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The model equation

Cauchy problem for the p-Laplacian:{
ut − ∆pu = 0 in ]0,T [×RN

u(0, ·) = u0

Concerned with local weak solutions, with initial datum attained
strongly but locally in L2(RN ).

Discussion
1 Existence of local solutions;
2 Non-uniqueness ↔ Conditional uniqueness;
3 Propagation of disturbances.
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The heat equation

E1 Finite energy: existence and uniqueness in L∞(0,T ;L2(RN )).

E2 Local existence of solutions for initial data obeying

|u0(x )| ≤ AeB |x |2 .

Maximal time of existence: 4/B .

U1 Controlled growth: uniqueness holds in

GB :=
{
u ∈ C∞(]0, 4/B [×RN ) : ∃A : |u(x , t)| ≤ AeB |x |2

}
.

U2 Non-negative solutions of a given Cauchy problem are unique.

NU There exists a global, non-trivial solution with u0 ≡ 0.

E3 For any u0 ∈ C∞(RN ) there are plenty global solutions of the C-P.
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Speed of propagation

Suppose u0 ∈ C∞
c (RN ), u0 	 0 and consider the energy solution u of

ut − ∆pu = 0, in RN× ]0,T [, u(·, 0) = u0(·). (1)

Fast Diffusion: If p < 2 then u(·, t) > 0 in RN for any small t > 0,
but u(·, t) ≡ 0 for any large t (exitinction in finite time, EFT).

Slow Diffusion: If p > 2, the support of u(·, t) stays bounded for
any t > 0 (finite speed of propagation, FSP).

Theorem (Diaz&Veron ’85, Bernis ’88)
If u is an energy solution of (1) for p > 2, then

diam (supp (u(·, t))) ≤ diam (supp (u0)) +C t
1

N (p−2)+p ‖u0‖
p−2

N (p−2)+p

L1 .

S. Mosconi Finite speed of propagation 5 / 13



Speed of propagation

Suppose u0 ∈ C∞
c (RN ), u0 	 0 and consider the energy solution u of

ut − ∆pu = 0, in RN× ]0,T [, u(·, 0) = u0(·). (1)

Fast Diffusion: If p < 2 then u(·, t) > 0 in RN for any small t > 0,
but u(·, t) ≡ 0 for any large t (exitinction in finite time, EFT).

Slow Diffusion: If p > 2, the support of u(·, t) stays bounded for
any t > 0 (finite speed of propagation, FSP).

Theorem (Diaz&Veron ’85, Bernis ’88)
If u is an energy solution of (1) for p > 2, then

diam (supp (u(·, t))) ≤ diam (supp (u0)) +C t
1

N (p−2)+p ‖u0‖
p−2

N (p−2)+p

L1 .

S. Mosconi Finite speed of propagation 5 / 13



Speed of propagation

Suppose u0 ∈ C∞
c (RN ), u0 	 0 and consider the energy solution u of

ut − ∆pu = 0, in RN× ]0,T [, u(·, 0) = u0(·). (1)

Fast Diffusion: If p < 2 then u(·, t) > 0 in RN for any small t > 0,
but u(·, t) ≡ 0 for any large t (exitinction in finite time, EFT).

Slow Diffusion: If p > 2, the support of u(·, t) stays bounded for
any t > 0 (finite speed of propagation, FSP).

Theorem (Diaz&Veron ’85, Bernis ’88)
If u is an energy solution of (1) for p > 2, then

diam (supp (u(·, t))) ≤ diam (supp (u0)) +C t
1

N (p−2)+p ‖u0‖
p−2

N (p−2)+p

L1 .

S. Mosconi Finite speed of propagation 5 / 13



Other models

1 Porous media:

ut = ∆(|u |m−1u).

FSP for m > 1; EFT when 0 < m < 1.
2 Diffusion/Absorption:

ut = ∆u − |u |α−1u , α < 1.

FSP+EFT: the support shrinks over time, eventually vanishing.

3 Anisotropic diffusion:

ut =
(
|ux |p−2ux

)
x +

(
|uy |q−2uy

)
y , p, q > 1.

FSP in direction y if p > q ; EFT if 1
p + 1

q > 1.
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Aims

1) For local solutions, FSP fails even in the case ut = ∆pu , p > 2.
However, one can recover it selecting a branch of the solution.

Branch of a solution
Let u solve

ut = div(A(x ,u ,∇u)) in RN× ]0,T [.

A branch ~u of u is a solution of the same equation on RN× ]0,T [ such
that ~u = u on supp(~u).

2) For solutions of anisotropic equations, prove FSP of a suitably
selected branch in (possibly optimal) quantitative form, separately
in each direction.

Model anisotropic equation: A(x , t , z ) = ∇z (|z1|p1 , . . . , |zN |pN )

for a suitable choice of p1, . . . , pN (pi ≡ p → orthotropic p-Laplacian).
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Main result

Theorem (Düzgün, M., Vespri ’18)
Let �p be the harmonic mean of the pi ’s and suppose

2 < min{p1, . . . , pN } ≤ max{p1, . . . , pN } < �p
(
1+

1
N

)
.

Let u be a local solution of ut = div(A(x ,u ,∇u)) with L2 nontrivial
initial datum supported in a cube of edge R0.
Then there is a branch ~u 6= 0 of u s. t.

supp(~u(·, t)) ⊆
N∏
j=1

[−Rj (t),Rj (t)],

Rj (t) = 2R0 +Ct
N (�p−pj )+�p

λ pj ‖u0‖
�p
pj

pj−2
λ

1 , λ = N (�p − 2) + �p.
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Comments

1 The assumptions on the leading term A(x ,u ,∇u) are of
“measurable coefficients” type. Contrary to other approaches, no
monotonicity assumptions (hence no comparison principle).

2 It is proved that the estimated speed is optimal for large t ,
separately in each direction.

3 The statement can be generalized when only some of the diffusion
rates lie in the slow diffusion range pi > 2, but in this case
optimality of the speed is unknown.

4 The condition pi ≤ �p(1+ 1/N ) for all i is an actual threshold:
formally, the corresponding velocity of propagation vanishes if it is
violated. Antontsev-Shmarev examples suggest that this may be
the case, but the proof is missing.
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Self-similar solutions

Aim: when p > 2, find nontrivial solutions to ut = ∆pu on R× ]0,+∞[

with vanishing initial datum.

Ansatz : u(x , t) = t−αU (x tβ), α, β > 0

(p − 2)α = 1+ pβ ⇒ (
|U ′|p−2U ′) ′ − β s U ′ + αU = 0

where derivation is with respect to s := x tβ.

V = |U ′|p−2U ′ →
U ′ = |V |

2−p
p−1V

V ′ = −αU + β s |V |
2−p
p−1V

Non trivial solution found if U 6= 0 for s ≥ 1 and

U (1) = V (1) = 0 ⇔ U (1) = U ′(1) = 0

so that U can be extended as zero if s = x tβ < 1.
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Heuristics

Define |t |
p−2
p−1 t =: tγ, γ ∈ ]0, 1[, increasing. Set for simplicity α = β = 1.{

U ′ = V γ

V ′ = −U + sV γ
s ≥ 1, U (1) = V (1) = 0.

1 The system has anti-dissipative features thanks to the
monotonicity of V 7→ V γ: Peano phenomenon has chances.

2 Sub-linear growth, hence local solutions extend to global solutions.

3 “Linearizes” near s = 1, (U ,V ) = (0, 0) as{
U ′ = V γ

V ′ = V γ
→ U = V = cγ(s − 1)

1
1−γ
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Proof

Peano-Picard existence theorem in a suitable convex set of

X =
{
x ∈ C 0([1, 1+ δ],R2) : x(1) = 0

}
.

Led by previous heuristics, define

Ca ,b :=

{
(x1, x2) ∈ X :

{
0 ≤ x1(s) ≤ b(s − 1)

1
1−γ

a(s − 1)
1

1−γ ≤ x2(s) ≤ b(s − 1)
1

1−γ

}
.

For suitable b > a > 0 and small δ, the set Ca ,b is invariant for

T ((x1, x2))( s) =
∫ s
1

(
xγ2 (τ),−x1(τ) + xγ2 (τ)

)
dτ,

which is compact.
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Thank you for your attention!
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