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Typical profile of the T-periodic weight function a(t)






Given a(t) it will be convenient to introduce some pa-

rameters to expand the effect of the positive/negative
part of the weight function.



Given a(t) it will be convenient to introduce some pa-
rameters to expand the effect of the positive/negative
part of the weight function.

Therefore, in some cases, it will be useful to replace
a(t) with

ar,(t) = Aa"(t) — pa=(t), A, pu>0.



Given a(t) it will be convenient to introduce some pa-

rameters to expand the effect of the positive/negative
part of the weight function.

Therefore, in some cases, it will be useful to replace
a(t) with

ar,(t) = Aa"(t) — pa=(t), A, pu>0.

We can also deal with more general systems of the
form







o' = h(y)
(%) {y — anult)g(@)

We suppose that h,g : R — R are locally Lipschitz
continuous functions satlsfymg the following assump-
tions:



h(0) =0, h(y)y > 0 for all y # 0
g(0) =0, g(x)xr > 0 for all x # 0

h
ho == lim inf@ >0, ¢go:=lm infM > ().
yl—=0 Y lz|—0 X

(Co)



We will also suppose that at least one of the following
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We will also suppose that at least one of the following

conditions holds:

(h+)
(g+)

We also set

h 1s bounded on R™

g 1s bounded on R™.
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A typical example where our results apply can be

'+ ay,(t)glx) =0, with g(x)=—1+expx.




Since system (x) has a Hamiltonian structure, of the

form
0
{flf’ = Gt 2,y)

y' = -5 (t,2,y)
for

H(t, z,y) = ar,(t)G(x) + H(y).
the associated Poincaré map is an area-preserving home-
omorphism, defined on a open set

() := dom® C R*
with (0,0) € €.
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Thus a possible method to prove the existence (and

multiplicity) of T-periodic solutions can be based on
the Poincaré-Birkhoff “twist” fixed point theorem.

A typical way to apply this result is to find a suitable
annulus around the origin with radii 0 < ry < Ry such
that for some a < b the twist condition

rot.(7) > b, Vzwith ||z|| =17
(TC) {rotz T) <a, Vzwith ||z]| = Ry

holds, where rot.(7) is the rotation number on the
interval [0, 7] associated with the initial point z € R*\

1(0,0)}.




Notice that, due to the assumptions h(s)s > 0 and

g(s)s > 0 for s # 0, it is convenient to use a formula
in which the angular displacement is positive when
the rotations around the origin are performed in the
clockwise sense.




Under these assumptions, the Poincaré-Birkhofl the-
orem guarantees that for each integer j € |a,b|, there
exist at least two T-periodic solutions of system (x),
having j as associated rotation number. In virtue of
the first condition in ((}), it turns out that these so-
lutions have precisely 27 simple transversal crossings
with the y-axis in the interval |0, 7.



Under these assumptions, the Poincaré-Birkhofl the-
orem guarantees that for each integer j € |a,b|, there

exist at least two T-periodic solutions of system (x),
having j as associated rotation number. In virtue of
the first condition in ((}), it turns out that these so-
lutions have precisely 27 simple transversal crossings
with the y-axis in the interval |0, 7.

Equivalently, for such a periodic solution (x(t), y(t)), we
have that x has precisely 27 simple zeros in the interval

0,7



Clearly, in order to apply this approach, we need to
have the Poincaré map defined on B|0, Ry|, that is

BJ0, Ry C Q.



Clearly, in order to apply this approach, we need to
have the Poincaré map defined on B|0, Ry|, that is

B|0, Ry| C €.
Unfortunately, in general, the (forward) global exis-

tence of solutions for the initial value problems is not
guaranteed.



A classical counterexample can be found in [Coffman
and Ullrich (1967)| for the superlinear equation
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(with n > 1), where, even for a positive weight ¢(%),
the global existence of the solutions may fail.



A classical counterexample can be found in [Coffman
and Ullrich (1967)| for the superlinear equation

Z‘” 4 C](t) 2n—+1 — 0

(with n > 1), where, even for a positive weight ¢(%),
the global existence of the solutions may fail.

A typical feature of this class of counterexamples is
that solutions presenting a blow-up at some time 5,
will make infinitely many winds around the origin as

t — [~. It is possible to overcome these difficulties
by prescribing the rotation number for large solutions
and using some truncation argument on the nonlin-

earity, as shown in [Hartman (1977)].




The situation is even more complicated in the time
intervals where the weight function is negative [Bur-

ton and Grimmer (1971), Butler (1976)]. Unless we
impose that the vector field in (x) has at most a lin-
ear growth at infinity, we cannot prevent (in general)
blow-up phenomena.




The situation is even more complicated in the time
intervals where the weight function is negative [Bur-

ton and Grimmer (1971), Butler (1976)]. Unless we
impose that the vector field in (x) has at most a lin-

ear growth at infinity, we cannot prevent (in general)
blow-up phenomena.

With these premises, the following result can be proved.



Theorem 1 Let g.h : R — R be locally Lipschitz con-
tinuous functions satisfying (C)) and at least one be-
tween (hy) and (g). Assume, moreover, the global
continuability for the solutions of (x). Then, for each
positive integer k, there exists N\ > 0 such that for
each \ > A and j = 1,...,k, the system (x) has at
least two T-periodic solutions (x,y) with r having ex-
actly 27-zeros in the interval 0,7 .




Notice that in the above result we do not require any
condition on the parameter ;1 > 0. On the other hand,
we have to assume the global continuability of the
solutions, which in general is not guaranteed.

Quite the opposite, for the next result we do not re-
quire the Poincaré map to be defined on the whole
plalme, although now the parameter i plays a crucial
role.




Notice that in the above result we do not require any
condition on the parameter ;1 > 0. On the other hand,
we have to assume the global continuability of the
solutions, which in general is not guaranteed.

Quite the opposite, for the next result we do not re-
quire the Poincaré map to be defined on the whole
plalme, although now the parameter i plays a crucial
role.

For simplicity, we present the statement in the case in

which a(t) has a positive hump followed by a negative
one.




Theorem 2 Let g.h : R — R be locally Lipschitz con-
tinuous functions satisfying (C)) and at least one be-
tween (hy) and (g.). Then, for each positive inte-
ger k, there exists N\ > 0 such that for each \ > A,
there exists * = p*(\) such that for each p > p* and
j=1,...,k, the system (x) has at least four T-periodic
solutions (z,y) with r having exactly 2j-zeros in the
interval 0,7 .
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Some references on the Poincaré-Birkhoff theorem



Some references on the Poincaré-Birkhoff theorem

Poincaré (1912), Birkhoff (1913), Brown & Neumann
(1977), Neumann (1977), Hartman (1977), Jacobowitz
(1976-1977), W. Ding (1982-1983), Franks (1988), Re-
belo (1997), Dalbono & Rebelo (2002), Margheri, Re-
belo & Z. (2002), Qian & Torres (2005), Moser &
Zehnder (2005), Martins & Urena (2007), Le Calvez
& Wang (2010), Fonda, Sabatini & Z. (2012), Fonda
& Urena (2017), ...more coming.
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Some references on bend-twist maps

T. Ding (2007-2012), Pascoletti & Z. (2011-2012-2013),
Kirillov & Starkov (2013), Wang, Liu & Qian (2016).



Some references on the stretching along the paths
technique



Some references on the stretching along the paths
technique

Papini & Z. (2000-2002-2004-2007), Pascoletti, Pireddu
& 7. (2008), Pireddu (2009), Margheri, Rebelo & Z.
(2010), Sovrano (2016), Papini, Villari & Z. (2017-
2018).



Thank you for your attention !




