About indefinite Neumann problems with oscillating nonlinear potentials: multiplicity of positive solutions

Elisa Sovrano
elisa.sovrano@fc.up.pt

Faculdade de Ciências da Universidade do Porto - Portugal

Joint work with F. Zanolin

GEDO2018
Giornate di Equazioni Differenziali Ordinarie: metodi e prospettive Ancona, September $27^{\text {th }} 2018$

Outline

I. Indefinite Neumann boundary value problem (BVP) with oscillating potential
2. Historical overview
3. Main result: multiplicity of positive solutions
4. Applications and further lines of work

Problem formulation

Consider the indefinite Neumann BVP:
$(\mathcal{N})\left\{\begin{array}{l}u^{\prime \prime}+\boldsymbol{a}(\boldsymbol{t}) \boldsymbol{g}(\boldsymbol{u})=0 \\ u(t)>0, \forall t \in[0, T] \\ u^{\prime}(0)=u^{\prime}(T)=0\end{array}\right.$

Problem formulation

indefinite $\sim \sim$ Weight
 $[0, T] \rightarrow \mathbb{R}$ changes its sign.

Consider the indefinite
Neumann BVP:
$(\mathcal{N})\left\{\begin{array}{l}u^{\prime \prime}+\boldsymbol{a}(\boldsymbol{t}) \boldsymbol{g}(\boldsymbol{u})=0 \\ u(t)>0, \forall t \in[0, T] \\ u^{\prime}(0)=u^{\prime}(T)=0\end{array}\right.$

Problem formulation

indefinite $\sim \sim$ Weight
 $[0, T] \rightarrow \mathbb{R}$ changes its sign.

Consider the indefinite Neumann BVP:

$$
(\mathcal{N})\left\{\begin{array}{l}
u^{\prime \prime}+\boldsymbol{a}(\boldsymbol{t}) g(u)=0 \\
u(t)>0, \forall t \in[0, T] \\
u^{\prime}(0)=u^{\prime}(T)=0
\end{array}\right.
$$

continuous and satisfies continuous and satisfies

$$
\left(g_{0}\right) \quad g(0)=0, \quad g(s)>0 \forall s>0
$$

oscillatory potential

$$
g: \mathbb{R}^{+}:=[0,+\infty) \rightarrow[0,+\infty) \text { is }
$$

$$
\left(G_{\infty}\right) \liminf _{s \rightarrow+\infty} \frac{2 G(s)}{s^{2}}=0<\limsup _{s \rightarrow+\infty} \frac{2 G(s)}{s^{2}}
$$

$$
\text { with } G(s):=\int_{0}^{s} g(\xi) d \xi
$$

Nonlinearity

Preliminary remarks

Necessary conditions for the existence of solutions to problem (\mathcal{N}) :

- If g satisfies condition $\left(g_{0}\right)$, then $a(t)$ must change its sign.

It follows from an integration over
$[0, T]$.

Preliminary remarks

Necessary conditions for the existence of solutions to problem (\mathcal{N}) :

- If g satisfies condition $\left(g_{0}\right)$, then $a(t)$ must change its sign.

It follows from an integration over
$[0, T]$.

- If $g^{\prime}(s)>0 \forall s>0$, then $a(t)$ has to satisfy the condition $\int_{0}^{T} a(t) d t<0$.

R Bandle, Pozio, Tesei, Math. Z. (1988).

Preliminary remarks

Necessary conditions for the existence of solutions to problem (\mathcal{N}) :

- If g satisfies condition $\left(g_{0}\right)$, then $a(t)$ must change its sign.

It follows from an integration over
$[0, T]$.

- If $g^{\prime}(s)>0 \forall s>0$, then $a(t)$ has to satisfy the condition $\int_{0}^{T} a(t) d t<0$.
$a(t)$

I. Take weights with a "positive hump" followed by a "negative one".

Preliminary remarks

Necessary conditions for the existence of solutions to problem (\mathcal{N}) :

- If g satisfies condition $\left(g_{0}\right)$, then $a(t)$ must change its sign.

It follows from an integration over
$[0, T]$.

- If $g^{\prime}(s)>0 \forall s>0$, then $a(t)$ has to satisfy the condition $\int_{0}^{T} a(t) d t<0$.

I. Take weights with a "positive hump" followed by a "negative one".

2. Introduce positive real parameters λ, μ to control $a^{+}(t)$ and $a^{-}(t)$.

Framework

Assume that $\exists \sigma \in] 0, T$ such that

$$
\text { (*) } \begin{aligned}
& a(t) \geq 0, a(t) \not \equiv 0, \forall t \in[0, \sigma], \\
& a(t) \leq 0, a(t) \not \equiv 0, \forall t \in[\sigma, T] .
\end{aligned}
$$

Given $\lambda, \mu>0$, consider $a(t):=\lambda a^{+}(t)-\mu a^{-}(t)$.

Framework

Assume that $\exists \sigma \in] 0, T$ such that

$$
(\star) \quad \begin{aligned}
& a(t) \geq 0, a(t) \not \equiv 0, \forall t \in[0, \sigma], \\
& a(t) \leq 0, a(t) \not \equiv 0, \forall t \in[\sigma, T] .
\end{aligned}
$$

Given $\lambda, \mu>0$, consider $a(t):=\lambda a^{+}(t)-\mu a^{-}(t)$.

Main purpose

What effects on the dynamics do an indefinite weight term $a(t)$ satisfying (\star) coupled with a positive nonlinearity $g(u)$ oscillating at infinity as in $\left(G_{\infty}\right)$ has?
The answer is in the multiplicity of positive solutions for the parameter-dependent Neumann problem:

$$
\left(\mathcal{N}_{\lambda, \mu}\right)\left\{\begin{array}{l}
u^{\prime \prime}+\left(\lambda a^{+}(t)-\mu a^{-}(t)\right) g(u)=0 \\
u(t)>0, \quad \forall t \in[0, T] \\
u^{\prime}(0)=u^{\prime}(T)=0
\end{array}\right.
$$

Hammerstein's paper

The "oscillatory assumption at ∞ " on the nonlinearity $g(u)$ given by (G_{∞}) can be traced back to

Hammerstein, Acta Math. (1930).

Hammerstein's paper

The "oscillatory assumption at ∞ " on the nonlinearity $g(u)$ given by (G_{∞}) can be traced back to

Hammerstein, Acta Math. (1930).
Here the existence of solutions for $\psi(x)=\int_{B} K(x, y) f(y, \psi(y)) d y$ was proved under linear growth condition on f and the non-resonance assumption:

$$
\limsup _{u \rightarrow \pm \infty} \frac{2 F(x, u)}{u^{2}}<\lambda_{1}, \text { uniformly for } x \in B
$$

where B is a bounded domain, $F(x, u):=\int_{0}^{u} f(x, s) d s$ and λ_{1} is the first eigenvalue of the associated linear problem.

Hammerstein's paper

The "oscillatory assumption at ∞ " on the nonlinearity $g(u)$ given by (G_{∞}) can be traced back to

E- Hammerstein, Acta Math. (1930).
Here the existence of solutions for $\psi(x)=\int_{B} K(x, y) f(y, \psi(y)) d y$ was proved under linear growth condition on f and the non-resonance assumption:

$$
\limsup _{u \rightarrow \pm \infty} \frac{2 F(x, u)}{u^{2}}<\lambda_{1} \text {, uniformly for } x \in B \text {, }
$$

where B is a bounded domain, $F(x, u):=\int_{0}^{u} f(x, s) d s$ and λ_{1} is the first eigenvalue of the associated linear problem.

... AFTER THAT? ...

A great deal of works on the solvability of nonlinear BVPs "below the first eigenvalue" with conditions on the primitive $G(u)$ either at 0 or at ∞.

Dirichlet BVPs: remark I

$\left(\mathcal{D}_{1}\right) \begin{cases}\Delta u+g(u)=h(x) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}$
with $\Omega \subseteq \mathbb{R}^{N}$ bounded domain with smooth $\partial \Omega, h \in L^{\infty}(\Omega)$ and $g \in C(\mathbb{R})$

Dirichlet BVPs: remark I

$\left(\mathcal{D}_{1}\right) \begin{cases}\Delta u+g(u)=h(x) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}$
with $\Omega \subseteq \mathbb{R}^{N}$ bounded domain with smooth $\partial \Omega, h \in L^{\infty}(\Omega)$ and $g \in C(\mathbb{R})$

- The existence of at least one solution is guaranteed for $\left(\mathcal{D}_{1}\right)$ if g satisfies suitable polynomial growth (Sobolev embeddings) and the Hammerstein-type condition (H): lim $\sup _{s \rightarrow \pm \infty} \frac{2 G(s)}{s^{2}}<\lambda_{1}^{D}(\Omega)$.

Dirichlet BVPs: remark I

$\left(\mathcal{D}_{1}\right) \begin{cases}\Delta u+g(u)=h(x) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}$
with $\Omega \subseteq \mathbb{R}^{N}$ bounded domain with smooth $\partial \Omega, h \in L^{\infty}(\Omega)$ and $g \in C(\mathbb{R})$

- The existence of at least one solution is guaranteed for $\left(\mathcal{D}_{1}\right)$ if g satisfies suitable polynomial growth (Sobolev embeddings) and the

- In the one-dimensional case, $\Omega=] 0, T[$:
- replacing (H) with $\liminf _{s \rightarrow \pm \infty} \frac{2 G(s)}{s^{2}}<\lambda_{1}^{\mathcal{D}}(\Omega)=\left(\frac{\pi}{T}\right)^{2}$, the above result still holds;
- adding the "oscillatory assumption at ∞ "

$$
\liminf _{s \rightarrow+\infty} \frac{2 G(s)}{s^{2}}<\left(\frac{\pi}{T}\right)^{2}<\limsup _{s \rightarrow+\infty} \frac{2 G(s)}{s^{2}}
$$

along with the technical condition $\lim _{s \rightarrow+\infty} g(s)=+\infty$, the existence of infinitely many solutions $u(t)>0 \forall t \in] 0, T$ [holds.
cf.: 居 Fernandes, Omari, Zanolin, Differential Integral Equations (I989).

Dirichlet BVPs: remark II

$\left(\mathcal{D}_{2}\right) \begin{cases}\Delta u+a(x) g(u)=0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}$
with $\Omega \subseteq \mathbb{R}^{N}$ bounded domain with smooth $\partial \Omega$, $a \in L^{\infty}(\Omega)$ and $g \in C\left(\mathbb{R}^{+}\right)$

Dirichlet BVPs: remark II

$\left(\mathcal{D}_{2}\right) \begin{cases}\Delta u+a(x) g(u)=0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}$
with $\Omega \subseteq \mathbb{R}^{N}$ bounded domain with smooth $\partial \Omega$, $a \in L^{\infty}(\Omega)$ and $g \in C\left(\mathbb{R}^{+}\right)$

If essinf $\Omega_{\Omega} a(x)>0, g$ satisfies $\left(g_{0}\right)$ and "oscillatory assumption at ∞ "

$$
\liminf _{s \rightarrow+\infty} \frac{2 G(s)}{s^{2}}=0<\limsup _{s \rightarrow+\infty} \frac{2 G(s)}{s^{2}}=+\infty,
$$

then $\exists\left(u_{n}\right)_{n}$ sequence of solutions of $\left(\mathcal{D}_{2}\right)$ such that

- $u_{n}(x) \geq 0 \forall x \in \Omega$
- $\max _{\bar{\Omega}} u_{n} \rightarrow+\infty$.
cf.: Omari, Zanolin, Comm. Partial Differential Equations (1996).

Dirichlet BVPs: remark II

$\left(\mathcal{D}_{2}\right) \begin{cases}\Delta u+a(x) g(u)=0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}$
with $\Omega \subseteq \mathbb{R}^{N}$ bounded domain with smooth $\partial \Omega$, $a \in L^{\infty}(\Omega)$ and $g \in C\left(\mathbb{R}^{+}\right)$

If $\operatorname{essinf}_{f(x)}>0, g$ satisfies $\left(g_{0}\right)$ and "oscillatory assumption at ∞ "

$$
\liminf _{s \rightarrow+\infty} \frac{2 G(s)}{s^{2}}=0<\limsup _{s \rightarrow+\infty} \frac{2 G(s)}{s^{2}}=+\infty
$$

then $\exists\left(u_{n}\right)_{n},\left(v_{n}\right)_{n}$ sequences of solutions of $\left(\mathcal{D}_{2}\right)$ such that

- $u_{n}(x)>0$ and $v_{n}(x)>0 \forall x \in \Omega$
- $\lim _{n} u_{n}(x) / \operatorname{dist}(x, \partial \Omega)=\lim _{n} v_{n}(x) / \operatorname{dist}(x, \partial \Omega)=+\infty$.
cf.: Obersnel, Omari, J. Math. Anal. Appl. (2006).

Back to Neumann BVPs, what can we say?

$\left(\mathcal{N}_{1}\right) \begin{cases}\Delta u+g(u)=h(x) & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega\end{cases}$ with $h \in L^{\infty}(\Omega)$
$\left(\mathcal{N}_{2}\right) \begin{cases}\Delta u+a(x) g(u)=0 & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega\end{cases}$
with $a \in L^{\infty}(\Omega)$ indefinite

Back to Neumann BVPs, what can we say?

$$
\begin{aligned}
&\left(\mathcal{N}_{1}\right)\left\{\begin{array} { l l }
{ \Delta u + g (u) = h (x) } & { \text { in } \Omega } \\
{ \frac { \partial u } { \partial \nu } = 0 } & { \text { on } \partial \Omega }
\end{array} \quad (\mathcal { N } _ { 2 }) \left\{\begin{array}{ll}
\Delta u+a(x) g(u)=0 & \text { in } \Omega \\
\frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega
\end{array}\right.\right. \\
& \text { with } h \in L^{\infty}(\Omega) \text { with } a \in L^{\infty}(\Omega) \text { indefinite }
\end{aligned}
$$

If g satisfies the Hammerstein-type condition (H):

$$
\limsup _{s \rightarrow \pm \infty} \frac{2 G(s)}{s^{2}}<\lambda_{1}^{\mathcal{N}}(\Omega)=0
$$

then $\exists\left(w_{n}\right)_{n},\left(v_{n}\right)_{n}$ sequences of reals numbers s.t. $w_{n} \rightarrow-\infty, g\left(w_{n}\right) \rightarrow+\infty$ and $v_{n} \rightarrow+\infty, g\left(v_{n}\right) \rightarrow-\infty$. This way: Neumann BVP easy affordable (with the theory of lower/upper-solutions) and no compatible with (g_{0}).

Back to Neumann BVPs, what can we say?

$$
\begin{aligned}
&\left(\mathcal{N}_{1}\right)\left\{\begin{array} { l l }
{ \Delta u + g (u) = h (x) } & { \text { in } \Omega } \\
{ \frac { \partial u } { \partial \nu } = 0 } & { \text { on } \partial \Omega }
\end{array} \quad (\mathcal { N } _ { 2 }) \left\{\begin{array}{ll}
\Delta u+a(x) g(u)=0 & \text { in } \Omega \\
\frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega
\end{array}\right.\right. \\
& \text { with } h \in L^{\infty}(\Omega) \text { with } a \in L^{\infty}(\Omega) \text { indefinite }
\end{aligned}
$$

If g satisfies the Hammerstein-type condition (H):

$$
\limsup _{s \rightarrow \pm \infty} \frac{2 G(s)}{s^{2}}<\lambda_{1}^{\mathcal{N}}(\Omega)=0
$$

then $\exists\left(w_{n}\right)_{n},\left(v_{n}\right)_{n}$ sequences of reals numbers s.t. $w_{n} \rightarrow-\infty, g\left(w_{n}\right) \rightarrow+\infty$ and $v_{n} \rightarrow+\infty, g\left(v_{n}\right) \rightarrow-\infty$. This way: Neumann BVP easy affordable (with the theory of lower/upper-solutions) and no compatible with (g_{0}).

What about Hammerstain-type condition w.r.t. $\lambda_{2}^{\mathcal{N}}(\Omega)$?

Back to Neumann BVPs, what can we say?

$$
\begin{aligned}
&\left(\mathcal{N}_{1}\right) \begin{cases}\Delta u+g(u)=h(x) & \text { in } \Omega \\
\frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega\end{cases} \\
& \text { with } h \in L^{\infty}(\Omega)\left(\mathcal{N}_{2}\right) \begin{cases}\Delta u+a(x) g(u)=0 & \text { in } \Omega \\
\frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega\end{cases} \\
& \text { with } a \in L^{\infty}(\Omega) \text { indefinite }
\end{aligned}
$$

If \boldsymbol{g} satisfies the Hammerstein-type condition (H):

$$
\limsup _{s \rightarrow \pm \infty} \frac{2 G(s)}{s^{2}}<\lambda_{1}^{\mathcal{N}}(\Omega)=0
$$

then $\exists\left(w_{n}\right)_{n},\left(v_{n}\right)_{n}$ sequences of reals numbers s.t. $w_{n} \rightarrow-\infty, g\left(w_{n}\right) \rightarrow+\infty$ and $v_{n} \rightarrow+\infty, g\left(v_{n}\right) \rightarrow-\infty$. This way: Neumann BVP easy affordable (with the theory of lower/upper-solutions) and no compatible with (g_{0}).

What about Hammerstain-type condition w.r.t. $\lambda_{2}^{\mathcal{N}}(\Omega)$?

Extensive literature for $\left(\mathcal{N}_{1}\right)$ starting from

Mawhin, Ward, Willem, Arch. Rational
嘈 Mech. Anal. (I986).
Gossez, Omari, Proc. Amer. Math. Soc. (1992). Trans. Amer. Math. Soc. (1995).

Lot of multiplicity results for $\left(\mathcal{N}_{2}\right)$ with g super-linear or sub-linear BUT
it looks still not completely explored the case of g satisfying $\left(g_{0}\right)$ and $\left(G_{\infty}\right)$ (even in one-dimension).

Main result

By recalling the indefinite Neumann BVP
$\left(\mathcal{N}_{\lambda, \mu}\right)\left\{\begin{array}{l}u^{\prime \prime}+\left(\lambda a^{+}(t)-\mu a^{-}(t)\right) g(u)=0 \\ u(t)>0, \quad \forall t \in[0, T] \\ u^{\prime}(0)=u^{\prime}(T)=0\end{array}\right.$
we state multiplicity of positive solutions for λ, μ suff. large.

Main result

By recalling the indefinite Neumann BVP
$\left(\mathcal{N}_{\lambda, \mu}\right)\left\{\begin{array}{l}u^{\prime \prime}+\left(\lambda a^{+}(t)-\mu a^{-}(t)\right) g(u)=0 \\ u(t)>0, \quad \forall t \in[0, T] \\ u^{\prime}(0)=u^{\prime}(T)=0\end{array}\right.$
we state multiplicity of positive solutions for λ, μ suff. large.

Theorem

Let $a:[0, T] \rightarrow \mathbb{R}$ be bounded piecewise continuous satisfying (\star). Let $g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be continuous s.t. $\left(g_{0}\right),\left(G_{\infty}\right)$ and $\lim \sup _{s \rightarrow 0^{+}} g(s) / s<+\infty$.
Then, $\exists \lambda^{*} \geq 0$ s.t. $\forall \lambda>\lambda^{*}, \forall r>0, \forall k \in \mathbb{Z}$ with $k \geq 1$, $\exists \mu^{*}=\mu^{*}(\lambda, r, k)>0$ s.t. $\forall \mu>\mu^{*}$ problem $\left(\mathcal{N}_{\lambda, \mu}\right)$ has at least $2 k$ solutions which are nonincreasing on $[0, T]$ and $0<u(t) \leq r \forall t \in[\sigma, T]$. If $\lim \sup _{s \rightarrow+\infty} 2 G(s) / s^{2}=+\infty$, the result holds with $\lambda^{*}=0$.
cf.: S., Zanolin, J. Math. Anal. Appl. (2017)

Main result

Nonlinearity example

By recalling the indefinite Neumann BVP

$$
\text { Let } \rho, \theta, A, B \in \mathbb{R} \text { s.t } k, A>0, \theta \in[0,2 \pi[\text {, }
$$ $|B|<2 A /\left(\rho^{2}+4\right)^{1 / 2}$. We define $\forall s \geq 0$

$\left(\mathcal{N}_{\lambda, \mu}\right)\left\{\begin{array}{l}u^{\prime \prime}+\left(\lambda a^{+}(t)-\mu a^{-}(t)\right) g(u)=0 \\ u(t)>0, \quad \forall t \in[0, T] \\ u^{\prime}(0)=u^{\prime}(T)=0\end{array}\right.$
we state multiplicity of positive sol

Theorem

Then, $\boldsymbol{g}(\boldsymbol{s}):=\boldsymbol{G}^{\prime}(\boldsymbol{s})$ is $C^{\infty}\left(\mathbb{R}^{+}\right)$satisfying

- $g(0)=0, \quad g(s)>0 \forall s>0$
- $\lim \inf _{s \rightarrow+\infty} 2 G(s) / s^{2}=2(A-B)<$ $2(A+B)=\lim \sup _{s \rightarrow+\infty} 2 G(s) / s^{2}$
- $\lim _{s \rightarrow 0^{+}} g(s) / s=2(A+B \cos \theta)>0$ cf.: S., Lanolin, RIMUT (2015)

Let $a:[0, T] \rightarrow \mathbb{R}$ be bounded piecewise continuous satisfying (\star).
Let $g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be continuous s.t. $\left(g_{0}\right),\left(G_{\infty}\right)$ and $\lim \sup _{s \rightarrow 0^{+}} g(s) / s<+\infty$.
Then, $\exists \lambda^{*} \geq 0$ s.t. $\forall \lambda>\lambda^{*}, \forall r>0, \forall k \in \mathbb{Z}$ with $k \geq 1$, $\exists \mu^{*}=\mu^{*}(\lambda, r, k)>0$ st. $\forall \mu>\mu^{*}$ problem $\left(\mathcal{N}_{\lambda, \mu}\right)$ has at least $2 k$ solutions which are nonincreasing on $[0, T]$ and $0<u(t) \leq r \forall t \in[\sigma, T]$. If $\lim \sup _{s \rightarrow+\infty} 2 G(s) / s^{2}=+\infty$, the result holds with $\lambda^{*}=0$.
cf.: S., Lanolin, J. Math. Anal. Apply. (2017)

Sketch of the proof via Shooting Method

Solutions $(x(\cdot ; 0,(r, 0)), v(\cdot ; 0,(r, 0)))$ of the Cauchy problem

$$
(\mathcal{S})\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=-\left(\lambda a^{+}(t)-\mu a^{-}(t)\right) g(x)
\end{array}\right.
$$

with initial data

$$
\left\{\begin{array}{l}
x(0)=r, \quad r>0 \\
y(0)=0
\end{array}\right.
$$

Sketch of the proof via Shooting Method

 Solutions $(x(\cdot ; 0,(r, 0)), v(\cdot ; 0,(r, 0)))$ of the Cauchy problem$$
(\mathcal{S})\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=-\left(\lambda a^{+}(t)-\mu a^{-}(t)\right) g(x)
\end{array}\right.
$$

with initial data

$$
\left\{\begin{array}{l}
x(0)=r, \quad r>0 \\
y(0)=0
\end{array}\right.
$$

satisfying

$(x(T ; 0,(r, 0)), y(T ; 0,(r, 0))) \in X^{+}$
with $\left.X^{+}:=\right] 0,+\infty[\times\{0\}$

Sketch of the proof via Shooting Method

 Solutions $(x(\cdot ; 0,(r, 0)), v(\cdot ; 0,(r, 0)))$ of the Cauchy problem$$
(\mathcal{S})\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=-\left(\lambda a^{+}(t)-\mu a^{-}(t)\right) g(x)
\end{array}\right.
$$

with initial data

$$
\left\{\begin{array}{l}
x(0)=r, \quad r>0 \\
y(0)=0
\end{array}\right.
$$

satisfying
$(x(T ; 0,(r, 0)), y(T ; 0,(r, 0))) \in X^{+}$
with $\left.X^{+}:=\right] 0,+\infty[\times\{0\}$
identify solutions $u(\cdot):=x(\cdot ; 0,(r, 0))$ of problem $\left(\mathcal{N}_{\lambda, \mu}\right)$

Phase plane analysis

$$
\begin{gathered}
\Phi_{0}^{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \text { Poincaré Map (PM) associated with } \\
\qquad(\mathcal{S})\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=-\left(\lambda a^{+}(t)-\mu a^{-}(t)\right) g(x)
\end{array}\right.
\end{gathered}
$$

defined as $\Phi_{0}^{T}\left(x_{0}, y_{0}\right):=\left(x\left(T ; 0,\left(x_{0}, y_{0}\right)\right), y\left(T ; 0,\left(x_{0}, y_{0}\right)\right)\right)$

Phase plane analysis

$$
\begin{aligned}
& \Phi_{0}^{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \text { Poincaré Map (PM) associated with } \\
& (\mathcal{S})\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=-\left(\lambda a^{+}(t)-\mu a^{-}(t)\right) g(x)
\end{array}\right.
\end{aligned}
$$

defined as $\Phi_{0}^{T}\left(x_{0}, y_{0}\right):=\left(x\left(T ; 0,\left(x_{0}, y_{0}\right)\right), y\left(T ; 0,\left(x_{0}, y_{0}\right)\right)\right)$

$$
\text { SPLIT } \boldsymbol{\Phi}_{0}^{T}:=\boldsymbol{\Phi}_{\sigma}^{T} \circ \boldsymbol{\Phi}_{0}^{\sigma}
$$

Φ_{σ}^{T} PM associated with
$\phi_{0}^{\sigma} \mathrm{PM}$ associated with

$$
\left(\mathcal{S}^{-}\right)\left\{\begin{array} { l }
{ x ^ { \prime } = y } \\
{ y ^ { \prime } = \mu a ^ { - } (t) g (x) }
\end{array} \quad (\mathcal { S } ^ { + }) \left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=-\lambda a^{+}(t) g(x)
\end{array}\right.\right.
$$

Phase plane analysis

$$
\begin{aligned}
& \Phi_{0}^{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \text { Poincaré Map (PM) associated with } \\
& (\mathcal{S})\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=-\left(\lambda a^{+}(t)-\mu a^{-}(t)\right) g(x)
\end{array}\right.
\end{aligned}
$$

defined as $\Phi_{0}^{T}\left(x_{0}, y_{0}\right):=\left(x\left(T ; 0,\left(x_{0}, y_{0}\right)\right), y\left(T ; 0,\left(x_{0}, y_{0}\right)\right)\right)$

$$
\text { SPLIT } \boldsymbol{\Phi}_{0}^{T}:=\boldsymbol{\Phi}_{\sigma}^{T} \circ \boldsymbol{\Phi}_{0}^{\sigma}
$$

Φ_{σ}^{T} PM associated with
$\phi_{0}^{\sigma} \mathrm{PM}$ associated with

$$
\left(\mathcal{S}^{-}\right)\left\{\begin{array} { l l }
{ x ^ { \prime } = y } \\
{ y ^ { \prime } = \mu a ^ { - } (t) g (x) }
\end{array} (\mathcal { S } ^ { + }) \left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=-\lambda a^{+}(t) g(x)
\end{array}\right.\right.
$$

Dynamics on $[0, \sigma]$

Dynamics on $[0, \sigma]$

Dynamics on $[0, \sigma]$

$$
\lambda>\lambda^{*} \text { fixed }
$$

Dynamics on $[0, \sigma]$

$\lambda>\lambda^{*}$ fixed

Dynamics on $[0, \sigma]$

$\forall k \geq 1 \exists\left(\Gamma_{k}^{1}\right)_{k},\left(\Gamma_{k}^{2}\right)_{k}$ subint. of $[r, M]$

$\lambda>\lambda^{*}$ fixed

Dynamics on $[0, \sigma]$

$\forall k \geq 1 \exists\left(\Gamma_{k}^{1}\right)_{k},\left(\Gamma_{k}^{2}\right)_{k}$ subint. of $[r, M]$
s.t. $\phi_{0}^{\sigma}\left(\Gamma_{k}^{1}\right), \Phi_{0}^{\sigma}\left(\Gamma_{k}^{2}\right) \subset[0, r] \times\left[-C_{M}, 0[\right.$

$\lambda>\lambda^{*}$ fixed

Dynamics on $[0, \sigma]$

$\forall k \geq 1 \exists\left(\Gamma_{k}^{1}\right)_{k},\left(\Gamma_{k}^{2}\right)_{k}$ subint. of $[r, M]$
s.t. $\phi_{0}^{\sigma}\left(\Gamma_{k}^{1}\right), \Phi_{0}^{\sigma}\left(\Gamma_{k}^{2}\right) \subset[0, r] \times\left[-C_{M}, 0[\right.$

$\lambda>\lambda^{*}$ fixed

Dynamics on $[0, \sigma]$
 Dynamics on $[\sigma, T]$

$\forall k \geq 1 \exists\left(\Gamma_{k}^{1}\right)_{k},\left(\Gamma_{k}^{2}\right)_{k}$ subint. of $[r, M]$
s.t. $\Phi_{0}^{\sigma}\left(\Gamma_{k}^{1}\right), \Phi_{0}^{\sigma}\left(\Gamma_{k}^{2}\right) \subset[0, r] \times\left[-C_{M}, 0[\right.$

$$
\lambda>\lambda^{*} \text { fixed }
$$

Dynamics on $[0, \sigma]$
 Dynamics on $[\sigma, T]$

$\forall k \geq 1 \exists\left(\Gamma_{k}^{1}\right)_{k},\left(\Gamma_{k}^{2}\right)_{k}$ subint. of $[r, M]$
s.t. $\Phi_{0}^{\sigma}\left(\Gamma_{k}^{1}\right), \Phi_{0}^{\sigma}\left(\Gamma_{k}^{2}\right) \subset[0, r] \times\left[-C_{M}, 0[\right.$

$\lambda>\lambda^{*}$ fixed

$\mu>\mu^{*}(\lambda, k, r)$ fixed

Dynamics on $[0, \sigma]$
 Dynamics on $[\sigma, T]$

$\forall k \geq 1 \exists\left(\Gamma_{k}^{1}\right)_{k},\left(\Gamma_{k}^{2}\right)_{k}$ subint. of $[r, M]$
s.t. $\Phi_{0}^{\sigma}\left(\Gamma_{k}^{1}\right), \Phi_{0}^{\sigma}\left(\Gamma_{k}^{2}\right) \subset[0, r] \times\left[-C_{M}, 0[\right.$

$\lambda>\lambda^{*}$ fixed

$\mu>\mu^{*}(\lambda, k, r)$ fixed

Dynamics on $[0, \sigma] \quad$ Dynamics on $[\sigma, T]$

$\forall k \geq 1 \exists\left(\Gamma_{k}^{1}\right)_{k},\left(\Gamma_{k}^{2}\right)_{k}$ subint. of $[r, M]$
s.t. $\Phi_{0}^{\sigma}\left(\Gamma_{k}^{1}\right), \Phi_{0}^{\sigma}\left(\Gamma_{k}^{2}\right) \subset[0, r] \times\left[-C_{M}, 0[\right.$

$\lambda>\lambda^{*}$ fixed
$\forall k \geq 1 \exists\left(P_{k}^{1}\right)_{k},\left(P_{k}^{2}\right)_{k}, P_{k}^{i} \in \Gamma_{k}^{i}, i=1,2$ s.t. $\Phi_{0}^{\top}\left(P_{k}^{1}\right), \Phi_{0}^{\top}\left(P_{k}^{2}\right) \in X^{+}$

$\mu>\mu^{*}(\lambda, k, r)$ fixed

Full dynamics $[0, T]$

Summing up:

- $\exists 2 k$ points $P_{j}^{1}, P_{j}^{2} \in X^{+}$s.t. $\Phi_{0}^{T}\left(P_{j}^{1}\right), \Phi_{0}^{T}\left(P_{j}^{2}\right) \in X^{+} \forall j=1 \ldots, k$;
- the solutions $(x(t), y(t))=\left(x\left(T ; 0, P_{j}^{i}\right), y\left(T ; 0, P_{j}^{i}\right)\right)$ of the Cauchy problem

$$
\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=-\left(\lambda a^{+}(t)-\mu a^{-}(t)\right) g(x) \\
(x(0), y(0))=P_{j}^{i}, \quad \forall i=1,2 \forall j=1 \ldots, k
\end{array}\right.
$$

satisfy $0<x(t)<M$ and $y(t) \leq 0 \forall t \in[0, T] ;$

- $\exists 2 k$ (positive) solutions of $\left(\mathcal{N}_{\lambda, \mu}\right)$.

Radially symmetric solutions

In \mathbb{R}^{N} for $N \geq 2$, we consider the problem

$$
(\mathcal{P}) \begin{cases}\Delta u+\left(\lambda w^{+}(x)-\mu w^{-}(x)\right) g(u)=0 & \text { in } \Omega \\ u(x)>0 & \text { in } \bar{\Omega} \\ \frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is an open ball or an open annulus, $w \in L^{1}(\Omega)$ is radially symmetric, i.e. $\exists \mathcal{Q} L^{1}$-function s.t. $w(x)=\mathcal{Q}(|x|)$.

Theorem

Let $\mathcal{Q}(|x|)$ satisfies conditions (\star) adapted to the case of the open ball or the open annulus. Let $g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be continuous satisfying $\left(g_{0}\right),\left(G_{\infty}\right)$ and $\lim \sup _{s \rightarrow 0^{+}} g(s) / s<+\infty$.
Then, $\exists \lambda^{*} \geq 0$ such that, $\forall \lambda>\lambda^{*} \forall k \in \mathbb{Z} k \geq 1, \exists \mu^{*}=\mu^{*}(\lambda, k)>0$ such that $\forall \mu>\mu^{*}$ problem (\mathcal{P}) has at least $2 k$ radially symmetric solutions.
cf.: S., Zanolin, J. Math. Anal. Appl. (2017)

Further directions

- Increase the number of "positive humps" and "negative humps" in the weight term to detect possible complex behaviors for Neumann BVPs with an oscillating nonlinear potential.

- Deal with different boundary conditions (e.g. mixed boundary conditions).

Thank you for your attention!

