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Problem formulation

Consider the indefinite
Neumann BVP:

(N )


u′′ + a(t)g(u) = 0
u(t) > 0, ∀t ∈ [0, T ]
u′(0) = u′(T ) = 0

Weight
a : [0, T ] → R changes its sign.

Nonlinearity
g : R+ := [0, +∞) → [0, +∞) is
continuous and satisfies

(g0) g(0) = 0, g(s) > 0 ∀s > 0

(G∞) lim inf
s→+∞

2G(s)
s2 = 0 < lim sup

s→+∞

2G(s)
s2

with G(s) :=
∫ s

0
g(ξ)dξ.

indefinite
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Preliminary remarks
Necessary conditions for the existence of solutions to problem (N ):

• If g satisfies condition (g0), then a(t) must
change its sign.

It follows from an
integration over
[0, T ].

• If g ′(s) > 0 ∀s > 0, then a(t) has to satisfy
the condition

∫ T
0 a(t)dt < 0.

Bandle, Pozio, Tesei,
Math. Z. (1988).

⇓
0

σ T
t

a(t)

1. Take weights with a “positive hump” followed by a “negative one”.

2. Introduce positive real parameters λ, µ to control a+(t) and a−(t).
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Framework
Assume that ∃ σ ∈]0, T [ such that

(⋆)
a(t) ≥ 0, a(t) ̸≡ 0, ∀t ∈ [0,σ],
a(t) ≤ 0, a(t) ̸≡ 0, ∀t ∈ [σ, T ].

Given λ,µ > 0, consider a(t) := λa+(t) − µa−(t).

Main purpose

What effects on the dynamics do an indefinite weight term a(t) satisfying (⋆)
coupled with a positive nonlinearity g(u) oscillating at infinity as in (G∞) has?

The answer is in the multiplicity of positive solutions for the
parameter-dependent Neumann problem:

(Nλ,µ)


u′′ +

(
λa+(t) − µa−(t)

)
g(u) = 0

u(t) > 0, ∀t ∈ [0, T ]
u′(0) = u′(T ) = 0
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Hammerstein’s paper
The “oscillatory assumption at ∞” on the nonlinearity g(u) given by
(G∞) can be traced back to

Hammerstein, Acta Math. (1930).

Here the existence of solutions for ψ(x) =
∫

B K (x , y)f (y ,ψ(y)) dy was
proved under linear growth condition on f and the non-resonance assumption:

lim sup
u→±∞

2F (x , u)
u2 < λ1, uniformly for x ∈ B,

where B is a bounded domain, F (x , u) :=
∫ u

0 f (x , s) ds and λ1 is the first
eigenvalue of the associated linear problem.

... AFTER THAT? ...

A great deal of works on the solvability of nonlinear BVPs “below the first
eigenvalue” with conditions on the primitive G(u) either at 0 or at ∞.
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Dirichlet BVPs: remark I

(D1)
{
∆u + g(u) = h(x) in Ω

u = 0 on ∂Ω
with Ω ⊆ RN bounded domain with smooth ∂Ω, h ∈ L∞(Ω) and g ∈ C(R)

• The existence of at least one solution is guaranteed for (D1) if g satisfies
suitable polynomial growth (Sobolev embeddings) and the
Hammerstein-type condition (H): lim sups→±∞

2G(s)
s2 < λD

1 (Ω).
• In the one-dimensional case, Ω = ]0, T [:

◦ replacing (H) with lim infs→±∞
2G(s)

s2 <λD
1 (Ω)=

(
π
T

)2, the above result
still holds;

◦ adding the “oscillatory assumption at ∞”

lim inf
s→+∞

2G(s)
s2 <

( π
T

)2
< lim sup

s→+∞

2G(s)
s2 ,

along with the technical condition lims→+∞ g(s) = +∞, the existence
of infinitely many solutions u(t) > 0 ∀t ∈ ]0, T [ holds.
cf.: Fernandes, Omari, Zanolin, Differential Integral Equations (1989).
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Dirichlet BVPs: remark II

(D2)
{
∆u + a(x)g(u) = 0 in Ω

u = 0 on ∂Ω
with Ω ⊆ RN bounded domain with smooth ∂Ω, a ∈ L∞(Ω) and g ∈ C(R+)

If g satisfies (g0) and “oscillatory assumption at ∞”

lim inf
s→+∞

2G(s)
s2 = 0 < lim sup

s→+∞

2G(s)
s2 = +∞,

then

cf.:
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Dirichlet BVPs: remark II

(D2)
{
∆u + a(x)g(u) = 0 in Ω

u = 0 on ∂Ω
with Ω ⊆ RN bounded domain with smooth ∂Ω, a ∈ L∞(Ω) and g ∈ C(R+)

If essinfΩa(x) > 0, g satisfies (g0) and “oscillatory assumption at ∞”

lim inf
s→+∞

2G(s)
s2 = 0 < lim sup

s→+∞

2G(s)
s2 = +∞,

then ∃(un)n sequence of solutions of (D2) such that

• un(x) ≥ 0 ∀ x ∈ Ω

• maxΩ un → +∞.

cf.: Omari, Zanolin, Comm. Partial Differential Equations (1996).
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then ∃(un)n, (vn)n sequences of solutions of (D2) such that

• un(x) > 0 and vn(x) > 0 ∀ x ∈ Ω

• limn un(x)/dist(x , ∂Ω) = limn vn(x)/dist(x , ∂Ω) = +∞.

cf.: Obersnel, Omari, J. Math. Anal. Appl. (2006).
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Back to Neumann BVPs, what can we say?

(N1)
{
∆u+g(u)=h(x) in Ω
∂u
∂ν =0 on ∂Ω

(N2)
{
∆u+a(x)g(u)=0 in Ω
∂u
∂ν =0 on ∂Ω

with h∈L∞(Ω) with a∈L∞(Ω) indefinite

If g satisfies the Hammerstein-type condition (H):

lim sup
s→±∞

2G(s)
s2 < λN

1 (Ω) = 0,

then ∃ (wn)n, (vn)n sequences of reals numbers s.t. wn → −∞, g(wn) → +∞
and vn → +∞, g(vn) → −∞. This way: Neumann BVP easy affordable
(with the theory of lower/upper-solutions) and no compatible with (g0).

What about Hammerstain-type condition w.r.t. λN
2 (Ω)?

Extensive literature for (N1) starting
from

Mawhin, Ward, Willem, Arch. Rational
Mech. Anal. (1986).
Gossez, Omari, Proc. Amer. Math. Soc.
(1992). Trans. Amer. Math. Soc. (1995).

Lot of multiplicity results for (N2) with
g super-linear or sub-linear

BUT
it looks still not completely explored
the case of g satisfying (g0) and (G∞)
(even in one-dimension).

Elisa Sovrano Multiplicity of positive solutions for indefinite Neumann problems 8/16
8/16



Back to Neumann BVPs, what can we say?

(N1)
{
∆u+g(u)=h(x) in Ω
∂u
∂ν =0 on ∂Ω

(N2)
{
∆u+a(x)g(u)=0 in Ω
∂u
∂ν =0 on ∂Ω

with h∈L∞(Ω) with a∈L∞(Ω) indefinite

If g satisfies the Hammerstein-type condition (H):

lim sup
s→±∞

2G(s)
s2 < λN

1 (Ω) = 0,

then ∃ (wn)n, (vn)n sequences of reals numbers s.t. wn → −∞, g(wn) → +∞
and vn → +∞, g(vn) → −∞. This way: Neumann BVP easy affordable
(with the theory of lower/upper-solutions) and no compatible with (g0).

What about Hammerstain-type condition w.r.t. λN
2 (Ω)?

Extensive literature for (N1) starting
from

Mawhin, Ward, Willem, Arch. Rational
Mech. Anal. (1986).
Gossez, Omari, Proc. Amer. Math. Soc.
(1992). Trans. Amer. Math. Soc. (1995).

Lot of multiplicity results for (N2) with
g super-linear or sub-linear

BUT
it looks still not completely explored
the case of g satisfying (g0) and (G∞)
(even in one-dimension).

Elisa Sovrano Multiplicity of positive solutions for indefinite Neumann problems 8/16
8/16



Back to Neumann BVPs, what can we say?

(N1)
{
∆u+g(u)=h(x) in Ω
∂u
∂ν =0 on ∂Ω

(N2)
{
∆u+a(x)g(u)=0 in Ω
∂u
∂ν =0 on ∂Ω

with h∈L∞(Ω) with a∈L∞(Ω) indefinite

If g satisfies the Hammerstein-type condition (H):

lim sup
s→±∞

2G(s)
s2 < λN

1 (Ω) = 0,

then ∃ (wn)n, (vn)n sequences of reals numbers s.t. wn → −∞, g(wn) → +∞
and vn → +∞, g(vn) → −∞. This way: Neumann BVP easy affordable
(with the theory of lower/upper-solutions) and no compatible with (g0).

What about Hammerstain-type condition w.r.t. λN
2 (Ω)?

Extensive literature for (N1) starting
from

Mawhin, Ward, Willem, Arch. Rational
Mech. Anal. (1986).
Gossez, Omari, Proc. Amer. Math. Soc.
(1992). Trans. Amer. Math. Soc. (1995).

Lot of multiplicity results for (N2) with
g super-linear or sub-linear

BUT
it looks still not completely explored
the case of g satisfying (g0) and (G∞)
(even in one-dimension).

Elisa Sovrano Multiplicity of positive solutions for indefinite Neumann problems 8/16
8/16



Back to Neumann BVPs, what can we say?

(N1)
{
∆u+g(u)=h(x) in Ω
∂u
∂ν =0 on ∂Ω

(N2)
{
∆u+a(x)g(u)=0 in Ω
∂u
∂ν =0 on ∂Ω

with h∈L∞(Ω) with a∈L∞(Ω) indefinite

If g satisfies the Hammerstein-type condition (H):

lim sup
s→±∞

2G(s)
s2 < λN

1 (Ω) = 0,

then ∃ (wn)n, (vn)n sequences of reals numbers s.t. wn → −∞, g(wn) → +∞
and vn → +∞, g(vn) → −∞. This way: Neumann BVP easy affordable
(with the theory of lower/upper-solutions) and no compatible with (g0).

What about Hammerstain-type condition w.r.t. λN
2 (Ω)?

Extensive literature for (N1) starting
from

Mawhin, Ward, Willem, Arch. Rational
Mech. Anal. (1986).
Gossez, Omari, Proc. Amer. Math. Soc.
(1992). Trans. Amer. Math. Soc. (1995).

Lot of multiplicity results for (N2) with
g super-linear or sub-linear

BUT
it looks still not completely explored
the case of g satisfying (g0) and (G∞)
(even in one-dimension).

Elisa Sovrano Multiplicity of positive solutions for indefinite Neumann problems 8/16
8/16



Main result
By recalling the indefinite Neumann BVP

(Nλ,µ)


u′′+

(
λa+(t)−µa−(t)

)
g(u)=0

u(t) > 0, ∀t ∈ [0, T ]
u′(0) = u′(T ) = 0

we state multiplicity of positive solutions for λ, µ suff. large.

Theorem

Let a : [0, T ] → R be bounded piecewise continuous satisfying (⋆).
Let g : R+ → R+ be continuous s.t. (g0), (G∞) and
lim sups→0+ g(s)/s < +∞.
Then, ∃λ∗ ≥ 0 s.t. ∀λ > λ∗, ∀ r > 0, ∀ k ∈ Z with k ≥ 1,
∃µ∗ = µ∗(λ, r , k) > 0 s.t. ∀ µ > µ∗ problem (Nλ,µ) has at least 2k
solutions which are nonincreasing on [0, T ] and 0 < u(t) ≤ r ∀ t ∈ [σ, T ].
If lim sups→+∞ 2G(s)/s2 = +∞, the result holds with λ∗ = 0.

cf.: S., Zanolin, J. Math. Anal. Appl. (2017)
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Nonlinearity example

Let ρ, θ, A, B ∈ R s.t k, A > 0, θ ∈ [0, 2π[,
|B| < 2A/(ρ2 + 4)1/2. We define ∀s ≥ 0
G(s) :=As2 + Bs2 cos(ρ log(1 + s) + θ).

Then, g(s) :=G′(s) is C∞(R+) satisfying
◦ g(0) = 0, g(s) > 0 ∀s > 0
◦ lim infs→+∞ 2G(s)/s2 = 2(A − B) <

2(A + B) = lim sups→+∞ 2G(s)/s2

◦ lims→0+ g(s)/s = 2(A + B cos θ) > 0

cf.: S., Zanolin, RIMUT (2015)



Sketch of the proof via Shooting Method
Solutions

(
x

(
·; 0, (r , 0)

)
, v

(
·; 0, (r , 0)

))
of the Cauchy problem

(S)
{

x ′ = y
y ′ = −

(
λa+(t) − µa−(t)

)
g(x)

with initial data{
x(0) = r , r > 0
y(0) = 0

satisfying(
x

(
T ; 0, (r , 0)

)
, y

(
T ; 0, (r , 0)

))
∈X+

with X+ :=]0, +∞[×{0}

identify solutions u(·) := x
(
·; 0, (r , 0)

)
of problem (Nλ,µ)

(r , 0)

X+
x

y

T

r

t

x
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Phase plane analysis
ΦT

0 : R2 → R2 Poincaré Map (PM) associated with

(S)
{

x ′ = y
y ′ = −

(
λa+(t) − µa−(t)

)
g(x)

defined as ΦT
0 (x0, y0) :=

(
x

(
T ; 0, (x0, y0)

)
, y

(
T ; 0, (x0, y0)

))

SPLIT ΦT
0 := ΦT

σ ◦ Φσ
0

ΦT
σ PM associated with

(S−)
{

x ′ = y
y ′ = µa−(t)g(x)

Φσ
0 PM associated with

(S+)
{

x ′ = y
y ′ = −λa+(t)g(x)

LOOK FOR P ∈ X+ s.t.
(
ΦT

σ ◦ Φσ
0

)
(P) ∈ X+
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Dynamics on [0, σ] Dynamics on [σ, T ]

∀k ≥ 1 ∃ (Γ1
k)k , (Γ2

k)k subint. of [r , M]
s.t. Φσ

0 (Γ1
k),Φσ

0 (Γ2
k) ⊂ [0, r ] × [−CM , 0[

X+
x

y

λ > λ∗ fixed

∀k ≥ 1 ∃ (P1
k )k , (P2

k )k , P i
k ∈ Γi

k , i = 1, 2

s.t. ΦT
0 (P1

k ),ΦT
0 (P2

k ) ∈ X+

x

y

µ > µ∗(λ, k, r) fixed
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Full dynamics [0, T ]

Summing up:

• ∃ 2k points P1
j , P2

j ∈ X+ s.t. ΦT
0 (P1

j ),ΦT
0 (P2

j ) ∈ X+ ∀ j = 1 ... , k ;

• the solutions
(
x(t), y(t)

)
=

(
x

(
T ; 0, P i

j
)
, y

(
T ; 0, P i

j
))

of the Cauchy
problem 

x ′ = y
y ′ = −

(
λa+(t) − µa−(t)

)
g(x)(

x(0), y(0)
)

= P i
j , ∀ i = 1, 2 ∀ j = 1 ... , k

satisfy 0 < x(t) < M and y(t) ≤ 0 ∀t ∈ [0, T ];

• ∃ 2k (positive) solutions of (Nλ,µ).
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Radially symmetric solutions
In RN for N ≥ 2, we consider the problem

(P)


∆u +

(
λw+(x) − µw−(x)

)
g(u) = 0 in Ω,

u(x) > 0 in Ω,
∂u
∂ν = 0 on ∂Ω,

where Ω is an open ball or an open annulus, w ∈ L1(Ω) is
radially symmetric, i.e. ∃ Q L1-function s.t. w(x)=Q(|x |).

Theorem

Let Q(|x |) satisfies conditions (⋆) adapted to the case of the open ball or the
open annulus. Let g : R+ → R+ be continuous satisfying (g0), (G∞) and
lim sups→0+ g(s)/s < +∞.
Then, ∃λ∗ ≥ 0 such that, ∀λ > λ∗ ∀ k ∈ Z k ≥ 1, ∃µ∗ = µ∗(λ, k) > 0
such that ∀ µ > µ∗ problem (P) has at least 2k radially symmetric solutions.

cf.: S., Zanolin, J. Math. Anal. Appl. (2017)
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Further directions

• Increase the number of “positive humps” and “negative humps”
in the weight term to detect possible complex behaviors
for Neumann BVPs with an oscillating nonlinear potential.

0 t

a(t)

• Deal with different boundary conditions (e.g. mixed boundary
conditions).
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Thank you
for your attention!
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