About indefinite Neumann problems with oscillating nonlinear potentials: multiplicity of positive solutions

Elisa Sovrano

elisa.sovrano@fc.up.pt

Faculdade de Ciências da Universidade do Porto - Portugal

Joint work with F. Zanolin

GEDO2018 Giornate di Equazioni Differenziali Ordinarie: metodi e prospettive Ancona, September 27th 2018

Outline

- 1. Indefinite Neumann boundary value problem (BVP) with oscillating potential
- 2. Historical overview
- 3. Main result: multiplicity of positive solutions
- 4. Applications and further lines of work

Problem formulation

Consider the indefinite Neumann BVP:

$$(\mathcal{N}) \begin{cases} u'' + a(t)g(u) = 0\\ u(t) > 0, \ \forall t \in [0, T]\\ u'(0) = u'(T) = 0 \end{cases}$$

Problem formulation

indefinite \leftarrow a: $[0, T] \rightarrow \mathbb{R}$ changes its sign.

Consider the indefinite Neumann BVP:

$$(\mathcal{N}) \begin{cases} u'' + \boldsymbol{a(t)g(u)} = 0\\ u(t) > 0, \ \forall t \in [0, T]\\ u'(0) = u'(T) = 0 \end{cases}$$

Problem formulation

indefinite \longleftrightarrow

Weight
$$\sim_{a:}$$
 [0, T] $ightarrow \mathbb{R}$ changes its sign.

Consider the indefinite Neumann BVP:

$$g: \mathbb{R}^+ := [0, +\infty) \rightarrow [0, +\infty) \text{ is}$$

continuous and satisfies
$$(g_0) \quad g(0) = 0, \quad g(s) > 0 \quad \forall s > 0$$

$$(G_{\infty}) \liminf_{s \rightarrow +\infty} \frac{2G(s)}{s^2} = 0 < \limsup_{s \rightarrow +\infty} \frac{2G(s)}{s^2}$$

with $G(s) := \int_0^s g(\xi) d\xi.$

2/16

Necessary conditions for the existence of solutions to problem (\mathcal{N}) :

• If g satisfies condition (g₀), then a(t) must change its sign.

It follows from an integration over [0, T].

Necessary conditions for the existence of solutions to problem (\mathcal{N}) :

- If g satisfies condition (g₀), then a(t) must change its sign.
- If $g'(s) > 0 \forall s > 0$, then a(t) has to satisfy the condition $\int_0^T a(t)dt < 0$.

It follows from an integration over [0, *T*]. Bandle, Pozio, Tesei,

Necessary conditions for the existence of solutions to problem (\mathcal{N}) :

- If g satisfies condition (g₀), then a(t) must change its sign.
- If $g'(s) > 0 \ \forall s > 0$, then a(t) has to satisfy the condition $\int_0^T a(t)dt < 0$.

integration over
[0, T].
Bandle, Pozio, Tesei, Math. Z. (1988).

It follows from an

1. Take weights with a "positive hump" followed by a "negative one".

Necessary conditions for the existence of solutions to problem (\mathcal{N}):

- If g satisfies condition (g₀), then a(t) must change its sign.
- - I. Take weights with a "positive hump" followed by a "negative one".
 - 2. Introduce positive real parameters λ , μ to control $a^+(t)$ and $a^-(t)$.

It follows from an

integration over

|0, T|.

Framework

Assume that $\exists \sigma \in]0, T[$ such that

$$(\star) \begin{array}{l} \mathsf{a}(t) \geq \mathsf{0}, \ \mathsf{a}(t) \not\equiv \mathsf{0}, \ \forall t \in [\mathsf{0}, \sigma], \\ \mathsf{a}(t) \leq \mathsf{0}, \ \mathsf{a}(t) \not\equiv \mathsf{0}, \ \forall t \in [\sigma, T]. \end{array}$$

Given $\lambda, \mu > 0$, consider $a(t) := \lambda a^+(t) - \mu a^-(t)$.

Framework

Assume that $\exists \sigma \in]0, T[$ such that

$$(\star) \begin{array}{l} \mathsf{a}(t) \geq \mathsf{0}, \ \mathsf{a}(t) \not\equiv \mathsf{0}, \ \forall t \in [\mathsf{0}, \sigma], \\ \mathsf{a}(t) \leq \mathsf{0}, \ \mathsf{a}(t) \not\equiv \mathsf{0}, \ \forall t \in [\sigma, T]. \end{array}$$

Given $\lambda, \mu > 0$, consider $a(t) := \lambda a^+(t) - \mu a^-(t)$.

Main purpose

What effects on the dynamics do an indefinite weight term a(t) satisfying (\star) coupled with a positive nonlinearity g(u) oscillating at infinity as in (G_{∞}) has? The answer is in the **multiplicity of positive solutions** for the

parameter-dependent Neumann problem:

$$(\mathcal{N}_{\lambda,\mu}) \begin{cases} u'' + (\lambda a^+(t) - \mu a^-(t))g(u) = 0\\ u(t) > 0, \quad \forall t \in [0, T]\\ u'(0) = u'(T) = 0 \end{cases}$$

Hammerstein's paper

The **"oscillatory assumption at** ∞ " on the nonlinearity g(u) given by (G_{∞}) can be traced back to

Hammerstein, Acta Math. (1930).

Hammerstein's paper

The **"oscillatory assumption at** ∞ " on the nonlinearity g(u) given by (G_{∞}) can be traced back to

Hammerstein, Acta Math. (1930).

Here the existence of solutions for $\psi(x) = \int_B K(x, y) f(y, \psi(y)) dy$ was proved under linear growth condition on f and the non-resonance assumption:

$$\limsup_{u o\pm\infty}rac{2F(x,u)}{u^2}<\lambda_1, ext{ uniformly for } x\in B,$$

where B is a bounded domain, $F(x, u) := \int_0^u f(x, s) ds$ and λ_1 is the first eigenvalue of the associated linear problem.

Hammerstein's paper

The **"oscillatory assumption at** ∞ " on the nonlinearity g(u) given by (G_{∞}) can be traced back to

Hammerstein, Acta Math. (1930).

Here the existence of solutions for $\psi(x) = \int_B K(x, y) f(y, \psi(y)) dy$ was proved under linear growth condition on f and the non-resonance assumption:

$$\limsup_{u\to\pm\infty}\frac{2F(x,u)}{u^2}<\lambda_1, \text{ uniformly for } x\in B,$$

where B is a bounded domain, $F(x, u) := \int_0^u f(x, s) ds$ and λ_1 is the first eigenvalue of the associated linear problem.

... AFTER THAT? ...

A great deal of works on the solvability of nonlinear BVPs "below the first eigenvalue" with conditions on the primitive G(u) either at 0 or at ∞ .

Dirichlet BVPs: remark I

$$(\mathcal{D}_1) \begin{cases} \Delta u + g(u) = h(x) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

with $\Omega \subseteq \mathbb{R}^N$ bounded domain with smooth $\partial \Omega$, $h \in L^{\infty}(\Omega)$ and $g \in C(\mathbb{R})$

Dirichlet BVPs: remark I

 $\begin{aligned} & (\mathcal{D}_1) \begin{cases} \Delta u + g(u) = h(x) & \text{ in } \Omega \\ u = 0 & \text{ on } \partial \Omega \end{cases} \\ & \text{ with } \Omega \subseteq \mathbb{R}^N \text{ bounded domain with smooth } \partial\Omega, \ h \in L^\infty(\Omega) \text{ and } g \in C(\mathbb{R}) \end{aligned}$

• The existence of at least one solution is guaranteed for (\mathcal{D}_1) if g satisfies suitable polynomial growth (Sobolev embeddings) and the Hammerstein-type condition (H): $\limsup_{s \to \pm \infty} \frac{2G(s)}{s^2} < \lambda_1^{\mathcal{D}}(\Omega)$.

Dirichlet BVPs: remark I

 $\begin{aligned} & (\mathcal{D}_1) \begin{cases} \Delta u + g(u) = h(x) & \text{ in } \Omega \\ u = 0 & \text{ on } \partial \Omega \\ & \text{ with } \Omega \subseteq \mathbb{R}^N \text{ bounded domain with smooth } \partial\Omega, \ h \in L^\infty(\Omega) \text{ and } g \in C(\mathbb{R}) \end{aligned}$

- The existence of at least one solution is guaranteed for (\mathcal{D}_1) if g satisfies suitable polynomial growth (Sobolev embeddings) and the Hammerstein-type condition (H): $\limsup_{s \to \pm \infty} \frac{2G(s)}{s^2} < \lambda_1^{\mathcal{D}}(\Omega)$.
- In the one-dimensional case, $\Omega =]0, T[:$
 - replacing (H) with $\liminf_{s\to\pm\infty} \frac{2G(s)}{s^2} < \lambda_1^{\mathcal{D}}(\Omega) = (\frac{\pi}{T})^2$, the above result still holds;
 - $^\circ\,$ adding the "oscillatory assumption at ∞ "

$$\liminf_{s\to+\infty}\frac{2G(s)}{s^2}<\left(\frac{\pi}{T}\right)^2<\limsup_{s\to+\infty}\frac{2G(s)}{s^2},$$

along with the technical condition $\lim_{s\to+\infty} g(s) = +\infty$, the existence of infinitely many solutions $u(t) > 0 \ \forall t \in]0, T[$ holds.

cf.: Fernandes, Omari, Zanolin, Differential Integral Equations (1989).

Dirichlet BVPs: remark II

 $(\mathcal{D}_2) \begin{cases} \Delta u + a(x)g(u) = 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \\ \text{with } \Omega \subseteq \mathbb{R}^N \text{ bounded domain with smooth } \partial\Omega, \ a \in L^{\infty}(\Omega) \text{ and } g \in C(\mathbb{R}^+) \end{cases}$

Dirichlet BVPs: remark II

$$\begin{aligned} & (\mathcal{D}_2) \begin{cases} \Delta u + a(x)g(u) = 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \\ \text{with } \Omega \subseteq \mathbb{R}^N \text{ bounded domain with smooth } \partial \Omega \text{, } a \in L^\infty(\Omega) \text{ and } g \in C(\mathbb{R}^+) \end{aligned}$$

If $essinf_{\Omega}a(x) > 0$, g satisfies (g_0) and **"oscillatory assumption at** ∞ "

$$\liminf_{s \to +\infty} \frac{2G(s)}{s^2} = 0 < \limsup_{s \to +\infty} \frac{2G(s)}{s^2} = +\infty$$

then $\exists (u_n)_n$ sequence of solutions of (\mathcal{D}_2) such that

- $u_n(x) \ge 0 \ \forall x \in \Omega$
- $\max_{\overline{\Omega}} u_n \to +\infty$.

cf.: 📄 Omari, Zanolin, Comm. Partial Differential Equations (1996).

Dirichlet BVPs: remark II

$$\begin{aligned} & (\mathcal{D}_2) \begin{cases} \Delta u + a(x)g(u) = 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \\ \text{with } \Omega \subseteq \mathbb{R}^N \text{ bounded domain with smooth } \partial \Omega \text{, } a \in L^\infty(\Omega) \text{ and } g \in C(\mathbb{R}^+) \end{aligned}$$

If $\underline{essinf}_{\Omega}a(x) > 0$, g satisfies (g_0) and "oscillatory assumption at ∞ "

$$\liminf_{s \to +\infty} \frac{2G(s)}{s^2} = 0 < \limsup_{s \to +\infty} \frac{2G(s)}{s^2} = +\infty$$

then $\exists (u_n)_n, (v_n)_n$ sequences of solutions of (\mathcal{D}_2) such that

- $u_n(x) > 0$ and $v_n(x) > 0 \ \forall x \in \Omega$
- $\lim_{n} u_n(x)/\operatorname{dist}(x,\partial\Omega) = \lim_{n} v_n(x)/\operatorname{dist}(x,\partial\Omega) = +\infty.$
- cf.: 📄 Obersnel, Omari, J. Math. Anal. Appl. (2006).

$$(\mathcal{N}_1) \begin{cases} \Delta u + g(u) = h(x) & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega \\ \text{with } h \in L^{\infty}(\Omega) \end{cases} \qquad (\mathcal{N}_2) \begin{cases} \Delta u + a(x)g(u) = 0 & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega \\ \text{with } a \in L^{\infty}(\Omega) & \text{with } a \in L^{\infty}(\Omega) \end{cases}$$

$$(\mathcal{N}_1) \begin{cases} \Delta u + g(u) = h(x) & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega \\ \text{with } h \in L^{\infty}(\Omega) \end{cases} \qquad (\mathcal{N}_2) \begin{cases} \Delta u + a(x)g(u) = 0 & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega \\ \text{with } a \in L^{\infty}(\Omega) & \text{in definite} \end{cases}$$

If g satisfies the Hammerstein-type condition (H):

$$\limsup_{s
ightarrow\pm\infty}rac{2G(s)}{s^2}<\lambda_1^\mathcal{N}(\Omega)=$$
 0,

then $\exists (w_n)_n, (v_n)_n$ sequences of reals numbers s.t. $w_n \to -\infty, g(w_n) \to +\infty$ and $v_n \to +\infty, g(v_n) \to -\infty$. This way: **Neumann BVP easy affordable** (with the theory of lower/upper-solutions) and **no compatible with** (g_0).

$$(\mathcal{N}_1) \begin{cases} \Delta u + g(u) = h(x) & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega \\ \text{with } h \in L^{\infty}(\Omega) \end{cases} \qquad (\mathcal{N}_2) \begin{cases} \Delta u + a(x)g(u) = 0 & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega \\ \text{with } a \in L^{\infty}(\Omega) & \text{in definite} \end{cases}$$

If g satisfies the Hammerstein-type condition (H):

$$\limsup_{s
ightarrow\pm\infty}rac{2G(s)}{s^2}<\lambda_1^\mathcal{N}(\Omega)=$$
 0,

then $\exists (w_n)_n, (v_n)_n$ sequences of reals numbers s.t. $w_n \to -\infty, g(w_n) \to +\infty$ and $v_n \to +\infty, g(v_n) \to -\infty$. This way: **Neumann BVP easy affordable** (with the theory of lower/upper-solutions) and **no compatible with** (g_0) .

What about Hammerstain-type condition w.r.t. $\lambda_2^{\mathcal{N}}(\Omega)$?

$$(\mathcal{N}_1) \begin{cases} \Delta u + g(u) = h(x) & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega \\ \text{with } h \in L^{\infty}(\Omega) \end{cases} \qquad (\mathcal{N}_2) \begin{cases} \Delta u + a(x)g(u) = 0 & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega \\ \text{with } a \in L^{\infty}(\Omega) & \text{in definite} \end{cases}$$

If g satisfies the Hammerstein-type condition (H):

$$\limsup_{s
ightarrow\pm\infty}rac{2G(s)}{s^2}<\lambda_1^\mathcal{N}(\Omega)=$$
 0,

then $\exists (w_n)_n, (v_n)_n$ sequences of reals numbers s.t. $w_n \to -\infty, g(w_n) \to +\infty$ and $v_n \to +\infty, g(v_n) \to -\infty$. This way: **Neumann BVP easy affordable** (with the theory of lower/upper-solutions) and **no compatible with** (g_0) .

What about Hammerstain-type condition w.r.t. $\lambda_2^{\mathcal{N}}(\Omega)$?

Extensive literature for $\left(\mathcal{N}_{1}\right)$ starting from

Mawhin, Ward, Willem, Arch. Rational

Mech. Anal. (1986).

Gossez, Omari, Proc. Amer. Math. Soc. (1992). Trans. Amer. Math. Soc. (1995).

Lot of multiplicity results for (\mathcal{N}_2) with g super-linear or sub-linear

BUT

it looks still not completely explored the case of g satisfying (g_0) and (G_{∞}) (even in one-dimension).

Main result

By recalling the indefinite Neumann BVP

$$(\mathcal{N}_{\lambda,\mu}) \begin{cases} u'' + (\lambda a^+(t) - \mu a^-(t))g(u) = 0\\ u(t) > 0, \quad \forall t \in [0, T]\\ u'(0) = u'(T) = 0 \end{cases}$$

we state multiplicity of positive solutions for λ , μ suff. large.

Main result

By recalling the indefinite Neumann BVP

$$(\mathcal{N}_{\lambda,\mu}) \begin{cases} u'' + (\lambda a^+(t) - \mu a^-(t))g(u) = 0\\ u(t) > 0, \quad \forall t \in [0, T]\\ u'(0) = u'(T) = 0 \end{cases}$$

we state multiplicity of positive solutions for λ , μ suff. large.

Theorem

Let $a: [0, T] \to \mathbb{R}$ be bounded piecewise continuous satisfying (*). Let $g: \mathbb{R}^+ \to \mathbb{R}^+$ be continuous s.t. (g_0) , (G_∞) and $\limsup_{s\to 0^+} g(s)/s < +\infty$. Then, $\exists \lambda^* \ge 0$ s.t. $\forall \lambda > \lambda^*$, $\forall r > 0$, $\forall k \in \mathbb{Z}$ with $k \ge 1$, $\exists \mu^* = \mu^*(\lambda, r, k) > 0$ s.t. $\forall \mu > \mu^*$ problem $(\mathcal{N}_{\lambda,\mu})$ has at least 2ksolutions which are nonincreasing on [0, T] and $0 < u(t) \le r \forall t \in [\sigma, T]$. If $\limsup_{s\to +\infty} 2G(s)/s^2 = +\infty$, the result holds with $\lambda^* = 0$.

cf.: S., Zanolin, J. Math. Anal. Appl. (2017)

Main result

By recalling the indefinite Neumann BVP

$$(\mathcal{N}_{\lambda,\mu}) \begin{cases} u'' + (\lambda a^+(t) - \mu a^-(t))g(u) = 0\\ u(t) > 0, \quad \forall t \in [0, T]\\ u'(0) = u'(T) = 0 \end{cases}$$

we state multiplicity of positive sol

Nonlinearity example

Let ρ , θ , A, $B \in \mathbb{R}$ s.t k, A > 0, $\theta \in [0, 2\pi[, |B| < 2A/(\rho^2 + 4)^{1/2}]$. We define $\forall s \ge 0$ $G(s) := As^2 + Bs^2 \cos(\rho \log(1 + s) + \theta)$. Then, g(s) := G'(s) is $C^{\infty}(\mathbb{R}^+)$ satisfying $\circ g(0) = 0, g(s) > 0 \forall s > 0$ $\circ \liminf_{s \to +\infty} 2G(s)/s^2 = 2(A - B) < 2(A + B) = \limsup_{s \to +\infty} 2G(s)/s^2$ $\circ \lim_{s \to 0^+} g(s)/s = 2(A + B \cos \theta) > 0$ cf.: S., Zanolin, *RIMUT* (2015)

Theorem

Let $a: [0, T] \to \mathbb{R}$ be bounded piecewise continuous satisfying (*). Let $g: \mathbb{R}^+ \to \mathbb{R}^+$ be continuous s.t. (g_0) , (G_∞) and $\limsup_{s\to 0^+} g(s)/s < +\infty$. Then, $\exists \lambda^* \ge 0$ s.t. $\forall \lambda > \lambda^*$, $\forall r > 0$, $\forall k \in \mathbb{Z}$ with $k \ge 1$, $\exists \mu^* = \mu^*(\lambda, r, k) > 0$ s.t. $\forall \mu > \mu^*$ problem $(\mathcal{N}_{\lambda,\mu})$ has at least 2ksolutions which are nonincreasing on [0, T] and $0 < u(t) \le r \forall t \in [\sigma, T]$. If $\limsup_{s\to +\infty} 2G(s)/s^2 = +\infty$, the result holds with $\lambda^* = 0$.

cf.: 🔋 S., Zanolin, J. Math. Anal. Appl. (2017)

Sketch of the proof via Shooting Method

Solutions $(x(\cdot; 0, (r, 0)), v(\cdot; 0, (r, 0)))$ of the Cauchy problem

$$(\mathcal{S}) \begin{cases} x' = y \\ y' = -(\lambda a^+(t) - \mu a^-(t)) g(x) \end{cases}$$

with initial data

$$\begin{cases} x(0) = r, \quad r > 0\\ y(0) = 0 \end{cases}$$

Sketch of the proof via Shooting Method

Solutions $(x(\cdot; 0, (r, 0)), v(\cdot; 0, (r, 0)))$ of the Cauchy problem

$$(\mathcal{S}) \begin{cases} x' = y \\ y' = -(\lambda a^+(t) - \mu a^-(t)) g(x) \end{cases}$$

with initial data

$$\begin{cases} x(0) = r, \quad r > 0\\ y(0) = 0 \end{cases}$$

 $\xrightarrow{(x(T), y(T))} \xrightarrow{(r, 0)} x$

satisfying

$$(x(T; 0, (r, 0)), y(T; 0, (r, 0))) \in X^+$$

with $X^+ :=]0, +\infty[\times\{0\}]$

Sketch of the proof via Shooting Method

Solutions $(x(\cdot; 0, (r, 0)), v(\cdot; 0, (r, 0)))$ of the Cauchy problem

$$(\mathcal{S}) \begin{cases} x' = y \\ y' = -(\lambda a^+(t) - \mu a^-(t)) g(x) \end{cases}$$

Phase plane analysis

 $\Phi_0^{\,\mathcal{T}}\colon \mathbb{R}^2 \to \mathbb{R}^2$ Poincaré Map (PM) associated with

$$(\mathcal{S}) \begin{cases} x' = y \\ y' = -(\lambda a^+(t) - \mu a^-(t)) g(x) \end{cases}$$

defined as $\Phi_0^T(x_0, y_0) := (x(T; 0, (x_0, y_0)), y(T; 0, (x_0, y_0)))$

Phase plane analysis

 $\Phi_0^T : \mathbb{R}^2 \to \mathbb{R}^2$ Poincaré Map (PM) associated with $(\mathcal{S}) \begin{cases} x' = y \\ v' = -(\lambda a^+(t) - \mu a^-(t)) g(x) \end{cases}$ defined as $\Phi_0^T(x_0, y_0) := (x(T; 0, (x_0, y_0)), y(T; 0, (x_0, y_0)))$ $\mathbf{SPLIT} \ \Phi_0^{\mathsf{T}} := \Phi_\sigma^{\mathsf{T}} \circ \Phi_0^{\sigma} \mathcal{N}$ Φ_{σ}^{T} PM associated with Φ_0^{σ} PM associated with $(\mathcal{S}^+) \begin{cases} x' = y \\ v' = -\lambda a^+(t)g(x) \end{cases}$ $(\mathcal{S}^{-}) \begin{cases} x' = y \\ y' = ua^{-}(t)g(x) \end{cases}$

Phase plane analysis

$$\Phi_{0}^{T}: \mathbb{R}^{2} \to \mathbb{R}^{2} \text{ Poincaré Map (PM) associated with}$$

$$(S) \begin{cases} x' = y \\ y' = -(\lambda a^{+}(t) - \mu a^{-}(t)) g(x) \end{cases}$$
defined as $\Phi_{0}^{T}(x_{0}, y_{0}) := (x(T; 0, (x_{0}, y_{0})), y(T; 0, (x_{0}, y_{0})))$

$$(SPLIT \Phi_{0}^{T}:= \Phi_{\sigma}^{T} \circ \Phi_{0}^{\sigma})$$

$$\Phi_{\sigma}^{T} PM \text{ associated with}$$

$$\Phi_{0}^{\sigma} PM \text{ associated with}$$

$$S^{-}) \begin{cases} x' = y \\ y' = \mu a^{-}(t)g(x) \end{cases}$$

$$(S^{+}) \begin{cases} x' = y \\ y' = -\lambda a^{+}(t)g(x) \end{cases}$$

$$LOOK FOR P \in X^{+} \text{ s.t. } (\Phi_{\sigma}^{T} \circ \Phi_{0}^{\sigma})(P) \in X^{+} \end{cases}$$

16

Dynamics on $[0, \sigma]$

Dynamics on $[0, \sigma]$

12/16

Dynamics on $[0, \sigma]$

Elisa Sovrano

12/16

 $\lambda > \lambda^*$ fixed

Elisa Sovrano

 $\forall k \geq 1 \exists (\Gamma_k^1)_k, (\Gamma_k^2)_k \text{ subint. of } [r, M]$

 $\lambda > \lambda^*$ fixed

Elisa Sovrano

Multiplicity of positive solutions for indefinite Neumann problems

 $\forall k \ge 1 \exists (\Gamma_k^1)_k, (\Gamma_k^2)_k \text{ subint. of } [r, M]$ s.t. $\Phi_0^{\sigma}(\Gamma_k^1), \Phi_0^{\sigma}(\Gamma_k^2) \subset [0, r] \times [-C_M, 0[$

 $\forall k \ge 1 \exists (\Gamma_k^1)_k, (\Gamma_k^2)_k \text{ subint. of } [r, M]$ s.t. $\Phi_0^{\sigma}(\Gamma_k^1), \Phi_0^{\sigma}(\Gamma_k^2) \subset [0, r] \times [-C_M, 0[$

 $\forall k \ge 1 \exists (\Gamma_k^1)_k, (\Gamma_k^2)_k \text{ subint. of } [r, M]$ s.t. $\Phi_0^{\sigma}(\Gamma_k^1), \Phi_0^{\sigma}(\Gamma_k^2) \subset [0, r] \times [-C_M, 0[$

Dynamics on $[\sigma, T]$

 $\lambda > \lambda^*$ fixed

Elisa Sovrano

Multiplicity of positive solutions for indefinite Neumann problems

16

 $\forall k \ge 1 \exists (\Gamma_k^1)_k, (\Gamma_k^2)_k \text{ subint. of } [r, M]$ s.t. $\Phi_0^{\sigma}(\Gamma_k^1), \Phi_0^{\sigma}(\Gamma_k^2) \subset [0, r] \times [-C_M, 0[$

Dynamics on $[\sigma, T]$

 $\lambda > \lambda^*$ fixed

 $\mu > \mu^*(\lambda, k, r)$ fixed

Elisa Sovrano

Multiplicity of positive solutions for indefinite Neumann problems

 $\forall k \ge 1 \exists (\Gamma_k^1)_k, (\Gamma_k^2)_k \text{ subint. of } [r, M]$ s.t. $\Phi_0^{\sigma}(\Gamma_k^1), \Phi_0^{\sigma}(\Gamma_k^2) \subset [0, r] \times [-C_M, 0[$

Dynamics on $[\sigma, T]$

 $\forall k \ge 1 \exists (\Gamma_k^1)_k, (\Gamma_k^2)_k \text{ subint. of } [r, M]$ s.t. $\Phi_0^{\sigma}(\Gamma_k^1), \Phi_0^{\sigma}(\Gamma_k^2) \subset [0, r] \times [-C_M, 0[$

Dynamics on $[\sigma, T]$ $\forall k \ge 1 \exists (P_k^1)_k, (P_k^2)_k, P_k^i \in \Gamma_k^i, i = 1, 2$ s.t. $\Phi_0^T(P_k^1), \Phi_0^T(P_k^2) \in X^+$

16

Full dynamics [0, T]

Summing up:

- $\exists 2k \text{ points } P_j^1, P_j^2 \in X^+ \text{ s.t. } \Phi_0^T(P_j^1), \Phi_0^T(P_j^2) \in X^+ \ \forall j = 1 \dots, k;$
- the solutions $(x(t), y(t)) = (x(T; 0, P_j^i), y(T; 0, P_j^i))$ of the Cauchy problem

$$\begin{cases} x' = y \\ y' = -(\lambda a^{+}(t) - \mu a^{-}(t)) g(x) \\ (x(0), y(0)) = P_{j}^{i}, \quad \forall i = 1, 2 \; \forall j = 1 \dots, k \end{cases}$$

satisfy 0 < x(t) < M and $y(t) \le 0 \ \forall t \in [0, T];$

• $\exists 2k \text{ (positive) solutions of } (\mathcal{N}_{\lambda,\mu}).$

Radially symmetric solutions

In \mathbb{R}^N for $N \ge 2$, we consider the problem

$$(\mathcal{P}) \begin{cases} \Delta u + (\lambda w^+(x) - \mu w^-(x)) g(u) = 0 & \text{in } \Omega, \\ u(x) > 0 & \text{in } \overline{\Omega}, \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega, \end{cases}$$

where Ω is an **open ball or** an **open annulus**, $w \in L^1(\Omega)$ is **radially symmetric**, i.e. $\exists Q L^1$ -function s.t. w(x) = Q(|x|).

Theorem

Let $\mathcal{Q}(|x|)$ satisfies conditions (*) adapted to the case of the open ball or the open annulus. Let $g : \mathbb{R}^+ \to \mathbb{R}^+$ be continuous satisfying (g_0) , (G_∞) and $\limsup_{s\to 0^+} g(s)/s < +\infty$. Then, $\exists \lambda^* \ge 0$ such that, $\forall \lambda > \lambda^* \forall k \in \mathbb{Z} \ k \ge 1$, $\exists \mu^* = \mu^*(\lambda, k) > 0$ such that $\forall \mu > \mu^*$ problem (\mathcal{P}) has at least 2k radially symmetric solutions.

cf.: 📄 S., Zanolin, J. Math. Anal. Appl. (2017)

Further directions

• Increase the number of "positive humps" and "negative humps" in the weight term to detect possible **complex behaviors** for Neumann BVPs with an oscillating nonlinear potential.

• Deal with different boundary conditions (e.g. mixed boundary conditions).

Thank you for your attention!

Multiplicity of positive solutions for indefinite Neumann problems