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Overview

@ Classical results

© Main theorem

© The non-uniqueness example
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The model equation

Cauchy problem for the p-Laplacian:

ut —Apu =0 in]0, T[xRY
’LL(O,) = Up

Concerned with local weak solutions, with initial datum attained
strongly but locally in L?(RY).

S. Mosconi Finite speed of propagation 3 /13



The model equation

Cauchy problem for the p-Laplacian:

ut —Apu =0 in]0, T[xRY
’LL(O,) = U

Concerned with local weak solutions, with initial datum attained
strongly but locally in L?(RY).

@ Existence of local solutions;

© Non-uniqueness +» Conditional uniqueness;

© Propagation of disturbances.
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The heat equation

El Finite energy: existence and uniqueness in L>(0, T; L?(RY)).
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Maximal time of existence: 4/B.
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The heat equation

El Finite energy: existence and uniqueness in L>(0, T; L?(RY)).

E2 Local existence of solutions for initial data obeying
luo(z)| < Ae=F.

Maximal time of existence: 4/B.

Ul Controlled growth: uniqueness holds in
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The heat equation

El Finite energy: existence and uniqueness in L>(0, T; L?(RY)).

E2 Local existence of solutions for initial data obeying
luo(z)| < Ae=F.

Maximal time of existence: 4/B.

Ul Controlled growth: uniqueness holds in

gp:= {u e Cc*°(]0,4/B[xRY):3A: |u(z,t) < AeBII‘Z}.

U2 Non-negative solutions of a given Cauchy problem are unique.
NU There exists a global, non-trivial solution with ug = 0.

E3 For any uy € C®°(RY) there are plenty global solutions of the C-P.
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Speed of propagation

Suppose 4y € CX(RY), 4y = 0 and consider the energy solution u of

ut — Apu = 0, in RV x 0, T, u(-,0) = up(+). (1)

e Fast Diffusion: If p < 2 then u(-,¢) > 0 in RY for any small ¢t > 0,
but u(-,t) = 0 for any large t (ezitinction in finite time, EFT).
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Speed of propagation

Suppose 4y € CX(RY), 4y = 0 and consider the energy solution u of

ut — Apu = 0, in RV x 0, T, u(-,0) = up(+). (1)

e Fast Diffusion: If p < 2 then u(-,¢) > 0 in RY for any small ¢t > 0,
but u(-,t) = 0 for any large t (ezitinction in finite time, EFT).

e Slow Diffusion: If p > 2, the support of u(-, t) stays bounded for
any t > 0 (fintte speed of propagation, FSP).

Theorem (Diazé& Veron 85, Bernis '88)

If u is an energy solution of (1) for p > 2, then

p—2
N(p—2)+p
1 :

diam (supp (ul-, ¢))) < diam (supp (o)) + C t7F 2777 |ug|
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Other models

@ Porous media:

|m—1

u; = A|u u).

FSP for m > 1; EFT when 0 < m < 1.
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FSP for m > 1; EFT when 0 < m < 1.
© Diffusion/Absorption:

up = Au — |u|*u, o< 1.

FSP+EFT: the support shrinks over time, eventually vanishing.
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Other models

@ Porous media:

|m—1

u; = A|u u).

FSP for m > 1; EFT when 0 < m < 1.
© Diffusion/Absorption:

up = Au — |u|*u, o< 1.
FSP+EFT: the support shrinks over time, eventually vanishing.

© Anisotropic diffusion:

Ut = (|u:c|p72ux)x + (|'va|q72uy)y> p,q> 1

FSP 4n direction y if p > ¢; EFTif L +1 > 1.
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Aims

1) For local solutions, F'SP fails even in the case us = Apu, p > 2.
However, one can recover it selecting a branch of the solution.

Branch of a solution

Let u solve
us = div(A(z,u,Vu)) in RVx]o, T

A branch % of u is a solution of the same equation on R¥ x ]0, T'[ such
that & = u on supp().
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2) For solutions of anisotropic equations, prove FSP of a suitably
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i each direction.
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Aims

1) For local solutions, F'SP fails even in the case us = Apu, p > 2.
However, one can recover it selecting a branch of the solution.

Branch of a solution
Let u solve

us = div(A(z,u,Vu)) in RVx]o, T

A branch % of u is a solution of the same equation on R¥ x ]0, T'[ such
that & = u on supp().

2) For solutions of anisotropic equations, prove FSP of a suitably
selected branch in (possibly optimal) quantitative form, separately
i each direction.

Model anisotropic equation: A(z,t,z) = V,(|z|P,...,|zy[P¥)
for a suitable choice of pi,...,py (p; = p — orthotropic p-Laplacian).
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Theorem (Diizgiin, M., Vespri ’18)

Let p be the harmonic mean of the p;’s and suppose

. _ 1
2 < min{py,...,pn} < max{pi,...,pn} <D 1+ﬁ .

Let u be a local solution of w; = div(A(z, u, Vu)) with L? nontrivial
initial datum supported in a cube of edge Ry.
Then there s a branch & #0 of u s. t.

N
supp (@ H ()],

J=1
S p P2
N (p—pj)+P P25

Ri(t)=2Ro+Ct % |w|y ", A= N(p—2)+p.
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Comments

@ The assumptions on the leading term A(z,u,Vu) are of
“measurable coefficients” type. Contrary to other approaches, no
monotonicity assumptions (hence no comparison principle).
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Comments

@ The assumptions on the leading term A(z,u,Vu) are of
“measurable coefficients” type. Contrary to other approaches, no
monotonicity assumptions (hence no comparison principle).

@ It is proved that the estimated speed is optimal for large t,
separately in each direction.

© The statement can be generalized when only some of the diffusion
rates lie in the slow diffusion range p; > 2, but in this case
optimality of the speed is unknown.

© The condition p; < (1 + 1/N) for all ¢ is an actual threshold:
formally, the corresponding velocity of propagation vanishes if it is
violated. Antontsev-Shmarev examples suggest that this may be
the case, but the proof is missing.
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Self-similar solutions

Aim: when p > 2, find nontrivial solutions to u; = Apu on Rx ]0, +o0[
with vanishing initial datum.
Ansatz : u(z,t) =t *U(zth), «p>0
(p—2)a=1+pp =  (UPP2U) ~BsU' +alU=0

where derivation is with respect to s :=  tP.

2—p
V:|U’|p72U’ L U/:|V|P*1 V .
V'i=—aU+Bs|V[F1V
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Self-similar solutions

Aim: when p > 2, find nontrivial solutions to u; = Apu on Rx ]0, +o0[
with vanishing initial datum.

Ansatz : u(z,t) =t *U(ztP), «p >0
(p—2)a=1+pp =  (UPP2U) ~BsU' +alU=0
where derivation is with respect to s :=  tP.
2—p
V:|U/|p—2U/ s U/:|V|P*71V -
Vi=—aU+Bs|VIF1V

Non trivial solution found if U # 0 for s > 1 and
Uun=vy=0 & U1L)=U'(1)=0

so that U can be extended as zero if s = z P < 1.

S. Mosconi Finite speed of propagation 10 / 13



Heuristics

—2
Define Itlzjt =:tY, vy €]0,1], increasing. Set for simplicity « = 3 = 1.

U= v
s>1, U(l)=V{1)=o.
Vi=-U+sVY

@ The system has anti-dissipative features thanks to the
monotonicity of V +— V7Y: Peano phenomenon has chances.
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Heuristics

—2
Define Itlzjt =:tY, vy €]0,1], increasing. Set for simplicity « = 3 = 1.

U= vy
s>1, U@1)=V()=o0.
V/i=—U+sVY

@ The system has anti-dissipative features thanks to the
monotonicity of V +— V7Y: Peano phenomenon has chances.

© Sub-linear growth, hence local solutions extend to global solutions.

© “Linearizes” near s =1, (U, V) = (0,0) as

U= v )
— J— —_ 1—
V= VY » U=V=gls—1)m
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Peano-Picard existence theorem in a suitable convex set of
X ={xe C°1,1+5,R*:x(1) =0}.

Led by previous heuristics, define

Ca,bIZ{($1,$2)€X3{0<Il( o) < ble =17 1 }

(s —1)17 < mp(s) < b(s — 1)1
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Peano-Picard existence theorem in a suitable convex set of
X ={xe C°1,1+5,R*:x(1) =0}.

Led by previous heuristics, define

Ca»b:{(ml»zz)GX:{o<Il( )Sb(s—l) 1 }

(s =1)1 < mp(s) < b(s— 1)+

For suitable b > a > 0 and small 3, the set C, ; is invariant for

T ((21,2))( s) = J (2] (1), —a (1) + 2 (7)) d,

1

which is compact.
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Thank you for your attention!

Finite speed of propagation
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