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−
(
|u′(x)|p(x)−2 u′(x)

)′
+ a(x) |u(x)|p(x)−2 u(x) = λf (x, u(x)) in ]0, 1[,

u(0) = u(1) = 0,

(Dp(x)
λ )

• a ∈ L∞([0, 1]), with essinf[0,1]a ≥ 0,
• p ∈ C([0, 1]) Put

p− := min
x∈[0,1]

p(x), p+ := max
x∈[0,1]

p(x)

and assume
p− > 1.

• λ is a positive real parameter
• f : [0, 1]× R→ R is a nonnegative L1−Carathéodory function, that is:

1. x 7→ f (x, ξ) is measurable for every ξ ∈ R;
2. ξ 7→ f (x, ξ) is continuous for almost every x ∈ [0, 1];
3. for every s > 0 there is a function ls ∈ L1([0, 1]) such that

sup
|ξ|≤s

|f (x, ξ)| ≤ ls(x),

for a.e. x ∈ [0, 1].
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The variable exponent Lebesgue ans Sobolev spaces

Lp(x)([0, 1])=

{
u : [0, 1]→ R, u is measur. and ρp(x)(u) :=

∫ 1

0
|u(x)|p(x) dx < +∞

}
.

‖u‖Lp(x)([0,1]) := inf

{
η > 0 :

∫ 1

0

∣∣∣∣ u(x)

η

∣∣∣∣p(x)

dx ≤ 1

}
.

W1,p(x)([0, 1]) :=
{

u ∈ Lp(x)([0, 1]) : u′ ∈ Lp(x)([0, 1])
}

‖u‖W1,p(x)([0,1]) := ‖u‖Lp(x)([0,1]) + ‖u′‖Lp(x)([0,1]).

Since p− > 1
• Lp(x)([0, 1]) is a separable, reflexive and uniformly convex Banach space;
• W1,p(x)([0, 1]) is separable, reflexive and uniformly convex a Banach space.

By W1,p(x)
0 ([0, 1]) we denote the closure of C∞0 ([0, 1]) in W1,p(x)([0, 1]).

[1] D.V. Cruz-Uribe, A. Fiorenza,Variable Lebesgue Spaces, Applied and Numerical Harmonic Analysis,
Springer Basel, Heidelberg 2013.

[2] L. Diening, P. Harjulehto, P. Hästö, M. Ruz̆ic̆ka, Lebesgue and Sobolev spaces with variable exponents,
Lecture Notes in Mathematics, Springer-Verlag, Heidelberg 2017.
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Lemma (Hölder’s inequality)

Let p and p′ ∈ C([0, 1]) s. t. p− > 1 and
1

p(x)
+

1
p′(x)

= 1, for all x ∈ [0, 1]. For all

f ∈ Lp(x)([0, 1]) and for all g ∈ Lp′(x)([0, 1]) one has fg ∈ L1([0, 1])

‖fg‖1 ≤
(

1 +
1

p−
−

1
p+

)
‖f‖Lp(x)([0,1])‖g‖Lp′(x)([0,1]).

Proposition (Poincaré inequality)
Let p ∈ C([0, 1]) such that p− > 1. Then for all u ∈ W1,p(x)

0 ([0, 1]) one has

‖u‖∞ ≤ ‖u′‖Lp(x)([0,1]) and ‖u‖Lp(x)([0,1]) ≤ ‖u
′‖Lp(x)([0,1]).

Moreover, the embedding of W1,p(x)
0 ([0, 1]) into C([0, 1]) is compact.

Remark

‖u‖∞ ≤
1
2

(
1 +

1
p−
−

1
p+

)
‖u′‖Lp(x)([0,1]), for all u ∈ W1,p(x)

0 ([0, 1]).

‖u‖Lp(x)([0,1]) ≤
1
2

(
1 +

1
p−
−

1
p+

)
‖u′‖Lp(x)([0,1]) for all u ∈ W1,p(x)

0 ([0, 1]).
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Definition of Globally log-Hölder continuity
Let Ω ⊆ R. A function p : Ω→ R is locally log-Hölder continuous on Ω if there exist c1 > 0
s. t.

|p(x)− p(y)| ≤
c1

log

(
e +

1
|x− y|

) , for all x, y ∈ Ω.

We say that p satisfies the log-Hölder decay condition if there exist p∞ ∈ R and c2 > 0 s. t.

|p(x)− p∞| ≤
c2

log (e + |x|)
, for all x ∈ Ω.

Locally log-Hölder continuous + log-Hölder decay condition =⇒ globally log-Hölder
continuous.

[1] L. Diening, P. Harjulehto, P. Hästö, M. Ruz̆ic̆ka, Lebesgue and Sobolev spaces with variable exponents,
Lecture Notes in Mathematics, Springer-Verlag, Heidelberg 2017.

[2] X.-L. Fan, Some results on variable exponent analysis, More Progresses in Analysis, Proceedings of the
5th International ISAAC Congress, World Scientific, New Jersey, 2009, 93–99.

[3] X.-L. Fan, J. Shen, D. Zhao, Sobolev embedding theorems for spaces Wk,p(x)(Ω), J. Math. Anal. Appl.,
262 (2001), 749–760.

[4] O. Kovác̆ik, J. Rákosník, On the spaces Lp(x) and W1,p(x), Czechoslovak Math. 41 (1991), 592–618.

[5] D.V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical Harmonic Analysis,
Springer Basel, Heidelberg 2013.
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As in the case with constant exponent, on W1,p(x)
0 ([0, 1]) we can consider the norm

‖u‖
W1,p(x)

0 ([0,1])
:= ‖u′‖Lp(x)([0,1]),

Now, taking into account that a ∈ L∞(Ω), with essinfx∈[0,1]a(x) ≥ 0, we define on

W1,p(x)
0 ([0, 1]) the following norm

‖u‖a := inf

{
σ > 0 :

∫ 1

0

( ∣∣∣∣u′(x)

σ

∣∣∣∣p(x)

+ a(x)

∣∣∣∣u(x)

σ

∣∣∣∣p(x) )
dx ≤ 1

}
.

Proposition
Let p ∈ C([0, 1] such that p− > 1. Then, one has

‖u‖
W1,p(x)

0 ([0,1])
≤ ‖u‖a ≤ (1 + ‖a‖∞)

1
p− ‖u‖

W1,p(x)
0 ([0,1])

.

From Poincaré inequality, previous Proposition and [1, Theorem 1.3] we obtain

‖u‖∞ ≤ ‖u‖a

for all u ∈ W1,p(x)
0 ([0, 1]).

[1] X.-L. Fan, D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. 263 (2001), 424–446.
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Main tool

Theorem (G. Bonanno 2012)
Let X be a real Banach space and let Φ, Ψ : X → R be two continuously Gâteaux differentiable
functionals such that inf

X
Φ = Φ(0) = Ψ(0) = 0. Assume that there are r ∈ R and ũ ∈ X, with

0 < Φ(ũ) < r, such that
sup

u∈Φ−1(]−∞,r[)
Ψ(u)

r
<

Ψ(ũ)

Φ(ũ)
,

and, for each

λ ∈
]Φ(ũ)

Ψ(ũ)
,

r
sup

u∈Φ−1(]−∞,r[)
Ψ(u)

[
,

the functional Iλ = Φ− λΨ satisfies the (PS)[r]−condition.
Then, for each

λ ∈
]Φ(ũ)

Ψ(ũ)
,

r
sup

u∈Φ−1(]−∞,r[)
Ψ(u)

[
,

there is uλ ∈ Φ−1(]0, r[) such that Iλ(uλ) ≤ Iλ(u) for all u ∈ Φ−1(]0, r[) and I′λ(uλ) = 0.

[1] G. Bonanno, Relations between the mountain pass theorem and local minima, Adv. Nonlinear Anal. 1
(2012), no. 3, 205–220.
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Iλ(u) =

∫ 1

0

1
p(x)

[∣∣u′(x)
∣∣p(x)

+ a(x) |u(x)|p(x)
]

dx︸ ︷︷ ︸
Φ(u)

−λ
∫ 1

0
F(x, u(x))dx︸ ︷︷ ︸

Ψ(u)︸ ︷︷ ︸
Energy functional

.

F(x, t) =

∫ t

0
f (x, ξ)dξ, for all (x, t) ∈ [0, 1]× R.

Definition
A function u : [0, 1]→ R is a weak solution of problem (Dp(x)

λ ) if u ∈ X satisfies the following
condition for all v ∈ X∫ 1

0

∣∣u′(x)
∣∣p(x)−2 u′(x)v′(x) dx +

∫ 1

0
a(x) |u(x)|p(x)−2 u(x)v(x) dx︸ ︷︷ ︸

Φ′(u)(v)

= λ

∫ 1

0
f (x, u(x))v(x) dx︸ ︷︷ ︸

Ψ′(u)(v)

.

Lemma
If we assume f (x, 0) ≥ 0 for a.e. x ∈ [0, 1], then the weak solutions of problem (Dp(x)

λ ) are
nonnegative.
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Main result

Theorem
Let f : [0, 1]×R→ R be a nonnegative L1-Carathéodory function. Assume that there exist two
positive constants c and d, with d < c, s. t.

∫ 1

0
F(x, c) dx

min{cp− ; cp+}
<

2p−

p+(4p+ + 2‖a‖1)

∫ 3
4

1
4

F(x, d) dx

max{dp− ; dp+}
. (1)

Then, for each λ ∈ Λ =

 4p+ + 2‖a‖1

2p−
max{dp− ; dp+}∫ 3

4

1
4

F(x, d) dx

,
1

p+

min{cp− ; cp+}∫ 1

0
F(x, c) dx

 , problem

(Dp(x)
λ ) admits at least one nonnegative and non-zero weak solution ū s. t. |ū(x)| < c for all

x ∈ [0, 1].
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Sketch of Proof

1. X = W1,p(x)
0 ([0, 1])

2. Φ(u) :=

∫ 1

0

1
p(x)

[∣∣u′(x)
∣∣p(x)

+ a(x) |u(x)|p(x)
]

dx, Ψ(u) :=

∫ 1

0
F(x, u(x))dx ∀ u ∈ X

satisfy all regularity assumptions requested in our main tool and the critical points in X of
Iλ = Φ− λΨ are the weak solutions of (Dp(x)

λ ).

3. Put r = 1
p+

min{cp− ; cp+} and

ũ(x) =


4dx if x ∈

[
0, 1

4

[
,

d if x ∈
[

1
4 ,

3
4

]
,

4d(1− x) if x ∈
]

3
4 , 1
]
.

Clearly, ũ ∈ W1,p(x)
0 ([0, 1]). From d < c+ (1) =⇒ 0 < Φ(ũ) < r and

Ψ(ũ)

Φ(ũ)
≥

2p−

4p+ + 2‖a‖1

∫ 3
4

1
4

F(x, d) dx

max{dp− ; dp+}
>

p+

∫ 1

0
F(x, c) dx

min{cp− ; cp+}
≥

sup
u∈Φ−1(]−∞,r[)

Ψ(u)

r
.

4. Hence

λ ∈ Λ ⊆

Φ(ũ)

Ψ(ũ)
,

r
sup

u∈Φ−1(]−∞,r[)
Ψ(u)

 ,
and our conclusion is achieved.
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Some consequences

Theorem
Let f : [0, 1]×R→ R be a nonnegative L1-Carathéodory function. Assume that there exist two
distinct positive constants c and d, with d ≤ 1 ≤ c such that

∫ 1

0
F(x, c) dx

cp−
<

2p−

p+(4p+ + 2‖a‖1)

∫ 3
4

1
4

F(x, d) dx

dp−
.

Then, for each λ ∈

 4p+ + 2‖a‖1

2p−
dp−∫ 3

4

1
4

F(x, d) dx

,
1

p+

cp−∫ 1

0
F(x, c) dx

 , problem (Dp(x)
λ )

admits at least one nonnegative and non-zero weak solution ū such that |ū(x)| < c for all
x ∈ [0, 1].
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Some consequences

Let α ∈ L1([0, 1]) be such that α(x) ≥ 0 a.e. x ∈ [0, 1], α 6≡ 0, and let g : R→ R be a
continuous nonnegative function. Consider the following Dirichlet boundary value problem

(ADp(x)
λ )


−
(
|u′(x)|p(x)−2 u′(x)

)′
+ a(x) |u(x)|p(x)−2 u(x) = λα(x)g(u(x)) in ]0, 1[,

u(0) = u(1) = 0.

G(t) =

∫ t

0
g(ξ) dξ, for all t ∈ R, K =

2p−

p+(4p+ + 2‖a‖1)

∫ 3
4

1
4

α(x) dx

‖α‖1
.

Theorem
Assume that there exist two positive constants c, d, with d < c ≤ 1, such that

G(c)

cp+
< K

G(d)

dp−
.

Then, for each λ ∈ ]
1
K

1
p+‖α‖1

dp−

G(d)
,

1
p+‖α‖1

cp+

G(c)

[
,

problem (ADp(x)
λ ) admits at least one nonnegative and non-zero weak solution ū such that

|ū(x)| < c for all x ∈ [0, 1].
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Some consequences

Consider following problem
−
(
|u′(x)|p(x)−2 u′(x)

)′
= λg(u(x)) in ]0, 1[,

u(0) = u(1) = 0,

(Aλ)

Theorem
Let g : R→ R be a nonnegative continuous function such that∫ 4

0
g(ξ)dξ <

p−

p+

42p−

4p+

∫ 1
4

0
g(ξ)dξ.

Then, for each λ ∈

 4p+

p−4p−
1∫ 1

4

0
g(ξ)dξ

,
4p−

p+

1∫ 4

0
g(ξ)dξ

, the problem (Aλ) admits at

least one non-zero weak solution ū such that 0 ≤ ū(x) < 4 for all x ∈ [0, 1] .
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Some consequences

Example
d = 1

4 < c = 4, p(x) = x4

10 + 5 for all x ∈ [0, 1] and

g(ξ) =


(10ξ)4 if 0 ≤ ξ ≤ 1

4 ,(
5

8ξ

)4

if 1
4 < ξ < 4,

h(ξ) if ξ ≥ 4,

where h : [4,+∞[→ R is an arbitrary function. Owing to previous Theorem, the problem{
−
(
|u′(x)|p(x)−2 u′(x)

)′
= g(u(x)) in ]0, 1[,

u(0) = u(1) = 0,

admits at least one non-zero weak solution u such that 0 ≤ u(x) < 4. Indeed∫ 4

0
g(ξ)dξ <

p−

p+

42p−

4p+

∫ 1
4

0
g(ξ)dξ and

4p+

p−4p−
1∫ 1

4

0
g(ξ)dξ

< 1 <
4p−

p+

1∫ 4

0
g(ξ)dξ

.

We explicitly observe that the function f is not (p− − 1)−sublinear at zero since one has

lim
t→0+

g(t)

tp−−1
= 104 < +∞.
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Some consequences

(ADp(x)
λ )


−
(
|u′(x)|p(x)−2 u′(x)

)′
+ a(x) |u(x)|p(x)−2 u(x) = λα(x)g(u(x)) in ]0, 1[,

u(0) = u(1) = 0.

Theorem
Assume that

lim
t→0+

g(t)

tp−−1
= +∞,

Then, for each λ ∈
]

0,
1

p+‖α‖1
max

{
sup0<c<1

cp+∫ c
0 g(ξ) dξ

; supc≥1
cp−∫ c

0 g(ξ) dξ

}[
,

problem (ADp(x)
λ ) admits at least one non-zero and nonnegative weak solution.

Example

{
−
(
|u′(x)|x

2+2 u′(x)
)′

+ |u(x)|x
2+2 u(x) = x4[u(x)]2 in ]0, 1[,

u(0) = u(1) = 0.

p(x) = x2 + 4, lim
t→0+

g(t)

tp−−1
= lim

t→0+

t2

t4−1
= +∞, λ∗ ≥

1
p+‖α‖1

1∫ 1
0 g(ξ) dξ

= 3.
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Infinitely many solutions

G. D’Aguì, A. Sciammetta, Infinitely many solutions to elliptic problems with variable exponent
and nonhomogeneous Neumann conditions, Nonlinear Analysis: Theory, Methods and
Applications, Volume 75, Issue 14, (2012), 5612–5619.


−∆p(x)u(x) + α(x) |u(x)|p(x)−2 u(x) = λf (x, u(x)) in Ω,

(Pλ,µ)

|∇u(x)|p(x)−2 ∂u
∂ν

= µg (γ (u(x))) on ∂Ω,

• ∆p(x)u(x) = div
(
|∇u(x)|p(x)−2∇u(x)

)
is the p(x)−Laplacian operator;

• Ω ⊂ RN is an open bounded domain with smooth boundary;
• p ∈ C(Ω̄) with N < p− := inf

x∈Ω
p(x) ≤ p(x) ≤ p+ := sup

x∈Ω
p(x);

• f : Ω× R→ R is a Carathéodory function and g : R→ R is a nonnegative continuous
function,
• λ > 0 and µ ≥ 0;
• α ∈ L∞(Ω), with essinfΩα > 0;
• ν is the outer unit normal to ∂Ω;
• γ : W1,p(x)(Ω)→ Lp(x)(∂Ω) is the trace operator.

Main tool
G. Bonanno, A critical point theorem via Ekeland variational principle, Nonlinear Anal. 75
(2012), 2992–3007.
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A := lim inf
ξ→+∞

∫
Ω

max
|t|<ξ

F(x, t)dx

ξp−
, B := lim sup

ξ→+∞

∫
Ω

F(x, ξ)dx

ξp+
, λ1 =

‖α‖1

p−B
, λ2 =

1

p+mp−A
,

kp− ≤ 2
p−−1

p− max
{( 1
‖α‖1

) 1
p− ,

d

N
1

p−

( p− − 1
p− − N

m(Ω)
) p−−1

p− ‖α‖∞
‖α‖1

}
,

where ‖α‖1 is the usual norm in L1(Ω), m = kp− (1 + m(Ω)).

Theorem
Let f : Ω× R→ R an L1-Carathéodory function. Assume that

lim inf
ξ→+∞

∫
Ω

max
|t|<ξ

F(x, t)dx

ξp−
<

p−

p+mp−‖α‖1
lim sup
ξ→+∞

∫
Ω

F(x, ξ)dx

ξp+
.

Then, for each λ ∈ ]λ1, λ2[, for each nonnegative continuous function g : R→ R such that

G∞ = lim sup
ξ→+∞

G(ξ)

ξp−
< +∞,

and for each µ ∈ [0, δ[, with δ =
1− mp−p+λA

mp−p+G∞a(∂Ω)
, where a(∂Ω) =

∫
∂Ω

dσ, the problem

(Pλ,µ) admits a sequence of weak solutions which is unbounded in W1,p(x)(Ω).
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Thank you for your kind attention
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