

Oltiana Gjata
Fabio Zanolin
University of Udine

GEDO 2018, Ancona

Complicated dynamics in a model of charged particles

Cambon and co-workers, Chaotic motion of charged particles in toroidal magnetic configurations, Chaos 24, 2014

$$
H_{\mathrm{eff}}:=\frac{\dot{r}^{2}}{2}+\frac{A^{2}}{2 r^{2}}+\frac{\left(B_{0}\right)^{2}}{8} r^{2}+F^{2}(r)=E_{c}+V_{0}(r)+F^{2}(r)
$$

for

$$
F(r):=a r^{2} \exp \left(-\frac{r^{2}}{c^{2}}\right)
$$

where A, a, c are positive constants and B_{0} is the magnetic field.

$$
\left\{\begin{array}{l}
\dot{x}=y \\
\dot{y}=-g(x)
\end{array}\right.
$$

for $x:=r>0, y=\dot{r}$ and

$$
g(x):=\frac{d}{d x}\left(V_{0}(x)+F(x)^{2}\right)=-\frac{A^{2}}{x^{3}}+\frac{B_{0}{ }^{2}}{4} x+2 F(x) F^{\prime}(x),
$$

Perturbation

$$
B(t):= \begin{cases}B_{1}(t), & \text { for } 0 \leq t<T_{1} \\ B_{2}(t), & \text { for } T_{1} \leq t<T_{1}+T_{2}=T,\end{cases}
$$

Rectangular regions

Crossing condition: $\boldsymbol{a}^{(1)} \cap \boldsymbol{a}^{(2)}=\left\{\mathfrak{a}_{ \pm} \mathfrak{b}_{ \pm}, \mathfrak{a}_{ \pm}\right\}$

Poincare maps:

Let Φ_{i} be the Poincaré map on the time-interval $\left[0, T_{i}\right]$ associated with the system

$$
\left\{\begin{array}{l}
\dot{x}=y \\
\dot{y}=-g_{i}(t, x)
\end{array}\right.
$$

for $i=1,2$.
Then also

$$
\Phi=\Phi_{2} \circ \Phi_{1}
$$

is a Poincaré map associated to the planar conservativesystem.

Objective: Φ induces chaotic dynamics on m-symbols.

SAP methods:

Convention used:

The paths in black means $\breve{]}_{ \pm}$otherwise $\widehat{[}_{ \pm}$.

Main result:
Lemma 0.0.1 Given any positive integer l_{1}, it holds that

$$
\Phi_{1}: \breve{\mathfrak{a}}_{+} \xlongequal{\imath}{ }^{l_{1}} \widehat{\mathfrak{a}}_{-},
$$

provided that $T_{1}>l_{1} \tau_{l}^{(1)}$.

Main result:
Lemma 0.0.2 There exist times τ_{1}^{*} and τ_{2}^{*}, such that, for any positive integer l_{1}, l_{2}, it holds that:
$\Phi_{1}: \breve{\mathfrak{a}}_{ \pm} \cong^{l_{1}} \widehat{\mathfrak{a}}_{ \pm}, \quad \breve{\mathfrak{b}}_{ \pm} \cong_{l_{1}^{l}}^{\hat{\mathfrak{b}}_{ \pm}}, \widehat{\mathfrak{c}}_{ \pm}, \quad \breve{\mathfrak{c}}_{ \pm} \xlongequal{l_{1}} \widehat{\mathfrak{b}}_{ \pm}, \widehat{\mathfrak{c}}_{ \pm}$, provided that $T_{1}>l_{1} \tau_{1}^{*}$.
$\Phi_{2}: \widehat{\mathfrak{a}}_{ \pm} \cong^{l_{2}} \breve{\mathfrak{a}}_{ \pm}, \breve{\mathfrak{b}}_{ \pm}, \quad \widehat{\mathfrak{b}}_{ \pm} \xlongequal{l_{2}^{l}} \breve{\mathfrak{a}}_{ \pm}, \breve{\mathfrak{b}}_{ \pm}, \quad \widehat{\mathfrak{c}}_{ \pm} \xlongequal{{ }_{\sim}^{l}} \breve{\mathfrak{c}}_{ \pm}$, provided that $T_{2}>l_{2} \tau_{2}^{*}$.

FIGURE 1: This graph represents all the possible connections by the partial Poincaré map Φ_{1}. The arrows correspond to the $\xlongequal{\approx}$ symbol. The integer ℓ_{1} is not indicated but it can be arbitrarily chosen provided that $T_{1}>\ell_{1} \tau_{1}^{*}$.

FIGURE 2: This graph represents all the possible connections by the partial Poincaré map Φ_{2}. The arrows correspond to the \bumpeq symbol. The integer ℓ_{2} is not indicated but it can be arbitrarily chosen provided that $T_{2}>\ell_{2} \tau_{2}^{*}$.

Applaying:

Lemma 0.0.3 Let $\widehat{\mathcal{R}}:=\left(\mathcal{R}, \mathcal{R}^{-}\right)$be an oriented rectangle and $\psi: \mathcal{R} \rightarrow$ \mathbb{R}^{2} be a continuous and one-to-one map. Suppose that

$$
\psi: \widehat{\mathcal{R}} \bumpeq{ }^{m} \widehat{\mathcal{R}},
$$

for some $m \geq 2$. Then ψ induces chaotic dynamics on m symbols on the set \mathcal{R}.

Considering:
$\mathcal{R} \in\left\{\mathfrak{a}_{ \pm} \mathfrak{b}_{ \pm}, \mathfrak{a}_{ \pm}\right\}$
$\Phi=\Phi_{2} \circ \Phi_{1}$
$\widehat{\mathcal{R}} \in\left\{\breve{\mathfrak{a}}_{ \pm}, \breve{\mathfrak{b}}_{ \pm}, \breve{\mathfrak{c}}_{ \pm}\right\}$and $m=\ell_{1} \times \ell_{2} \geq 2$
than the following connections are available:

$$
\begin{aligned}
& \breve{\mathfrak{a}}_{+} \leadsto \widehat{\mathfrak{a}}_{+} \leadsto \breve{\mathfrak{a}}_{+}, \breve{\mathfrak{a}}_{+} \leadsto \widehat{\mathfrak{a}}_{-} \bumpeq \breve{\mathfrak{a}}_{+} \\
& \breve{a}_{-} \cong \widehat{\mathfrak{a}}_{-} \cong \widetilde{\mathfrak{a}}_{-}, \breve{\mathfrak{a}}_{-} \cong \widetilde{\mathfrak{a}}_{+} \cong \widetilde{\mathfrak{a}}_{-}
\end{aligned}
$$

and therefore, we find that

$$
\Phi: \breve{\mathfrak{a}}_{ \pm} \bumpeq \breve{\mathfrak{a}}_{ \pm},
$$

In the last formula we use the convention that $]_{ \pm} \xlongequal{\approx}[]_{ \pm}$means that only the two possibilities []$\left._{+} \xlongequal{\leftrightharpoons}\right]_{+}$and []$_{-} \xlongequal{\leadsto}[]_{-}$are available.

Thank you for your attention!

