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Preliminaries Statement of the problem

A quasilinear elliptic Neumann problem

Consider the problem
−div

(
∇u√

1 + |∇u|2

)
= f (x ,u) in Ω

− ∇u · ν√
1 + |∇u|2

= κ(x) on ∂Ω

Ω is a bounded domain in RN , with a Lipschitz boundary ∂Ω and
unit outer normal ν
f : Ω× R→ R is a Carathéodory function
κ ∈ L∞(∂Ω)
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Preliminaries Motivations

Motivations

Classical issues
• Cartesian surfaces with prescribed mean curvature
• Capillarity phenomena for incompressible fluids
• Equilibrium configurations for sessile, or pendant, drops

More recent ones include
• Reaction-diffusion processes with saturation of the flux at high regimes
• Capillarity phenomena for compressible fluids
• Mathematical models in human physiology
• MEMS models with capillarity effects

I LBNL: this problem is challenging also from the purely mathematical point
of view.
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Preliminaries Features

Features of the operator and consequences

Features

• |∇u| � 1: div

(
∇u√

1 + |∇u|2

)
≈ div(∇u) = ∆u

• |∇u| � 1: div

(
∇u√

1 + |∇u|2

)
≈ div

(
∇u
|∇u|

)
= ∆1u

Thus:

the mean curvature operator is not homogeneous

the mean curvature operator is not uniformly elliptic

Consequences

Even in simple situations, there may occur

non-existence phenomena

loss of regularity
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Preliminaries An elementary example

A very elementary, but paradigmatic, example

Consider the 1-D autonomous equation

−

(
u′√

1 + u′2

)′
= f (u)

f : R→ R continuous, odd, f (s) > 0 for s > 0

solutions (u,u′) parametrize the level sets of the energy

E(u,u′) = 1− 1√
1 + u′2

+ F (u), F (u) =

∫ u

0
f

let (u(0),u′(0)) = (u0,0)
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Preliminaries An elementary example

Case: F (u0) < 1

Phase-plane portrait Profile of solutions

Small energy orbits (blue) are compact connected
−→ regular solutions
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Preliminaries An elementary example

Case: F (u0) = 1

Phase-plane portrait Profile of solutions

There is a first orbit (green) disconnected and asymptotic to the vertical axis
−→ continuous non-regular solution
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Preliminaries An elementary example

Case: F (u0) > 1

Phase-plane portrait Profile of solutions

Large energy orbits (orange) are all disconnected and asymptotic to distinct
vertical lines −→ singular (discontinuous) solutions
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Preliminaries Notion of solution

Notion of solution

Even in 1-D, non-regular solutions, having vertical tangents, or
jump discontinuities, appear and coexist with regular solutions
An appropriate notion of solution is needed to describe these
patters:
if a function exhibits jumps, its distributional derivative is a
measure having a singular component w.r. to the Lebesgue
measure −→ bounded variation function
A brief overview of the literature:

generalized solution: Giaquinta, Giusti (early seventies)
pseudo-solution: Temam, Lischnewski (early seventies)
(see also Ekeland, Ladyzhenskaya, Ural’tseva, Marcellini, Miller,
Kawohl, Kutev, ... )
bounded variation solution: Anzellotti (mid eighties)
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Preliminaries Bounded variation functions

Bounded variation functions

A function v ∈ BV (Ω) if v ∈ L1(Ω) and its distributional gradient is a
vector valued Radon measure with finite total variation

∫
Ω
|Dv |.

If v ∈ BV (Ω),
Dv = (Dv)adx + (Dv)s

is the Lebesgue-Nikodym decomposition of the Radon measure Dv in its
absolutely continuous part (Dv)adx , with density function (Dv)a, and its
singular part (Dv)s, with respect to the Lebesgue measure in RN .
Moreover, Dv

|Dv | stands for the density function of Dv with respect to its
absolute variation |Dv |.
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Preliminaries Notion of BV solution

Notion of BV solution

BV solution: Anzellotti (1985)

u ∈ BV (Ω) is a BV solution of
−div

(
∇u/

√
1 + |∇u|2

)
= f (x ,u) in Ω

−∇u · ν/
√

1 + |∇u|2 = κ(x) on ∂Ω

if, for every φ ∈ BV (Ω) such that |Dφs| � |Dus|,∫
Ω

(Du)a (Dφ)a√
1 + |(Du)a|2

dx +

∫
Ω

Dus

|Dus|
Dφs

=

∫
Ω

f (x ,u)φdx −
∫
∂Ω

κφdHN−1.
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Preliminaries Notion of BV solution

Comparison with W 1,1 solutions

W 1,1 solution

u ∈W 1,1(Ω) is a W 1,1 solution of
−div

(
∇u/

√
1 + |∇u|2

)
= f (x ,u) in Ω

−∇u · ν/
√

1 + |∇u|2 = κ(x) on ∂Ω

if, for every φ ∈W 1,1(Ω),∫
Ω

Du Dφ√
1 + |Du|2

dx

=

∫
Ω

f (x ,u)φdx −
∫
∂Ω

κφdHN−1.
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Preliminaries Notion of BV solution

Euler equation in BV (Ω

u ∈ BV (Ω) is a BV solution of
−div

(
∇u/

√
1 + |∇u|2

)
= f (x ,u) in Ω

−∇u · ν/
√

1 + |∇u|2 = κ(x) on ∂Ω

if, for every φ ∈ BV (Ω) such that |Dφs| � |Dus|,∫
Ω

(Du)a (Dφ)a√
1 + |(Du)a|2

dx +

∫
Ω

Dus

|Dus|
Dφs

=

∫
Ω

f (x ,u)φdx −
∫
∂Ω

κφdHN−1.

This is the Euler equation in BV (Ω) of the functional∫
Ω

√
1 + |(Du)a|2 dx +

∫
Ω

|Dus| −
∫

Ω

F (x ,u) dx ,

with F (x , s) =
∫ s

0 f (x , t) dt .
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Positive solutions Introduction

Positive solutions

Several (even recent) results concerning the existence and multiplicity of
(classical or BV) solutions of

−div
(
∇u/

√
1 + |∇u|2

)
= f (x ,u) in Ω

−∇u · ν/
√

1 + |∇u|2 = κ(x) on ∂Ω

are available in the literature under different configurations of the prescribed
curvature f ,

YET very little is known about positive, classical or BV, solutions,

in spite of the fact that this topic has been widely investigated in the literature,
starting with the late eighties, in the semilinear case or in the quasilinear
case, but mainly devoted to the p-laplacian, or variations thereof:
Bandle, Pozio, Tesei; Berestycki, Capuzzo Dolcetta, Nirenberg; Alama,
Tarantello; ... .
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Positive solutions Introduction

Positive solutions

With J. López-Gómez and S. Rivetti we began this study, starting from
the simplest 1-D non-autonomous model

−
(

u′√
1 + u′2

)′
= λa(x)f (u) in ]0,1[

u′(0) = u′(1) = 0

a ∈ L1(0,1)

f : [0,+∞[→ [0,+∞[ continuous
λ > 0 (inverse diffusivity coefficient)

Notation

u > 0 if u ≥ 0 and u 6≡ 0

u � 0 if ess inf u > 0
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Positive solutions Program and approach

Positive solutions

Program
Aim to study

existence, or non-existence
multiplicity
regularity (partial, or complete)
structure of the set of positive solutions

Approach
Combination of

elliptic regularization
critical point theory, or topological degree
bifurcation methods
ODE techniques
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Positive solutions Necessary conditions

Necessary conditions for existence

I necessary condition
∃ BV solution u > 0
a 6≡ 0
f (s) > 0 for s > 0

=⇒ a(·) changes sign −→ the problem is indefinite in sign

II necessary condition
∃ BV solution u � 0
a 6≡ 0
f (0) = 0 and f ′(s) > 0 for s > 0

=⇒ a+ 6≡ 0 and
∫ 1

0
a < 0
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Positive solutions Sufficient conditions

Sufficient conditions for existence

Assumptions on the weight a(x)

(a) a(x) > 0 a.e. in an interval and
∫ 1

0
a < 0

Assumptions on the potential F (s) =
∫ s

0 f

Recall: (u′/
√

1 + u′2)′ ≈ u′′ at 0, (u′/
√

1 + u′2)′ ≈ (u′/|u′|)′ at∞.

at 0 at +∞

(Q0) F (s) ≈ s2 (L∞) F (s) ≈ s

(superQ0) F (s) ≈ sp p > 2 (superL∞) F (s) ≈ sq q > 1

(subQ0) F (s) ≈ sp 1 < p < 2 (subL∞) F (s) ≈ sq q < 1
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Positive solutions BV solutions: existence, multiplicity, regularity

Sufficient conditions for existence, multiplicity, regularity

Existence, non-existence, multiplicity of positive BV solutions

Assume (a). Then:

(superQ0) and (superL∞) =⇒ ∀ λ > 0 ∃ ≥ 1 pos. BV sol.

(subQ0) and (subL∞) =⇒ ∀ λ > 0 ∃ ≥ 1 pos. BV sol.

(subQ0) and (superL∞) =⇒ ∀λ� 1 ∃ ≥ 2 pos. BV sols
and ∀λ� 1 6 ∃ pos. BV sol.

(superQ0) and (subL∞) =⇒ ∀λ� 1 ∃ ≥ 2 pos. BV sols
and ∀λ� 1 6 ∃ pos. BV sol.

Partial regularity

a(·) one sign a.e. in ]α, β[ =⇒ u ∈W 2,1
loc (α, β) ∩W 1,1(α, β)

a(x) ≥ 0 a.e. in ]α, β[ and a(x) ≤ 0 a.e. in ]β, γ[ =⇒ u ∈W 2,1
loc (α, γ)

or, else, u(β−) ≥ u(β+) and u′(β−) = u′(β+) = −∞
19
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Positive solutions BV solutions: existence, multiplicity, regularity

Strict positivity and regularity

Strict positivity

a(·) changes sign finitely many times, f loc. Lipschitz in [0,+∞[

=⇒ u � 0 and u is a special function of bounded variation

Profile of the BV solutions
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Positive solutions Strong solutions: existence

Existence of strong solutions

Assume (a). Then:

F (s) ≈ sp,1 < p < 2, at 0 =⇒ ∀ λ� 1
∃ ≥ 1 strong solution u > 0

F (s) ≈ sp, p > 2, at 0 =⇒ ∀ λ� 1
∃ ≥ 1 strong solution u � 0

F (s) ≈ s2, at 0 =⇒ ∀ λ close to the principal positive EV λ0
∃ ≥ 1 strong solution u � 0

Remark. The assumption (a) implies that{
−u′′ = λa(x)u in ]0,1[,

u′(0) = u′(1) = 0

has two principal eigenvalues λ = 0 and λ = λ0 > 0.
21
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Positive solutions Topological structure of the solution set

Topological structure: qualitative bifurcation diagrams

The above results can be grafically summarized as follows:

F (s) ≈ sp, p > 2, at 0
F (s) ≈ sq , q > 1, at +∞

F (s) ≈ sp, 1 < p < 2, at 0
F (s) ≈ sq , q < 1, at +∞

‖u‖∞ is plotted, in ordinates, versus λ, in abscissas
dotted line denotes BV solutions, solid line denotes strong solutions
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Positive solutions Topological structure of the solution set

Questions

Does really the solution set contain connected components as those depicted
in the preceding diagrams?

Using the Crandall-Rabinowitz theorem and the invariance under homotopy
of the topological degree, we can get some partial information, namely, the
existence of connected components of strong solutions, in the three cases:

– F quadratic, F (s) ≈ s2, at 0

– F subquadratic, F (s) ≈ sp, 1 < p < 2, at 0

– F superquadratic, F (s) ≈ sp, p > 2, at 0.

Yet, no information is provided with reference to the following questions:

? What is the structure of the set of the singular BV solutions?

? Does the solution set contain global connected components including
both regular and singular solutions?

25
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Positive solutions Topological structure of the solution set

Global bifurcation

To answer (partially) these questions, we focus on the following simple,
but significant, case:

Assumptions

the weight a changes sign once in [0,1], namely, we assume
a ∈ L∞(0,1) satisfies

∫ 1
0 a(x) dx < 0 and there is z ∈] 0,1[

such that a(x) > 0 a.e. in ]0, z[ and a(x) < 0 a.e. in ]z,1[

the potential F is quadratic at 0 and has polynomial growth,
namely, we assume f ∈ C1(R) satisfies f (s)s > 0 for all s 6= 0,
f ′(0) = 1, and, for some constants κ > 0 and p > 2,
|f ′(s)| ≤ κ (|s|p−2 + 1) for all s ∈ R.
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Global bifurcation

Aims
1 to establish the existence of global connected components of the

set of the positive BV solutions, emanating from the line of the
trivial solutions at the two principal eigenvalues 0 and λ0 of the
linearized problem around 0

2 to prove that the solutions in these components are regular, as
long as they are small, while they may develop jump singularities
at the node of the weight function a, as they become larger,
thus showing the coexistence along the same component of
both regular and singular solutions

Notation
S+ = {(λ,u) ∈ [0,+∞)× BV (0,1) : u is a positive solution}

∪{(0,0), (λ0,0)}
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The global bifurcation theorem
There exist two subsets C+

0 and C+
λ0

of S+ such that

C+
0 and C+

λ0
are maximal in S+ with respect to the inclusion, are

connected in R× BV (0,1) (endowed with the topology of the strict
convergence), and are unbounded in R× Lp(0,1);

(0,0) ∈ C+
0 and (λ0,0) ∈ C+

λ0
;

{(0, r) : r ∈ [0,+∞)} ⊆ C+
0 ;

if (λ,u) ∈ C+
0 ∪ C+

λ0
and u 6= 0, then u � 0;

if (λ,0) ∈ C+
0 ∪ C+

λ0
for some λ > 0, then λ = λ0;

either C+
0 ∩ C+

λ0
= ∅,

or (λ0,0) ∈ C+
0 and (0,0) ∈ C+

λ0
and, in such case, C+

0 = C+
λ0

;

there exists a neighborhood U of (0,0) in R× Lp(0,1) such that C+
0 ∩ U

consists of strong solutions;

there exists a neighborhood V of (λ0,0) in R× Lp(0,1) such that C+
λ0
∩ V

consists of strong solutions.
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Global bifurcation diagrams

‖u‖∞

0
•

λ0
•

λ

C+
0 C+

λ0

regular solutions

singular solutions

Global branches emanating from the two principal eigenvalues 0 and λ0:
supercritical bifurcation at (0, λ0), F superlinear at infinity.
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Global bifurcation diagrams

‖u‖∞

0
•

λ0
•

λ

C+
0 C+

λ0

regular solutions

singular solutions

Global branches emanating from the two principal eigenvalues 0 and λ0:
subcritical bifurcation at (0, λ0), F sublinear at infinity.
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A quick look at the proof

To get most of the conclusions a number of (at least, for us!) non-trivial
technical issues must be previously overcome. Among them count:

searching for the most appropriate global bifurcation setting: the lack of
regularity of the solutions forces us to work in the frame of the Lebesgue
spaces Lp, with p finite, where the cone of positive functions has empty
interior

reformulating the problem as a suitable fixed point equation for a
compact operator

proving the differentiability of the associated operator

solving the problem of the preservation of the positivity of the solutions
along the components; this is achieved through a (rather delicate)
topological argument relying on some technical convergence results for
sequences of BV solutions, with respect to the strict topology of
BV (0,1).
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Thank you for your attention!
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Structure of the proof

Regularity of the bounded variation solutions
1. Characterize the existence of the strong solutions of

(H) −

(
u′√

1 + u′2

)′
= h(x) in ]0,1[, u′(0) = 0, u′(1) = 0,

with h ∈ L1(0,1):

problem (H) has a strong solution if and only if there exists a constant
κ ∈ ]0,1[ such that ∣∣∣ ∫ 1

0
hχB dx

∣∣∣ ≤ κ∫ 1

0
|DχB|

for every Caccioppoli set B ⊆ ]0,1[.

In particular: when ‖h‖L1 < 1, any bounded variation solution must be strong.
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Structure of the proof

Regularity of the bounded variation solutions – continued

2. Analyze the fine regularity properties of the non-regular bounded
variation solutions of problem (H):
when the set of the nodal points of h is discrete, the only singularities
that a bounded variation solution of problem (H) can exhibit are jumps,
which must be located at the interior points where h changes sign.

In particular: the presence of a Cantor part in the distributional
derivative of any bounded variation solution of problem (H) is ruled
out, that is, the solutions are special functions of bounded variation.
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Structure of the proof

An auxiliary problem

(A) −

(
u′√

1 + u′2

)′
+k(u) = h(x) in ]0,1[, u′(0) = 0, u′(1) = 0,

where
k : R→ R is a function of class C1, strictly increasing and odd,
which satisfies

k ′(0) = 1 and lim
|s|→+∞

k ′(s)

|s|p−2 = 1, for some p ≥ 2,

h ∈ Lq(0,1), with q = p
p−1 .
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Structure of the proof

The associated solution operator

The solution operator
P : Lq(0,1)→ Lp(0,1),

which maps h onto the unique BV solution u = Ph of (A), is completely
continuous )

The Fréchet derivative at 0
P is differentiable at h = 0 and its derivative is given by the linear operator

DP(0) : Lq(0,1)→ Lp(0,1),

which sends any function h onto the unique solution u ∈W 2,q(0,1) of

−u′′ + u = h(x) in ]0,1[, u′(0) = 0, u′(1) = 0 (linearization of (A))
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Structure of the proof

Fixed point reformulation

The original problem can be reformulated as an operator equation

N (λ,u) = 0 in Lp(0,1),

with N a compact perturbation of the identity.
Due to the differentiability of P at u = 0, N can be decomposed as

N (λ,u) = L(λ)u +R(λ,u),

with L(λ) Fredholm of index 0 and R(λ,u) = o(‖u‖p).

Unilateral bifurcation
Thus, we are within the functional setting suited for applying a generalized
version of the Rabinowitz unilateral bifurcation theorem, at both principal
eigenvalues 0 and λ0 of the linearization at 0.
This yields the existence of two connected components of the solution set
emanating from (0,0) and (λ0,0), respectively, and constituted of positive
regular solutions near the bifurcation points.
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Structure of the proof

Unbounded subcomponents of positive solutions

Since we are working in Lp(0,1), we cannot guarantee that
the whole obtained components consist of positive solutions.

Thus, the remainder of the proof is basically devoted to prove that
each of these components contains an unbounded subcomponent
C+

0 and C+
λ0

, respectively, consisting of (strictly) positive solutions.

This is achieved through a (rather delicate) topological argument relying on
some technical convergence results for sequences of BV solutions,
with respect to the strict topology of BV (0,1).
The special nodal structure of the weight function a(·) plays here a relevant
role.
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