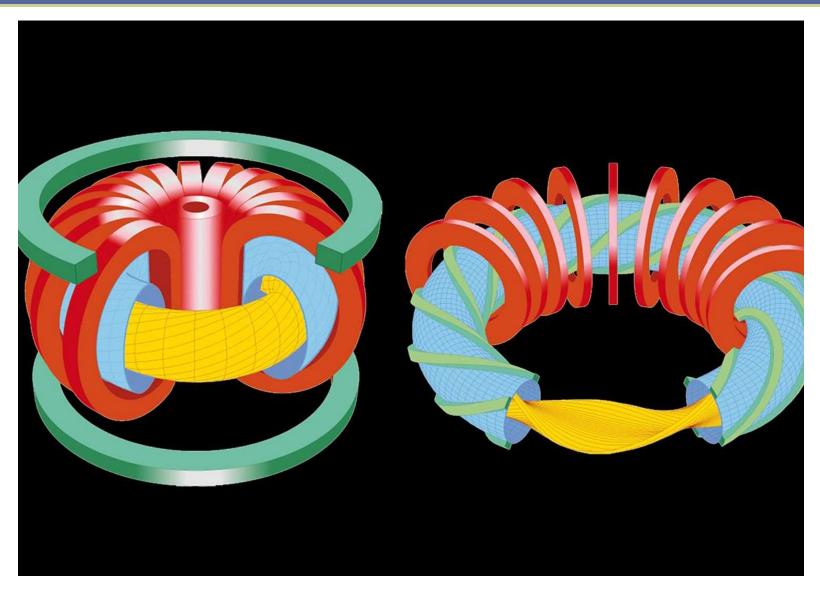


Oltiana Gjata Fabio Zanolin University of Udine

GEDO 2018, Ancona

Complicated dynamics in a model of charged particles



Cambon and co-workers, Chaotic motion of charged particles in toroidal magnetic configurations, Chaos 24, 2014

$$H_{\text{eff}} := \frac{\dot{r}^2}{2} + \frac{A^2}{2r^2} + \frac{(B_0)^2}{8}r^2 + F^2(r) = E_c + V_0(r) + F^2(r),$$

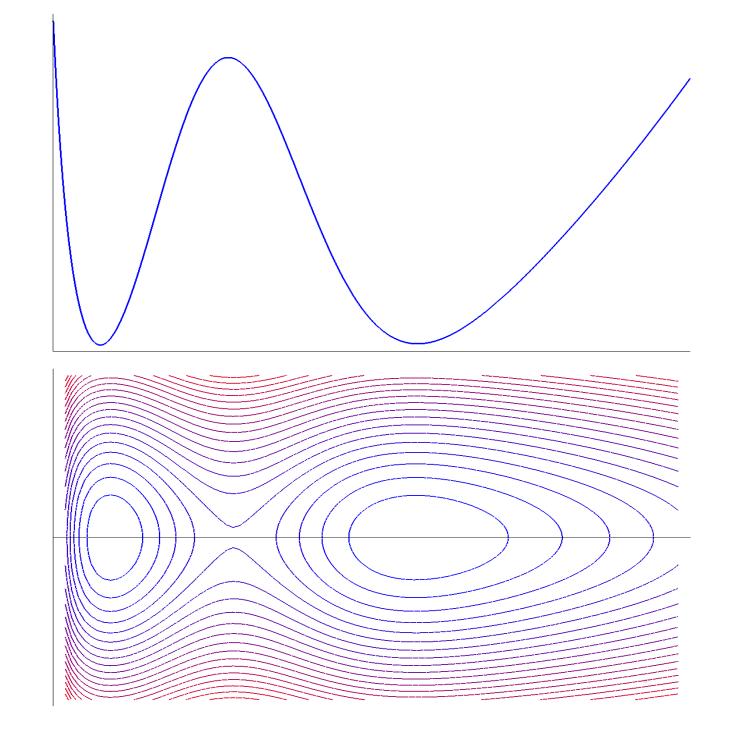
for
$$F(r) := ar^2 \exp\left(-\frac{r^2}{c^2}\right),$$

where A, a, c are positive constants and B_0 is the magnetic field.

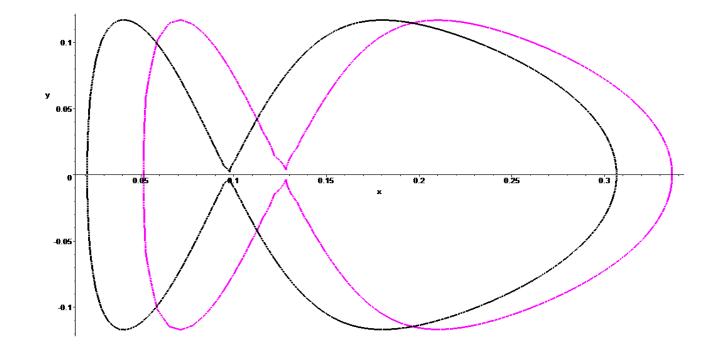
$$\begin{cases} \dot{x} = y \\ \dot{y} = -g(x), \end{cases}$$

for x := r > 0, $y = \dot{r}$ and

$$g(x) := \frac{d}{dx} \left(V_0(x) + F(x)^2 \right) = -\frac{A^2}{x^3} + \frac{B_0^2}{4} x + 2F(x)F'(x),$$

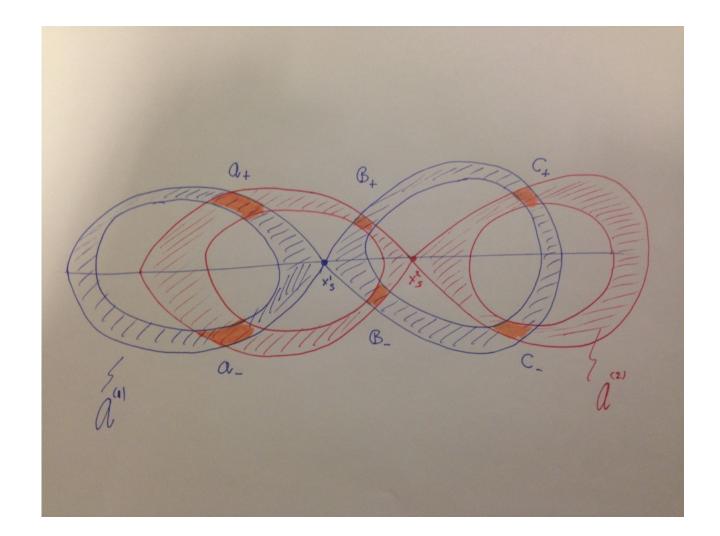


Perturbation



 $B(t) := \begin{cases} B_1(t), & \text{for } 0 \le t < T_1 \\ B_2(t), & \text{for } T_1 \le t < T_1 + T_2 = T, \end{cases}$

Rectangular regions



Crossing condition: $a^{(1)} \cap a^{(2)} = \{a_{\pm} b_{\pm}, a_{\pm}\}$

Poincare maps:

Let Φ_i be the Poincaré map on the time-interval $[0, T_i]$ associated with the system

$$\begin{cases} \dot{x} = y \\ \dot{y} = -g_i(t, x) \end{cases}$$

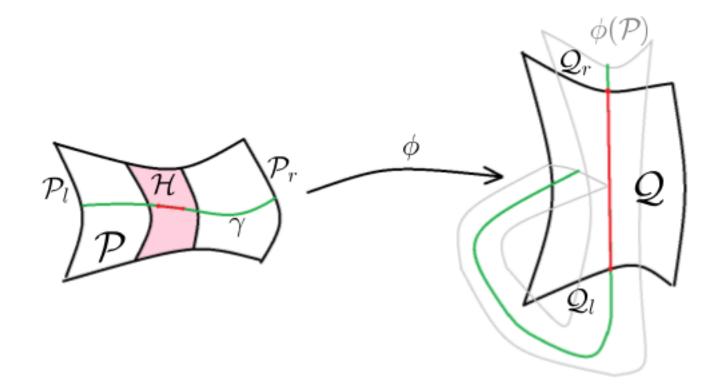
for i = 1, 2. Then also

 $\Phi = \Phi_2 \circ \Phi_1$

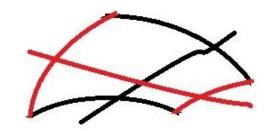
is a Poincaré map associated to the planar conservativesystem.

Objective: Φ induces chaotic dynamics on *m*-symbols.

SAP methods:



Convention used:



Main result:

Lemma 0.0.1 Given any positive integer l_1 , it holds that

$$\Phi_1: \widetilde{\mathfrak{a}}_+ \Longrightarrow^{l_1} \widetilde{\mathfrak{a}}_-,$$

provided that $T_1 > l_1 \tau_l^{(1)}$.

Main result:

Lemma 0.0.2 There exist times τ_1^* and τ_2^* , such that, for any positive integer l_1, l_2 , it holds that:

 $\Phi_{1}: \stackrel{\smile}{\mathfrak{a}_{\pm}} \stackrel{\frown}{\Rightarrow} \stackrel{\frown}{\mathfrak{a}_{\pm}}, \quad \stackrel{\smile}{\mathfrak{b}_{\pm}} \stackrel{\frown}{\Rightarrow} \stackrel{\frown}{\mathfrak{b}_{\pm}}, \quad \stackrel{\frown}{\mathfrak{c}_{\pm}}, \quad \stackrel{\smile}{\mathfrak{c}_{\pm}} \stackrel{\frown}{\Rightarrow} \stackrel{\frown}{\mathfrak{b}_{\pm}}, \quad \stackrel{\frown}{\mathfrak{c}_{\pm}}, \quad \stackrel{\frown}{\mathfrak$

 $\Phi_{2}: \widehat{\mathfrak{a}_{\pm}} \Leftrightarrow \stackrel{l_{2}}{\longrightarrow} \stackrel{\sim}{\mathfrak{a}_{\pm}}, \quad \widehat{\mathfrak{b}_{\pm}}, \quad \widehat{\mathfrak{b}_{\pm}} \Leftrightarrow \stackrel{l_{2}}{\longrightarrow} \stackrel{\sim}{\mathfrak{a}_{\pm}}, \quad \widehat{\mathfrak{b}_{\pm}}, \quad \widehat{\mathfrak{c}_{\pm}} \Leftrightarrow \stackrel{l_{2}}{\longrightarrow} \stackrel{\sim}{\mathfrak{c}_{\pm}},$ *provided that* $T_{2} > l_{2}\tau_{2}^{*}$.

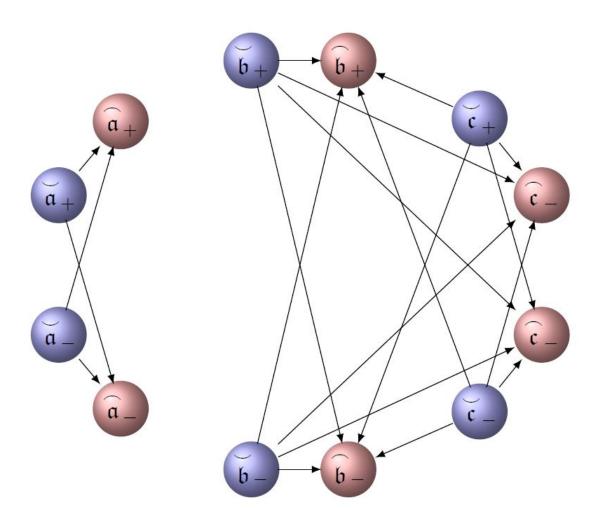


FIGURE 1: This graph represents all the possible connections by the partial Poincaré map Φ_1 . The arrows correspond to the \Rightarrow symbol. The integer ℓ_1 is not indicated but it can be arbitrarily chosen provided that $T_1 > \ell_1 \tau_1^*$.

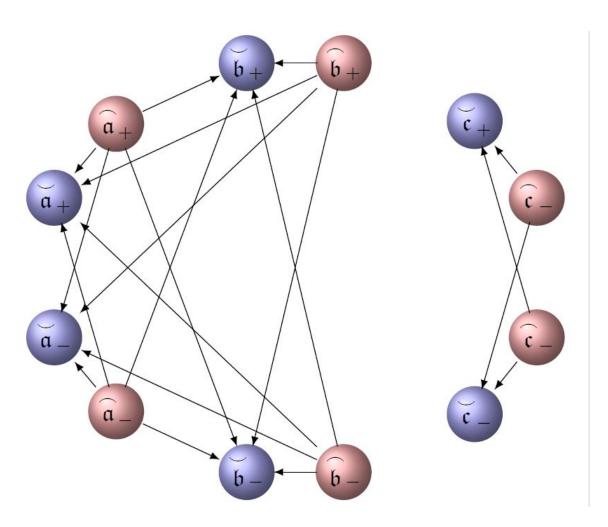


FIGURE 2: This graph represents all the possible connections by the partial Poincaré map Φ_2 . The arrows correspond to the \Rightarrow symbol. The integer ℓ_2 is not indicated but it can be arbitrarily chosen provided that $T_2 > \ell_2 \tau_2^*$.

Applaying:

Lemma 0.0.3 Let $\widehat{\mathcal{R}} := (\mathcal{R}, \mathcal{R}^-)$ be an oriented rectangle and $\psi : \mathcal{R} \to \mathbb{R}^2$ be a continuous and one-to-one map. Suppose that

$$\psi:\widehat{\mathcal{R}}\Longrightarrow^{m}\widehat{\mathcal{R}},$$

for some $m \ge 2$. Then ψ induces chaotic dynamics on m symbols on the set \mathcal{R} .

Considering:

 $\mathcal{R} \in \{\mathfrak{a}_{\pm} \mathfrak{b}_{\pm}, \mathfrak{a}_{\pm}\}$ $\Phi = \Phi_2 \circ \Phi_1$ $\widehat{\mathcal{R}} \in \{\widecheck{\mathfrak{a}}_{\pm}, \widecheck{\mathfrak{b}}_{\pm}, \widecheck{\mathfrak{c}}_{\pm}\} \text{ and } m = \ell_1 \times \ell_2 \ge 2$ than the following connections are available:

and therefore, we find that

$$\Phi: \overset{\smile}{\mathfrak{a}}_{\pm} \Leftrightarrow^{2} \overset{\smile}{\mathfrak{a}}_{\pm},$$

In the last formula we use the convention that $[]_{\pm} \Leftrightarrow []_{\pm}$ means that only the two possibilities $[]_{+} \Leftrightarrow []_{+}$ and $[]_{-} \Leftrightarrow []_{-}$ are available.

Thank you for your attention !