


Fabio Zanolin
University of Udine

fabio.zanolin@uniud.it

GEDO 2018

Multiple periodic solutions for one-sided sublinear sys-
tems: A refinement of the Poincaré-Birkhoff approach
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x′′ + a(t)g(x) = 0
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x′′ + a(t)g(x) = 0{
x′ = y
y′ = −a(t)g(x).
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x′′ + a(t)g(x) = 0{
x′ = y
y′ = −a(t)g(x).

Typical profile of the T -periodic weight function a(t) :
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Given a(t) it will be convenient to introduce some pa-
rameters to expand the effect of the positive/negative
part of the weight function.
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Given a(t) it will be convenient to introduce some pa-
rameters to expand the effect of the positive/negative
part of the weight function.
Therefore, in some cases, it will be useful to replace
a(t) with

aλ,µ(t) := λa+(t)− µa−(t), λ, µ > 0.
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Given a(t) it will be convenient to introduce some pa-
rameters to expand the effect of the positive/negative
part of the weight function.
Therefore, in some cases, it will be useful to replace
a(t) with

aλ,µ(t) := λa+(t)− µa−(t), λ, µ > 0.

We can also deal with more general systems of the
form
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(∗)
{
x′ = h(y)
y′ = −aλ,µ(t)g(x).
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(∗)
{
x′ = h(y)
y′ = −aλ,µ(t)g(x).

We suppose that h, g : R → R are locally Lipschitz
continuous functions satisfying the following assump-
tions:
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(C0)

h(0) = 0, h(y)y > 0 for all y 6= 0

g(0) = 0, g(x)x > 0 for all x 6= 0

h0 := lim inf
|y|→0

h(y)

y
> 0, g0 := lim inf

|x|→0

g(x)

x
> 0.
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We will also suppose that at least one of the following
conditions holds:
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We will also suppose that at least one of the following
conditions holds:

(h±) h is bounded on R±,

(g±) g is bounded on R±.
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We will also suppose that at least one of the following
conditions holds:

(h±) h is bounded on R±,

(g±) g is bounded on R±.

We also set

G(x) :=

∫ x

0

g(ξ)dξ, H(y) :=

∫ y

0

h(ξ)dξ.
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A typical example where our results apply can be
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A typical example where our results apply can be

x′′ + aλ,µ(t)g(x) = 0, with g(x) = −1 + expx.
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Since system (∗) has a Hamiltonian structure, of the
form {

x′ = ∂H
∂y (t, x, y)

y′ = −∂H
∂x (t, x, y)

for
H(t, x, y) = aλ,µ(t)G(x) + H(y),

the associated Poincaré map is an area-preserving home-
omorphism, defined on a open set

Ω := domΦ ⊆ R2,

with (0, 0) ∈ Ω.
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Thus a possible method to prove the existence (and
multiplicity) of T -periodic solutions can be based on
the Poincaré-Birkhoff “twist” fixed point theorem.
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Thus a possible method to prove the existence (and
multiplicity) of T -periodic solutions can be based on
the Poincaré-Birkhoff “twist” fixed point theorem.

A typical way to apply this result is to find a suitable
annulus around the origin with radii 0 < r0 < R0 such
that for some a < b the twist condition

(TC)

{
rotz(T ) > b, ∀ z with ||z|| = r0
rotz(T ) < a, ∀ z with ||z|| = R0

holds, where rotz(T ) is the rotation number on the
interval [0, T ] associated with the initial point z ∈ R2 \
{(0, 0)}.
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Notice that, due to the assumptions h(s)s > 0 and
g(s)s > 0 for s 6= 0, it is convenient to use a formula
in which the angular displacement is positive when
the rotations around the origin are performed in the
clockwise sense.
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Under these assumptions, the Poincaré-Birkhoff the-
orem guarantees that for each integer j ∈ [a, b], there
exist at least two T -periodic solutions of system (∗),
having j as associated rotation number. In virtue of
the first condition in (C0), it turns out that these so-
lutions have precisely 2j simple transversal crossings
with the y-axis in the interval [0, T [.

14



Under these assumptions, the Poincaré-Birkhoff the-
orem guarantees that for each integer j ∈ [a, b], there
exist at least two T -periodic solutions of system (∗),
having j as associated rotation number. In virtue of
the first condition in (C0), it turns out that these so-
lutions have precisely 2j simple transversal crossings
with the y-axis in the interval [0, T [.

Equivalently, for such a periodic solution (x(t), y(t)), we
have that x has precisely 2j simple zeros in the interval
[0, T [
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Clearly, in order to apply this approach, we need to
have the Poincaré map defined on B[0, R0], that is

B[0, R0] ⊆ Ω.
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Clearly, in order to apply this approach, we need to
have the Poincaré map defined on B[0, R0], that is

B[0, R0] ⊆ Ω.

Unfortunately, in general, the (forward) global exis-
tence of solutions for the initial value problems is not
guaranteed.
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A classical counterexample can be found in [Coffman
and Ullrich (1967)] for the superlinear equation

x′′ + q(t)x2n+1 = 0

(with n ≥ 1), where, even for a positive weight q(t),
the global existence of the solutions may fail.
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A classical counterexample can be found in [Coffman
and Ullrich (1967)] for the superlinear equation

x′′ + q(t)x2n+1 = 0

(with n ≥ 1), where, even for a positive weight q(t),
the global existence of the solutions may fail.
A typical feature of this class of counterexamples is
that solutions presenting a blow-up at some time β−,
will make infinitely many winds around the origin as
t → β−. It is possible to overcome these difficulties
by prescribing the rotation number for large solutions
and using some truncation argument on the nonlin-
earity, as shown in [Hartman (1977)].
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The situation is even more complicated in the time
intervals where the weight function is negative [Bur-
ton and Grimmer (1971), Butler (1976)]. Unless we
impose that the vector field in (∗) has at most a lin-
ear growth at infinity, we cannot prevent (in general)
blow-up phenomena.
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The situation is even more complicated in the time
intervals where the weight function is negative [Bur-
ton and Grimmer (1971), Butler (1976)]. Unless we
impose that the vector field in (∗) has at most a lin-
ear growth at infinity, we cannot prevent (in general)
blow-up phenomena.

With these premises, the following result can be proved.
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Theorem 1Let g, h : R → R be locally Lipschitz con-
tinuous functions satisfying (C0) and at least one be-
tween (h∞) and (g∞). Assume, moreover, the global
continuability for the solutions of (∗). Then, for each
positive integer k, there exists Λk > 0 such that for
each λ > Λk and j = 1, . . . , k, the system (∗) has at
least two T -periodic solutions (x, y) with x having ex-
actly 2j-zeros in the interval [0, T [ .
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Notice that in the above result we do not require any
condition on the parameter µ > 0. On the other hand,
we have to assume the global continuability of the
solutions, which in general is not guaranteed.
Quite the opposite, for the next result we do not re-
quire the Poincaré map to be defined on the whole
plane, although now the parameter µ plays a crucial
role.
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Notice that in the above result we do not require any
condition on the parameter µ > 0. On the other hand,
we have to assume the global continuability of the
solutions, which in general is not guaranteed.
Quite the opposite, for the next result we do not re-
quire the Poincaré map to be defined on the whole
plane, although now the parameter µ plays a crucial
role.
For simplicity, we present the statement in the case in
which a(t) has a positive hump followed by a negative
one.
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Theorem 2Let g, h : R → R be locally Lipschitz con-
tinuous functions satisfying (C0) and at least one be-
tween (h∞) and (g∞). Then, for each positive inte-
ger k, there exists Λk > 0 such that for each λ > Λk
there exists µ∗ = µ∗(λ) such that for each µ > µ∗ and
j = 1, . . . , k, the system (∗) has at least four T -periodic
solutions (x, y) with x having exactly 2j-zeros in the
interval [0, T [ .
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Some references on the Poincaré-Birkhoff theorem
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Some references on the Poincaré-Birkhoff theorem

Poincaré (1912), Birkhoff (1913), Brown & Neumann
(1977), Neumann (1977), Hartman (1977), Jacobowitz
(1976-1977), W. Ding (1982-1983), Franks (1988), Re-
belo (1997), Dalbono & Rebelo (2002), Margheri, Re-
belo & Z. (2002), Qian & Torres (2005), Moser &
Zehnder (2005), Martins & Ureña (2007), Le Calvez
& Wang (2010), Fonda, Sabatini & Z. (2012), Fonda
& Ureña (2017), . . . more coming.
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Some references on bend-twist maps
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Some references on bend-twist maps

T. Ding (2007-2012), Pascoletti & Z. (2011-2012-2013),
Kirillov & Starkov (2013), Wang, Liu & Qian (2016).
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Some references on the stretching along the paths
technique
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Some references on the stretching along the paths
technique

Papini & Z. (2000-2002-2004-2007), Pascoletti, Pireddu
& Z. (2008), Pireddu (2009), Margheri, Rebelo & Z.
(2010), Sovrano (2016), Papini, Villari & Z. (2017-
2018).

30



/

Thank you for your attention !


