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Jules Henri Poincaré (1854 – 1912)
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Poincaré’s
“Théorème de géométrie”

A is a closed planar annulus

P : A → A is an area preserving homeomorphism

and

(?) it rotates the two boundary circles in opposite directions

(this is called the “twist condition”).
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An equivalent formulation

S = R× [a,b] is a planar strip

P : S → S is an area preserving homeomorphism,
and writing

P(x , y) = (x + f (x , y), y + g(x , y)) ,

both f (x , y) and g(x , y) are continuous, 2π -periodic in x ,

g(x ,a) = 0 = g(x ,b) (boundary invariance) ,

and

(?) f (x ,a) < 0 < f (x ,b) (twist condition) .
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George David Birkhoff (1884 – 1944)



The Poincaré – Birkhoff theorem

In 1913 – 1925, Birkhoff proved Poincaré’s “théorème de géométrie”,
so that it now carries the name

“Poincaré – Birkhoff Theorem”.

Variants and different proofs have been proposed by:

Brown–Neumann, Carter, W.-Y. Ding, Franks, Guillou, Jacobowitz, de
Kérékjartó, Le Calvez, Moser, Rebelo, Slaminka, ...

Applications to the existence of periodic solutions were provided by:

Bartsch, Bonheure, Boscaggin, Butler, Calamai, Corsato, Dalbono,
Del Pino, T. Ding, Dondè, Fabry, Feltrin, Garrione, Gidoni, Hartman,
Manásevich, Margheri, Mawhin, Omari, Sabatini, Sfecci, Smets,
Toader, Torres, Wang, Zanini, Zanolin, ...



The Poincaré – Birkhoff theorem

In 1913 – 1925, Birkhoff proved Poincaré’s “théorème de géométrie”,
so that it now carries the name

“Poincaré – Birkhoff Theorem”.

Variants and different proofs have been proposed by:

Brown–Neumann, Carter, W.-Y. Ding, Franks, Guillou, Jacobowitz, de
Kérékjartó, Le Calvez, Moser, Rebelo, Slaminka, ...

Applications to the existence of periodic solutions were provided by:

Bartsch, Bonheure, Boscaggin, Butler, Calamai, Corsato, Dalbono,
Del Pino, T. Ding, Dondè, Fabry, Feltrin, Garrione, Gidoni, Hartman,
Manásevich, Margheri, Mawhin, Omari, Sabatini, Sfecci, Smets,
Toader, Torres, Wang, Zanini, Zanolin, ...



The Poincaré – Birkhoff theorem

In 1913 – 1925, Birkhoff proved Poincaré’s “théorème de géométrie”,
so that it now carries the name

“Poincaré – Birkhoff Theorem”.

Variants and different proofs have been proposed by:

Brown–Neumann, Carter, W.-Y. Ding, Franks, Guillou, Jacobowitz, de
Kérékjartó, Le Calvez, Moser, Rebelo, Slaminka, ...

Applications to the existence of periodic solutions were provided by:

Bartsch, Bonheure, Boscaggin, Butler, Calamai, Corsato, Dalbono,
Del Pino, T. Ding, Dondè, Fabry, Feltrin, Garrione, Gidoni, Hartman,
Manásevich, Margheri, Mawhin, Omari, Sabatini, Sfecci, Smets,
Toader, Torres, Wang, Zanini, Zanolin, ...



Generalizing the Poincaré – Birkhoff theorem
(in the framework of Hamiltonian systems)

Consider the system

ẋ =
∂H
∂y

(t , x , y) , ẏ = −∂H
∂x

(t , x , y) ,

and assume that the Hamiltonian H(t , x , y) is T -periodic in t .

Assume H(t , x , y) to be also τ -periodic in x .

Let S = R× [a,b] be a planar strip.

Twist condition: the solutions (x(t), y(t)) with starting point
(x(0), y(0)) on ∂S are defined on [0,T ] and satisfy

(?) x(T )− x(0)

{
< 0 , if y(0) = a ,
> 0 , if y(0) = b .

Then, there are at least two distinct T -periodic solutions, with

(x(0), y(0)) ∈ S .
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Going to higher dimensions

“The outstanding question as to the possibility of a higher
dimensional extension of Poincaré’s last geometric theorem.”

[Birkhoff, Acta Mathematica 1925]

Attempts in some directions have been made by:

Amann, Arnold, Bertotti, Birkhoff, K.C. Chang, Conley, Felmer, Golé,
Hingston, Josellis, J.Q. Liu, Mawhin, Moser, Rabinowitz, Szulkin,
Weinstein, Willem, Winkelnkemper, Zehnder, ...

However,

“A genuine generalization of the Poincaré – Birkhoff theorem
to higher dimensions has never been given.”

[Moser and Zehnder, Notes on Dynamical Systems, 2005]
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The finite-dimensional case (F. – Ureña, 2017)

Consider the system

ẋ = ∇y H(t , x , y) , ẏ = −∇xH(t , x , y) ,

and assume that the Hamiltonian H(t , x , y) is T -periodic in t .
Here, x = (x1, . . . , xN) ∈ RN and y = (y1, . . . , yN) ∈ RN .

Assume H(t , x , y) to be also τk -periodic in xk , for each k = 1, . . . ,N .

Let SN = RN ×
∏N

k=1[ak ,bk ] be a 2N -dimensional strip.

Twist condition: the solutions (x(t), y(t)) with starting point
(x(0), y(0)) on ∂SN are defined on [0,T ] and satisfy

(?) xk (T )− xk (0)

{
< 0 , if yk (0) = ak ,

> 0 , if yk (0) = bk .

Then, there are at least N + 1 distinct T -periodic solutions, with

(x(0), y(0)) ∈ SN .
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Why N + 1 solutions?

The proof is variational, it uses an

infinite dimensional Lusternik – Schnirelmann theory.

The periodicity in x1, . . . , xN permits to define the action functional on
the product of a Hilbert space E and the N -torus TN :

ϕ : E × TN → R .

The result then follows from the fact that

cat(TN) = N + 1 .
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Some applications:
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Periodic solutions of weakly coupled superlinear systems,
Journal of Differential Equations (2016)
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Periodic perturbations of Hamiltonian systems,
Advances in Nonlinear Analysis (2016)
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Multiple periodic solutions of Hamiltonian systems confined in a box,
Discrete and Continuous Dynamical Systems (2017)
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An avoiding cones condition for the Poincaré–Birkhoff theorem,
Journal of Differential Equations (2017)
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Subharmonic solutions of Hamiltonian systems displaying some kind of
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ẋ = ∇y H(t , x , y) , ẏ = −∇xH(t , x , y) ,

and assume that the Hamiltonian H(t , x , y) is T -periodic in t .
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Assume that the sequences (τk )k and (bk − ak )k belong to `2 .

Moreover, the Hamiltonian ∇H : R× `2 × `2 → `2 × `2 satisfies:
- at most linear growth
- Lipschitz continuity on bounded sets.
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ẋ = ∇y H(t , x , y) , ẏ = −∇xH(t , x , y) ,

and assume that the Hamiltonian H(t , x , y) is T -periodic in t .
Here, x = (x1, . . . , xN , . . . ) ∈ `2 and y = (y1, . . . , yN , . . . ) ∈ `2 .

We define:

• the projection PN : `2 → RN as

PN(ξ1, ξ2, . . . ) = (ξ1, ξ2, . . . , ξN) ;

• the immersion IN : RN → `2 as

IN(η1, η2, . . . , ηN) = (η1, η2, . . . , ηN ,0,0, . . . ) ;

• the function HN : R× RN × RN → R as
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Twist condition: for every sufficiently large integer N , the solutions of

u′ = ∇v HN(t ,u, v) , v ′ = −∇uHN(t ,u, v) ,

with starting point (u(0), v(0)) ∈ ∂SN satisfy

(?) uk (T )− uk (0)

{
< 0 , if vk (0) = ak ,

> 0 , if vk (0) = bk .

Theorem
In the above setting, there exists at least one T -periodic solution, with

(x(0), y(0)) ∈ S∞ .
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An application

Consider the system

x ′′
k +

∂V
∂xk

(t , x1, . . . , xk , . . . ) = ek (t) , k = 1,2, . . . ,

where

• V : R× `2 → R is T -periodic in t and τk -periodic in xk ;
• ∇xV : R× `2 → `2 is Lipschitz continuous on bounded sets;
• e : R→ `2 is T -periodic with

∫ T
0 e(t)dt = 0.

Theorem
Assume that (τk )k belongs to `2 and that there exists (Mk )k in `2

such that ∣∣∣∣ ∂V∂xk
(t , x)

∣∣∣∣ ≤ Mk , for every (t , x) ∈ [0,T ]× `2.

Then, there is at least one T -periodic solution.
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