposition 3.1. There exists u € M such that p(u) = m, [[il|per) <1
and u(-,y) —q" — 0 in L2 (R) as y — +oo.

loc
Proof. Let (u,) C M be a minimizing sequence for ¢. Note that, if we
consider the sequence wy,(z,y) = max{—1; min{1;u,(z,y)}} we have that
wy, € M and p(w,) < ¢(uy). Then it is not restrictive to assume that
|wn|lLoe(ry < 1 for any n € N.

It is not difficult to recognize that, fixing any r > 0, if T, = T N {y < r},
then (u,) is a bounded sequence on H'(T}.).

Indeed, since ||up||poc(ry < 1 for any n € N we have [Jun|p2(7,) < [T;] <
+oo for any n € N. Moreover, since HByunH%Q(Tr) < 2p(upn) =2m+o(1) and
since

Ha:vunH%?(Tr):/ / |0zt (z,)|? da dy
0 JI

< 2000,y (un) + 2/ cy dy < 2p(uy) + 2cr < 2(m +cr) 4 o(1),
0

there exists a constant C, > 0, depending on r, for which ||Vuy, ||, 1) < C,
for any n € N, and our claim follows.

Thus, by a classical diagonal argument, there exists u € Hlloc(T) and
a subsequence of (uy,), still denoted (u,), such that w, — a — 0 weakly
in H. (T) and for almost every (z,y) € T. By pointwise convergence,
since un(z,y) = —un(—2,y) and |[up||pe(ry < 1 for any n € N and for
almost every (z,y) € T, we find that also u(x,y) = —u(—=x,y) for almost
every (z,y) € T and |[[u[/zeo(7) < 1. Then u € M and by the weak lower
semicontinuity property of ¢ we obtain that p(u) < m and then ¢(u) = m.

Moreover, by Lemma 3.2 it follows that fixing any bounded interval I C R,
we have

distz2(py(u(-,y), K) — 0 as y — +oo.

Then, by Proposition 2.1 and (3.1) we have either @(-,y)—¢™ — 0 or @(-,y) —
¢~ — 0in LS (R). If the second case occurs, the lemma follows considering
the function —u. O

By Lemma 3.1 we have that if ¢ € C§°(R?) satisfies ¢ (z,y) = —¢(—x,y)
then p(u+1)) > p(u). This is sufficient to show, as stated in the next lemma,
that in fact @ is a weak solution on T of the equation —Au + W' (u) = 0.

Lemma 3.3. For any ¢ € C§°(R?) we have

/ Va - Vi + W (a) = 0.
T
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Proof. Letting ¢ € C§°(R?) we set

Yoz, y) = 5(¥(x,y) — ¥(—=,y)) and ¢ (z,y) = 3((z,y) + b(—z,9)).

Since the functions Vu - Vi, and Vi), - Vi) are odd in the variable x we
have that for any ¢ > 0 there results

Flp(a+t) — (@) = 1 (p(a+ to) — p(a))
+ %/ 192+ W (@ + 1) — W (@ + t) da dy.
T
Since @ is a minimum point for ¢ on M and since u + t), € M we then find

L ((a+ ) — /Wu+w> W (@) + W (@) — W (@ + 1) da dy.

By using the dominated convergence theorem, since the function W’ (), is
odd in the variable x, we finally obtain

/ V- Vo + W) dedy = Iy Lo+ 16) - o(a)

T t—0t

> lim W(u—i_tw) W@ | (u)_mg(aﬂwo) drdy = /TVV’(E)@ZJ6 dx dy = 0.

This proves that
/ Va - Vi + W (a)dedy >0
T

for any ¢ € C§°(R?), which is actually equivalent to the statement of the
lemma. t

We are now able to construct, from the function @ : T — R given by
Proposition 3.1, a function v; : R* — R solution to (1.1) satisfying the
conditions (S j) and then to conclude the proof of Theorem 1.1. Indeed,

setting 0; , we consider the rotation matrix
A= H cos( sm H
—sin(f;) cos(

and for £ =0,...,25 — 1, we denote by Ty, the kﬂj-rotated of T; ie., Ty =
A?T. Note that we have R? = Ui‘folTk, and that if k; # ko, then int(T),) N
int(Ty,) = 0 (see Figure 1).

Ifj>2and 0<k<2j—1, we have Aj_ka =T, and so we can define

vi(e,y) = (=D*a(A7 (x,y)), V(z,y) € Ti.



378 FRANCESCA ALESSIO, ALESSANDRO CALAMAI, AND PIERO MONTECCHIARI

FIGURE 1. The families {T}, /k =0,...,2j — 1} for j =2,3

Note that vj|p, is the reflection of vj|z, with respect to the axis which sep-
arates Ty from 77 and, in general, vj|7, is the reflection of vj|7,_, with
respect to the axis separating Tj_1 from Ty, for any k € {1,...,25 — 1}.
From the properties of the reflection operator (see e.g. [11], Lemma IX.2.),
since & € H. (Tp), we find that v; € H.} (R%). Moreover, note that if
Y € CO(R?) and k € {1,...,25 — 1} then, trivially, v o Af € C5°(R?) and
so by Lemma 3.3 we obtain

Vo V+W (v) ¢ dedy = (—1)" [ Va-Vipo AR+ W' (@)po A% du dy = 0.

Ty, To
Hence, for any ¢ € C5°(R?), we find
2j—1
/ Voj - Vo + W (v;)p de dy = Z Vo; - Vi + W (v;)¢ de dy = 0;
R? k=0 7Tk

i.e., vj is a weak, and so, by standard bootstrap arguments, a classical C?(R?)
solution of equation (1.1).

Moreover, setting 0;(p,0) = vj(pcos(d), psin(f)), since we know that
a(z,y) = —u(—=,y), by the definition of v; it follows that v; satisfies the
symmetric requirements in conditions (S7):

N ., By 7T .
05 (p, 3 +0) = =v;(p, 5~ ) and v;(p, 0 + ;) = —0j(p,0), V(p,0) € Ry xR.

Finally, we note that, since ||v;||z < 1, by local Schauder estimates we have
[vjllc2r2y < +o0. Since ¢(vj|z,) = m, this allows us to show in the next
Lemma that even the asymptotic requirement in conditions (S7) is satisfied.



SADDLE-TYPE SOLUTIONS 379

Lemma 3.4. Let 6 € [§ — 5=, 5). Then v;(p,0) — 1 as p — +o00.

2502

Proof. Assume for the sake of contradiction that there exists 0 € [§ -3, 5),

25

a sequence p, — +oo and a positive number 1 such that

1 — a(py, cos(0), pp sin(0)) > 2ng.

Since [|vj|c2m2) < +oc this implies that setting

(xn, yn) = (pn COS(H)v Pn Sin(@)),

there exists ro > 0 such that 1 — a(x,y) > no for any (x,y) € To N
(U2 Bary (T, yn)). Since ¢™(z) — 1 as 2 — +oo, it follows that there
exists 71 > 0 and 7 € N such that [|a(-,y) — ¢ ||g1(,) > m for y €
Un>a(Yn — 70, Yn + 70). By (2.11) this implies that there exists v > 0 and
ny > n such that Fy(u(-,y)) — ¢y > v for any y € Up>n, (Yn — 70, Yn + 10),

which gives rise to the contradiction ¢(u) = 4o0. O
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