Existence of one non-zero solution for a two point boundary value problem involving a fourth-order equation

Antonia Chinnì
University of Messina, Italy

The following fourth-order problem will be discussed

$$
\left\{\begin{array}{l}
u^{(i v)}(x)=\lambda f(x, u(x)) \text { in }[0,1] \\
u(0)=u^{\prime}(0)=0 \\
u^{\prime \prime}(1)=0 \quad u^{\prime \prime \prime}(1)=\mu g(u(1))
\end{array}\right.
$$

where $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ is an L^{1} - Carathéodory function, $g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function and λ, μ are positive parameters. The problem $\left(P_{\lambda, \mu}\right)$ describes the static equilibrium of a flexible elastic beam of length 1 , clamped at its left end $x=0$ and resting on an elastic device at its right end $x=1$ (given by g), when, along its length, a load f is added to cause deformation.
Object of this talk, will be the existence of one non-zero solution for the problem $\left(P_{\lambda, \mu}\right)$. Precisely, using a variational approach, under conditions involving the antiderivatives of f and g, we will obtain two precise intervals of the parameters λ and μ for which the problem ($P_{\lambda, \mu}$) admits at least one non-zero classical solution.

2010 Mathematics Subject Classification: $34 B 15$.

References

[1] Bonanno G., A critical point theorem via the Ekeland variational principle, Nonlinear Analysis, 75 (2012), 2992-3007.
[2] Bonanno G., Relations between the mountain pass theorem and local minima, Adv. Nonlinear Anal., 1 (2012), 205-220.
[3] Bonanno G., Chinní A. and Tersian S., Existence results for a two point boundary value problem involving a fourth-order equation, Electronic Journal of Qualitative Theory of Differential Equations,33 (2015), 1-9.
[4] Yang L., Chen H. and Yang X., The multiplicity of solutions for fourth-order equations generated from a boundary condition, Appl. Math. Letters, 24 (2011), 1599-1603.
[5] Cabada A. and Tersian S., Multiplicity of solutions of a two point boundary value problem for a fourth-order equation, Appl. Math. and Computations, 24 (2011), 1599-1603.
[6] Grossinho M.R. and Tersian S., The dual variational principle and equilibria for a beam resting on a discontinuous nonlinear elastic foundation, Nonlinear Anal., 41 (2000), 417-431.
[7] Ma T.F. and da Silva J., Iterative solutions for a beam equation with nonlinear boundary conditions of third order, Appl. Math. Comput., 159 (2004), 11-18.
[8] Ma T.F., Positive solutions for a beam equation on a nonlinear elastic foundation, Appl. Math. Comput., 159 (2004), 11-18.

