Nonlinear boundary value problems with variable exponent

 Giornate di Equazioni Differenziali Ordinarie: metodi e prospettive
GEDO2018

Angela Sciammetta (University of Palermo)

SEPTEMBER 28, 2018
G. Bonanno, G. D'Aguì, A. Sciammetta, One-dimensional nonlinear boundary value problems with variable exponent, Discrete and Continuous Dynamical Systems - Series S 11 (2018), 179-191.

$$
\left\{\begin{array}{l}
-\left(\left|u^{\prime}(x)\right|^{p(x)-2} u^{\prime}(x)\right)^{\prime}+a(x)|u(x)|^{\left.p^{p(x)-2} u(x)=\lambda f(x, u(x)) \quad \text { in }\right] 0,1[,} \quad\left(D_{\lambda}^{p(x)}\right) \\
u(0)=u(1)=0,
\end{array}\right.
$$

- $a \in L^{\infty}([0,1])$, with $\operatorname{essinf}_{[0,1]} a \geq 0$,
- $p \in C([0,1])$ Put

$$
p^{-}:=\min _{x \in[0,1]} p(x), \quad p^{+}:=\max _{x \in[0,1]} p(x)
$$

and assume

$$
p^{-}>1 .
$$

- λ is a positive real parameter
- $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ is a nonnegative L^{1}-Carathéodory function, that is:

1. $x \mapsto f(x, \xi)$ is measurable for every $\xi \in \mathbb{R}$;
2. $\xi \mapsto f(x, \xi)$ is continuous for almost every $x \in[0,1]$;
3. for every $s>0$ there is a function $l_{s} \in L^{1}([0,1])$ such that

$$
\sup _{|\xi| \leq s}|f(x, \xi)| \leq l_{s}(x),
$$

for a.e. $x \in[0,1]$.

Some references

[1] R. Aboulaich, D. Meskine, A. Souissi, New diffusion models in image processig, Comput. Math. Appl. 56 (2008), 874-882.
[2] G. Barletta,A. Chinnì, Existence of solutions for a Neumann problem involving the $p(x)$-Laplacian, Electron. J. Differential Equations 2013 (2013), no. 158, 1-12.
[3] G. Bonanno, A. Chinnì, Discontinuous elliptic problems involving the $p(x)$-Laplacian, Math. Nachr. 284 (2011), 639-652.
[4] G. Bonanno, A. Chinnì, Existence and multiplicity of weak solutions for elliptic Dirichlet problems with variable exponent, J. Math. Anal. Appl. 418 (2014), 812-827.
[5] X.-L., Q.-H. Zhang, Existence of solutions for p(x) - Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843-1852.
[6] X.-L. Fan, S.-G. Deng, Remarks on Ricceri's variational principle and applications to the $p(x)$-Laplacian equations, Nonlinear Anal. 67 (2007), 3064-3075.
[7] M. Ružička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000.

The variable exponent Lebesgue ans Sobolev spaces

$$
\begin{aligned}
& L^{p(x)}([0,1])=\left\{u:[0,1] \rightarrow \mathbb{R}, u \text { is measur. and } \rho_{p(x)}(u):=\int_{0}^{1}|u(x)|^{p(x)} d x<+\infty\right\} \\
&\|u\|_{L^{p(x)}([0,1])}:=\inf \left\{\eta>0: \int_{0}^{1}\left|\frac{u(x)}{\eta}\right|^{p(x)} d x \leq 1\right\} \\
& W^{1, p(x)}([0,1]):=\left\{u \in L^{p(x)}([0,1]): u^{\prime} \in L^{p(x)}([0,1])\right\} \\
&\|u\|_{W^{1, p(x)}([0,1])}:=\|u\|_{L^{p(x)}([0,1])}+\left\|u^{\prime}\right\|_{L^{p(x)}([0,1])}
\end{aligned}
$$

Since $p^{-}>1$

- $L^{p(x)}([0,1])$ is a separable, reflexive and uniformly convex Banach space;
- $W^{1, p(x)}([0,1])$ is separable, reflexive and uniformly convex a Banach space.

By $W_{0}^{1, p(x)}([0,1])$ we denote the closure of $C_{0}^{\infty}([0,1])$ in $W^{1, p(x)}([0,1])$.
[1] D.V. Cruz-Uribe, A. Fiorenza,Variable Lebesgue Spaces, Applied and Numerical Harmonic Analysis, Springer Basel, Heidelberg 2013.
[2] L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Springer-Verlag, Heidelberg 2017.

Lemma (Hölder's inequality)

Let p and $p^{\prime} \in C([0,1])$ s. t. $p^{-}>1$ and $\frac{1}{p(x)}+\frac{1}{p^{\prime}(x)}=1$, for all $x \in[0,1]$. For all $f \in L^{p(x)}([0,1])$ and for all $g \in L^{p^{\prime}(x)}([0,1])$ one has $f g \in L^{1}([0,1])$

$$
\|f g\|_{1} \leq\left(1+\frac{1}{p^{-}}-\frac{1}{p^{+}}\right)\|f\|_{L^{p(x)}([0,1])}\|g\|_{L^{p^{\prime}(x)}([0,1])}
$$

Proposition (Poincaré inequality)

Let $p \in C([0,1])$ such that $p^{-}>1$. Then for all $u \in W_{0}^{1, p(x)}([0,1])$ one has

$$
\|u\|_{\infty} \leq\left\|u^{\prime}\right\|_{L^{p(x)}([0,1])} \quad \text { and } \quad\|u\|_{L^{p(x)}([0,1])} \leq\left\|u^{\prime}\right\|_{L^{p(x)}([0,1])} .
$$

Moreover, the embedding of $W_{0}^{1, p(x)}([0,1])$ into $C([0,1])$ is compact.

Remark

$$
\begin{gathered}
\|u\|_{\infty} \leq \frac{1}{2}\left(1+\frac{1}{p^{-}}-\frac{1}{p^{+}}\right)\left\|u^{\prime}\right\|_{L^{p(x)}([0,1])}, \quad \text { for all } \quad u \in W_{0}^{1, p(x)}([0,1]) . \\
\|u\|_{L^{p(x)}([0,1])} \leq \frac{1}{2}\left(1+\frac{1}{p^{-}}-\frac{1}{p^{+}}\right)\left\|u^{\prime}\right\|_{L^{p(x)}([0,1])} \quad \text { for all } \quad u \in W_{0}^{1, p(x)}([0,1]) .
\end{gathered}
$$

Definition of Globally log-Hölder continuity

Let $\Omega \subseteq \mathbb{R}$. A function $p: \Omega \rightarrow \mathbb{R}$ is locally log-Hölder continuous on Ω if there exist $c_{1}>0$ s. t.

$$
|p(x)-p(y)| \leq \frac{c_{1}}{\log \left(e+\frac{1}{|x-y|}\right)}, \quad \text { for all } \quad x, y \in \Omega
$$

We say that p satisfies the log-Hölder decay condition if there exist $p_{\infty} \in \mathbb{R}$ and $c_{2}>0$ s. t.

$$
\left|p(x)-p_{\infty}\right| \leq \frac{c_{2}}{\log (e+|x|)}, \quad \text { for all } \quad x \in \Omega
$$

Locally log-Hölder continuous + log-Hölder decay condition \Longrightarrow globally log-Hölder continuous.
[1] L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Springer-Verlag, Heidelberg 2017.
[2] X.-L. Fan, Some results on variable exponent analysis, More Progresses in Analysis, Proceedings of the 5th International ISAAC Congress, World Scientific, New Jersey, 2009, 93-99.
[3] X.-L. Fan, J. Shen, D. Zhao, Sobolev embedding theorems for spaces $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl., 262 (2001), 749-760.
[4] O. Kováčik, J. Rákosník, On the spaces $L^{p(x)}$ and $W^{1, p(x)}$, Czechoslovak Math. 41 (1991), 592-618.
[5] D.V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical Harmonic Analysis, Springer Basel, Heidelberg 2013.

As in the case with constant exponent, on $W_{0}^{1, p(x)}([0,1])$ we can consider the norm

$$
\|u\|_{W_{0}^{1, p(x)}([0,1])}:=\left\|u^{\prime}\right\|_{L^{p(x)}([0,1])}
$$

Now, taking into account that $a \in L^{\infty}(\Omega)$, with $\operatorname{essinf}_{x \in[0,1]} a(x) \geq 0$, we define on $W_{0}^{1, p(x)}([0,1])$ the following norm

$$
\|u\|_{a}:=\inf \left\{\sigma>0: \int_{0}^{1}\left(\left|\frac{u^{\prime}(x)}{\sigma}\right|^{p(x)}+a(x)\left|\frac{u(x)}{\sigma}\right|^{p(x)}\right) d x \leq 1\right\}
$$

Proposition

Let $p \in C\left([0,1]\right.$ such that $p^{-}>1$. Then, one has

$$
\|u\|_{W_{0}^{1, p(x)}([0,1])} \leq\|u\|_{a} \leq\left(1+\|a\|_{\infty}\right)^{\frac{1}{p^{-}}}\|u\|_{W_{0}^{1, p(x)}([0,1])} .
$$

From Poincaré inequality, previous Proposition and [1, Theorem 1.3] we obtain

$$
\|u\|_{\infty} \leq\|u\|_{a}
$$

for all $u \in W_{0}^{1, p(x)}([0,1])$.
[1] X.-L. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. 263 (2001), 424-446.

Main tool

Theorem (G. Bonanno 2012)

Let X be a real Banach space and let $\Phi, \Psi: X \rightarrow \mathbb{R}$ be two continuously Gâteaux differentiable functionals such that $\inf _{X} \Phi=\Phi(0)=\Psi(0)=0$. Assume that there are $r \in \mathbb{R}$ and $\tilde{u} \in X$, with $0<\Phi(\tilde{u})<r$, such that

$$
\frac{\sup _{u \in \Phi^{-1}(]-\infty, r[)} \Psi(u)}{r}<\frac{\Psi(\tilde{u})}{\Phi(\tilde{u})}
$$

and, for each

$$
\lambda \in] \frac{\Phi(\tilde{u})}{\Psi(\tilde{u})}, \frac{r}{\sup _{u \in \Phi^{-1}(]-\infty, r[)} \Psi(u)}[
$$

the functional $I_{\lambda}=\Phi-\lambda \Psi$ satisfies the $(P S)^{[r]}$-condition.
Then, for each

$$
\lambda \in] \frac{\Phi(\tilde{u})}{\Psi(\tilde{u})}, \frac{r}{\sup _{u \in \Phi^{-1}(]-\infty, r[)} \Psi(u)}[
$$

there is $u_{\lambda} \in \Phi^{-1}(] 0, r[)$ such that $I_{\lambda}\left(u_{\lambda}\right) \leq I_{\lambda}(u)$ for all $u \in \Phi^{-1}(] 0, r[)$ and $I_{\lambda}^{\prime}\left(u_{\lambda}\right)=0$.
[1] G. Bonanno, Relations between the mountain pass theorem and local minima, Adv. Nonlinear Anal. 1 (2012), no. 3, 205-220.

$$
\begin{gathered}
\underbrace{I_{\lambda}(u)=\underbrace{\int_{0}^{1} \frac{1}{p(x)}\left[\left|u^{\prime}(x)\right|^{p(x)}+a(x)|u(x)|^{p(x)}\right] d x}_{\text {Energy functional }}-\lambda \underbrace{\int_{0}^{1} F(x, u(x)) d x}_{\Psi(u)}}_{\Phi(u)} \\
F(x, t)=\int_{0}^{t} f(x, \xi) d \xi, \text { for all }(x, t) \in[0,1] \times \mathbb{R}
\end{gathered}
$$

Definition

A function $u:[0,1] \rightarrow \mathbb{R}$ is a weak solution of problem $\left(D_{\lambda}^{p(x)}\right)$ if $u \in X$ satisfies the following condition for all $v \in X$
$\underbrace{\int_{0}^{1}\left|u^{\prime}(x)\right|^{p(x)-2} u^{\prime}(x) v^{\prime}(x) d x+\int_{0}^{1} a(x)|u(x)|^{p(x)-2} u(x) v(x) d x}_{\Phi^{\prime}(u)(v)}=\lambda \underbrace{\int_{0}^{1} f(x, u(x)) v(x) d x}_{\Psi^{\prime}(u)(v)}$.

Lemma

If we assume $f(x, 0) \geq 0$ for a.e. $x \in[0,1]$, then the weak solutions of problem $\left(D_{\lambda}^{p(x)}\right)$ are nonnegative.

Main result

Theorem

Let $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ be a nonnegative L^{1}-Carathéodory function. Assume that there exist two positive constants c and d, with $d<c$, s. t.

$$
\begin{equation*}
\frac{\int_{0}^{1} F(x, c) d x}{\min \left\{c^{p^{-}} ; c^{p^{+}}\right\}}<\frac{2 p^{-}}{p^{+}\left(4^{p^{+}}+2\|a\|_{1}\right)} \frac{\int_{\frac{1}{4}}^{\frac{3}{4}} F(x, d) d x}{\max \left\{d^{p^{-}} ; d p^{p^{+}}\right\}} \tag{1}
\end{equation*}
$$

Then, for each $\lambda \in \Lambda=] \frac{4^{p^{+}}+2\|a\|_{1}}{2 p^{-}} \frac{\max \left\{d^{p^{-}} ; d^{p^{+}}\right\}}{\int_{\frac{1}{4}}^{\frac{3}{4}} F(x, d) d x}, \frac{1}{p^{+}} \frac{\min \left\{c^{p^{-}} ; c^{p^{+}}\right\}}{\int_{0}^{1} F(x, c) d x}[$, problem
$\left(D_{\lambda}^{p(x)}\right)$ admits at least one nonnegative and non-zero weak solution \bar{u} s. t. $|\bar{u}(x)|<c$ for all $x \in[0,1]$.

Sketch of Proof

1. $X=W_{0}^{1, p(x)}([0,1])$
2. $\Phi(u):=\int_{0}^{1} \frac{1}{p(x)}\left[\left|u^{\prime}(x)\right|^{p(x)}+a(x)|u(x)|^{p(x)}\right] d x, \Psi(u):=\int_{0}^{1} F(x, u(x)) d x \forall u \in X$ satisfy all regularity assumptions requested in our main tool and the critical points in X of $I_{\lambda}=\Phi-\lambda \Psi$ are the weak solutions of $\left(D_{\lambda}^{p(x)}\right)$.
3. Put $r=\frac{1}{p^{+}} \min \left\{c^{p^{-}} ; c^{p^{+}}\right\}$and

$$
\tilde{u}(x)= \begin{cases}4 d x & \text { if } x \in\left[0, \frac{1}{4}[\right. \\ d & \text { if } x \in\left[\frac{1}{4}, \frac{3}{4}\right] \\ 4 d(1-x) & \text { if } \left.x \in] \frac{3}{4}, 1\right]\end{cases}
$$

Clearly, $\tilde{u} \in W_{0}^{1, p(x)}([0,1])$. From $d<c+(1) \Longrightarrow 0<\Phi(\tilde{u})<r$ and

$$
\frac{\Psi(\tilde{u})}{\Phi(\tilde{u})} \geq \frac{2 p^{-}}{4 p^{+}+2\|a\|_{1}} \frac{\int_{\frac{1}{4}}^{\frac{3}{4}} F(x, d) d x}{\max \left\{d p^{-} ; d p^{+}\right\}}>\frac{p^{+} \int_{0}^{1} F(x, c) d x}{\min \left\{c^{p^{-}} ; c^{p^{+}}\right\}} \geq \frac{\sup _{u \in \Phi^{-1}(]-\infty, r[)} \Psi(u)}{r}
$$

4. Hence

$$
\lambda \in \Lambda \subseteq] \frac{\Phi(\tilde{u})}{\Psi(\tilde{u})}, \frac{r}{\sup _{u \in \Phi^{-1}(]-\infty, r[)} \Psi(u)}[
$$

and our conclusion is achieved.

Some consequences

Theorem

Let $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ be a nonnegative L^{1}-Carathéodory function. Assume that there exist two distinct positive constants c and d, with $d \leq 1 \leq c$ such that

$$
\frac{\int_{0}^{1} F(x, c) d x}{c^{p^{-}}}<\frac{2 p^{-}}{p^{+}\left(4^{p^{+}}+2\|a\|_{1}\right)} \frac{\int_{\frac{1}{4}}^{\frac{3}{4}} F(x, d) d x}{d^{p^{-}}}
$$

Then, for each $\lambda \in] \frac{4^{p^{+}}+2\|a\|_{1}}{2 p^{-}} \frac{d^{p^{-}}}{\int_{\frac{1}{4}}^{\frac{3}{4}} F(x, d) d x}, \frac{1}{p^{+}} \frac{c^{p^{-}}}{\int_{0}^{1} F(x, c) d x}\left[\right.$, problem $\left(D_{\lambda}^{p(x)}\right)$ admits at least one nonnegative and non-zero weak solution \bar{u} such that $|\bar{u}(x)|<c$ for all $x \in[0,1]$.

Some consequences

Let $\alpha \in L^{1}([0,1])$ be such that $\alpha(x) \geq 0$ a.e. $x \in[0,1], \alpha \not \equiv 0$, and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous nonnegative function. Consider the following Dirichlet boundary value problem
$\left(A D_{\lambda}^{p(x)}\right)\left\{\begin{array}{l}\left.-\left(\left|u^{\prime}(x)\right|^{p(x)-2} u^{\prime}(x)\right)^{\prime}+a(x)|u(x)|^{p(x)-2} u(x)=\lambda \alpha(x) g(u(x)) \quad \text { in }\right] 0,1[, \\ u(0)=u(1)=0 .\end{array}\right.$

$$
G(t)=\int_{0}^{t} g(\xi) d \xi, \quad \text { for all } \quad t \in \mathbb{R}, \quad K=\frac{2 p^{-}}{p^{+}\left(4 p^{+}+2\|a\|_{1}\right)} \frac{\int_{\frac{1}{4}}^{\frac{3}{4}} \alpha(x) d x}{\|\alpha\|_{1}}
$$

Theorem

Assume that there exist two positive constants c, d, with $d<c \leq 1$, such that

$$
\frac{G(c)}{c^{p^{+}}}<K \frac{G(d)}{d^{p^{-}}}
$$

Then, for each $\lambda \in$

$$
] \frac{1}{K} \frac{1}{p^{+}\|\alpha\|_{1}} \frac{d^{p^{-}}}{G(d)}, \frac{1}{p^{+}\|\alpha\|_{1}} \frac{c^{p^{+}}}{G(c)}[
$$

problem $\left(A D_{\lambda}^{p(x)}\right)$ admits at least one nonnegative and non-zero weak solution \bar{u} such that $|\bar{u}(x)|<c$ for all $x \in[0,1]$.

Some consequences

Consider following problem

$$
\left\{\begin{array}{l}
\left.-\left(\left|u^{\prime}(x)\right|^{p(x)-2} u^{\prime}(x)\right)^{\prime}=\lambda g(u(x)) \quad \text { in }\right] 0,1[\\
u(0)=u(1)=0
\end{array}\right.
$$

Theorem

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a nonnegative continuous function such that

$$
\int_{0}^{4} g(\xi) d \xi<\frac{p^{-}}{p^{+}} \frac{4^{2 p^{-}}}{4^{p^{+}}} \int_{0}^{\frac{1}{4}} g(\xi) d \xi
$$

Then, for each $\lambda \in] \frac{4^{p^{+}}}{p^{-} 4^{p^{-}}} \frac{1}{\int_{0}^{\frac{1}{4}} g(\xi) d \xi}, \frac{4^{p^{-}}}{p^{+}} \frac{1}{\int_{0}^{4} g(\xi) d \xi}\left[\right.$, the problem $\left(A_{\lambda}\right)$ admits at
least one non-zero weak solution \bar{u} such that $0 \leq \bar{u}(x)<4$ for all $x \in[0,1]$.

Some consequences

Example

$d=\frac{1}{4}<c=4, p(x)=\frac{x^{4}}{10}+5$ for all $x \in[0,1]$ and

$$
g(\xi)=\left\{\begin{array}{lc}
(10 \xi)^{4} & \text { if } \quad 0 \leq \xi \leq \frac{1}{4} \\
\left(\frac{5}{8 \xi}\right)^{4} & \text { if } \quad \frac{1}{4}<\xi<4 \\
h(\xi) & \text { if } \quad \xi \geq 4
\end{array}\right.
$$

where $h:[4,+\infty[\rightarrow \mathbb{R}$ is an arbitrary function. Owing to previous Theorem, the problem

$$
\left\{\begin{array}{l}
\left.-\left(\left|u^{\prime}(x)\right|^{p(x)-2} u^{\prime}(x)\right)^{\prime}=g(u(x)) \quad \text { in }\right] 0,1[, \\
u(0)=u(1)=0,
\end{array}\right.
$$

admits at least one non-zero weak solution u such that $0 \leq u(x)<4$. Indeed

$$
\int_{0}^{4} g(\xi) d \xi<\frac{p^{-}}{p^{+}} \frac{4^{2 p^{-}}}{4 p^{+}} \int_{0}^{\frac{1}{4}} g(\xi) d \xi \text { and } \frac{4^{p^{+}}}{p^{-} 4 p^{-}} \frac{1}{\int_{0}^{\frac{1}{4}} g(\xi) d \xi}<1<\frac{4^{p^{-}}}{p^{+}} \frac{1}{\int_{0}^{4} g(\xi) d \xi}
$$

We explicitly observe that the function f is not $\left(p^{-}-1\right)$-sublinear at zero since one has

$$
\lim _{t \rightarrow 0^{+}} \frac{g(t)}{t^{p^{-}-1}}=10^{4}<+\infty
$$

Some consequences

$\left(A D_{\lambda}^{p(x)}\right)\left\{\begin{array}{l}\left.-\left(\left|u^{\prime}(x)\right|^{p(x)-2} u^{\prime}(x)\right)^{\prime}+a(x)|u(x)|^{p(x)-2} u(x)=\lambda \alpha(x) g(u(x)) \quad \text { in }\right] 0,1[, \\ u(0)=u(1)=0 .\end{array}\right.$

Theorem

Assume that

$$
\lim _{t \rightarrow 0^{+}} \frac{g(t)}{t^{p^{-}-1}}=+\infty
$$

Then, for each $\lambda \in] 0, \frac{1}{p^{+}\|\alpha\|_{1}} \max \left\{\sup _{0<c<1} \frac{c^{p^{+}}}{\int_{0}^{c} g(\xi) d \xi} ; \sup _{c \geq 1} \frac{c^{p^{-}}}{\int_{0}^{c} g(\xi) d \xi}\right\}[$, problem $\left(A D_{\lambda}^{p(x)}\right)$ admits at least one non-zero and nonnegative weak solution.

Example

$$
\begin{gathered}
\left\{\begin{array}{l}
\left.-\left(\left|u^{\prime}(x)\right|^{x^{2}+2} u^{\prime}(x)\right)^{\prime}+|u(x)|^{x^{2}+2} u(x)=x^{4}[u(x)]^{2} \quad \text { in }\right] 0,1[, \\
u(0)=u(1)=0 .
\end{array}\right. \\
p(x)=x^{2}+4, \lim _{t \rightarrow 0^{+}} \frac{g(t)}{t^{p^{-}-1}}=\lim _{t \rightarrow 0^{+}} \frac{t^{2}}{t^{4-1}}=+\infty, \lambda^{*} \geq \frac{1}{p^{+}\|\alpha\|_{1}} \frac{1}{\int_{0}^{1} g(\xi) d \xi}=3 .
\end{gathered}
$$

Infinitely many solutions

G. D'Aguì, A. Sciammetta, Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions, Nonlinear Analysis: Theory, Methods and Applications, Volume 75, Issue 14, (2012), 5612-5619.

$$
\begin{cases}-\Delta_{p(x)} u(x)+\alpha(x)|u(x)|^{p(x)-2} u(x)=\lambda f(x, u(x)) & \text { in } \Omega \\ |\nabla u(x)|^{p(x)-2} \frac{\partial u}{\partial \nu}=\mu g(\gamma(u(x))) & \text { on } \partial \Omega\end{cases}
$$

- $\Delta_{p(x)} u(x)=\operatorname{div}\left(|\nabla u(x)|^{p(x)-2} \nabla u(x)\right)$ is the $p(x)$-Laplacian operator;
- $\Omega \subset \mathbb{R}^{N}$ is an open bounded domain with smooth boundary;
- $p \in C(\bar{\Omega})$ with $N<p^{-}:=\inf _{x \in \Omega} p(x) \leq p(x) \leq p^{+}:=\sup _{x \in \Omega} p(x)$;
- $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function and $g: \mathbb{R} \rightarrow \mathbb{R}$ is a nonnegative continuous function,
- $\lambda>0$ and $\mu \geq 0$;
- $\alpha \in L^{\infty}(\Omega)$, with $\operatorname{essinf}_{\Omega} \alpha>0$;
- ν is the outer unit normal to $\partial \Omega$;
- $\gamma: W^{1, p(x)}(\Omega) \rightarrow L^{p(x)}(\partial \Omega)$ is the trace operator.

Main tool

G. Bonanno, A critical point theorem via Ekeland variational principle, Nonlinear Anal. 75 (2012), 2992-3007.

$$
\begin{gathered}
A:=\liminf _{\xi \rightarrow+\infty} \frac{\int_{\Omega} \max _{|t|<\xi} F(x, t) d x}{\xi^{p^{-}}}, \quad B:=\limsup _{\xi \rightarrow+\infty} \frac{\int_{\Omega} F(x, \xi) d x}{\xi^{p^{+}}}, \quad \lambda_{1}=\frac{\|\alpha\|_{1}}{p^{-} B}, \quad \lambda_{2}=\frac{1}{p^{+} m^{p^{-} A}}, \\
k_{p^{-}} \leq 2^{\frac{p^{-}-1}{p^{-}}} \max \left\{\left(\frac{1}{\|\alpha\|_{1}}\right)^{\frac{1}{p^{-}}}, \frac{d}{N^{\frac{1}{p^{-}}}}\left(\frac{p^{-}-1}{p^{-}-N} m(\Omega)\right)^{\frac{p^{-}-1}{p^{-}}} \frac{\|\alpha\|_{\infty}}{\|\alpha\|_{1}}\right\},
\end{gathered}
$$

where $\|\alpha\|_{1}$ is the usual norm in $L^{1}(\Omega), m=k_{p^{-}}(1+m(\Omega))$.

Theorem

Let $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ an L^{1}-Carathéodory function. Assume that

$$
\liminf _{\xi \rightarrow+\infty} \frac{\int_{\Omega} \max _{|t|<\xi} F(x, t) d x}{\xi^{p^{-}}}<\frac{p^{-}}{p^{+} m^{p^{-}}\|\alpha\|_{1}} \operatorname{limssup}_{\xi \rightarrow+\infty} \frac{\int_{\Omega} F(x, \xi) d x}{\xi^{p^{+}}} .
$$

Then, for each $\lambda \in] \lambda_{1}, \lambda_{2}[$, for each nonnegative continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
G_{\infty}=\limsup _{\xi \rightarrow+\infty} \frac{G(\xi)}{\xi^{p^{-}}}<+\infty
$$

and for each $\mu \in\left[0, \delta\left[\right.\right.$, with $\delta=\frac{1-m^{p^{-}} p^{+} \lambda A}{m^{p^{-}} p^{+} G_{\infty} a(\partial \Omega)}$, where $a(\partial \Omega)=\int_{\partial \Omega} d \sigma$, the problem $\left(P_{\lambda, \mu}\right)$ admits a sequence of weak solutions which is unbounded in $W^{1, p(x)}(\Omega)$.

Thank you for your kind attention

