An infinite-dimensional version of the Poincaré - Birkhoff theorem

Alessandro Fonda

(Università degli Studi di Trieste)

An infinite-dimensional version of the Poincaré - Birkhoff theorem

Alessandro Fonda

(Università degli Studi di Trieste)
a collaboration with Alberto Boscaggin and Maurizio Garrione

An infinite-dimensional version of the Poincaré-Birkhoff theorem

Alessandro Fonda

(Università degli Studi di Trieste)
a collaboration with Alberto Boscaggin and Maurizio Garrione
to appear in the Annali della Scuola Normale di Pisa

Jules Henri Poincaré (1854-1912)

SUR UN THÉORÈME DE GÉOMÉTRIE.

Par M. H. Poincaré (Paris).

Adunanza del 10 marzo 1912.

SUR UN THÉORÈME DE GÉOMÉTRIE.

Par M. H. Poincaré (Paris).

Adunanza del 10 marzo 1912.

Rend. Circ. Matem. Palermo, t. XXXIII (I^{0} sem. 1912). - Stampato il 7 maggio 1912.

SUR UN THÉORÈME DE GÉOMÉTRIE.

Par M. H. Poincaré (Paris).

Adunanza del 10 marzo 1912.

Rend. Circ. Matem. Palermo, t. XXXIII (I^{0} sem. 1912). - Stampato il 7 maggio 1912.

Note: Poincaré died on July 17th, 1912

RENDICONTI

DEL

CIRCOLO MATEMATICO

DI PALERMO

Direttore: G. B. GUCCIA.

$$
\begin{aligned}
& \text { TOMO XXXIII } \\
& \text { (}{ }^{\circ} \text { SEMESTRE I } 912 \text {). }
\end{aligned}
$$

COMITATO DI REDAZIONE

pel trienniol 912-I9I3-I9I4.

> Residenti:
M. L. Albeggiani. - G. Bagnera. - M. Gebbia. - G. B. Guccia. - G. Scorza.

Non Residenti:
E. Bertini (Pisa). - L. Bianchi (Pisa). - É. Borel (Paris). - C. Carathéodory (Breslau). - G. Castelnuovo (Roma). - M. de Franchis (Catania). - Ú. Dini (Pisa).-F. Enriques (Bologna).-L. Fejér (Budapest). - A. R. Forsyth (Cambridge). - I. Fredholm (Stockholm). - J. Hadamard (Paris). - D. Hilbert (Göttingen). G. Humbert (Paris).-F. Klein (Göttingen).-E. Landau (Göttingen).-T. Levi-Civita (Padova). - A. Liapounoff (St.-Pétersbourg). - G. Loria (Genova). - A. E. H. Love (Oxford). - R. Marcolongo (Napoli). - F. Mertens (Wien). - G. Mittag-Leffler (Stockholm).-E. H. Moore (Chicago, Ill.).-M. Noether (Erlangen).-W. F. Osgood (Cambridge, Mass.).-E. Pascal (Napoli).-É. Picard (Paris).-S. Pincherle (Bologna). -H. Poincaré (Paris).-C. Segre (Torino).-F. Severi (Padova).-C. Somigliana (Torino).-P. Stäckel (Karlsruhe).-W. Stekloff (St.-Pétersbourg).-C. Stéphanos (Athènes). - Ch.-J. de la Vallée Poussin (Louvain). - G. Vivanti (Pavia). W. Wirtinger (Wien). - H. G. Zeuthen (Kóbenhavn).

> Direttore dei Rendiconti: G. B. GUCCIA.

COMITATO DI REDAZIONE

pel trienniol 912-I9I3-I9I4.

Residenti:
M. L. Albeggiani. - G. Bagnera. - M. Gebbia. - G. B. Guccia. - G. Scorza.

Non Residenti:
E. Bertini (Pisa). - L. Bianchi (Pisa). - É. Borel (Paris). C. Carathéodory (Breslau). - G. Castelnuovo (Roma). - M. de Franchis (Catania). - U. Dini (Pisa).-F. Enriques (Bologna).-L. Fejer (Budapest). -A. R. Forsyth (Cambridge). - I. Fredholm (Stockholm). - J. Hadamard (Paris). - D. Hilbert (Göttingen). G. Humbert (Paris).-F. Klein (Göttingen).-E. Landau (Göttingen).-T. Levi-Civita (Padova).-A. Liapounoff (St.-Pétersbourg). - G. Loria (Genova). - A. E. H. Love (Oxford). - R. Marcolongo (Napoli). - F. Mertens (Wien). - G. Mittag-Leffler (Stockholm).-E. H. Moore (Chicago, Ill.).-M. Noether (Erlangen).-W. F. Osgood (Cambridge, Mass.).-E. Pascal (Napoli).-E. Picard (Paris).-S. Pincherle (Bologna). -H. Poincare (Paris).-C. Segre (Torino).-F. Severi (Padova).-C. Somigliana (Torino).-P Stäckel (Karlsruhe).-W. Stekloff (St.-Pétersbourg).-C. Stéphanos (Athènes). - Ch.-J. de la Vallée Poussin (Louvain). - G. Vivanti (Pavia). W. Wirtinger (Wien). - H. G. Zeuthen (Kóbenhavn).

Direttore dei Rendiconti: G. B. GUCCIA.

Poincaré's
 "Théorème de géométrie"

Poincaré's
 "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

Poincaré's "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

$\mathcal{P}: \mathcal{A} \rightarrow \mathcal{A}$ is an area preserving homeomorphism

Poincaré's "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

$\mathcal{P}: \mathcal{A} \rightarrow \mathcal{A}$ is an area preserving homeomorphism and

Poincaré's "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

$\mathcal{P}: \mathcal{A} \rightarrow \mathcal{A}$ is an area preserving homeomorphism and
(\star) it rotates the two boundary circles in opposite directions

Poincaré's "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

$\mathcal{P}: \mathcal{A} \rightarrow \mathcal{A}$ is an area preserving homeomorphism and
(\star) it rotates the two boundary circles in opposite directions (this is called the "twist condition").

Poincaré's "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

$\mathcal{P}: \mathcal{A} \rightarrow \mathcal{A}$ is an area preserving homeomorphism and
(*) it rotates the two boundary circles in opposite directions (this is called the "twist condition").

Poincaré's "Théorème de géométrie"

\mathcal{A} is a closed planar annulus

$\mathcal{P}: \mathcal{A} \rightarrow \mathcal{A}$ is an area preserving homeomorphism and
(*) it rotates the two boundary circles in opposite directions (this is called the "twist condition").
Then, \mathcal{P} has at least two fixed points.

An equivalent formulation

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism, and writing

$$
\mathcal{P}(x, y)=(x+f(x, y), y+g(x, y)),
$$

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism, and writing

$$
\mathcal{P}(x, y)=(x+f(x, y), y+g(x, y))
$$

both $f(x, y)$ and $g(x, y)$ are continuous, 2π-periodic in x,

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism, and writing

$$
\mathcal{P}(x, y)=(x+f(x, y), y+g(x, y))
$$

both $f(x, y)$ and $g(x, y)$ are continuous, 2π-periodic in x,

$$
g(x, a)=0=g(x, b) \quad \text { (boundary invariance) }
$$

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism, and writing

$$
\mathcal{P}(x, y)=(x+f(x, y), y+g(x, y)),
$$

both $f(x, y)$ and $g(x, y)$ are continuous, 2π-periodic in x,

$$
g(x, a)=0=g(x, b) \quad \text { (boundary invariance) }
$$

and
($) \quad f(x, a)<0<f(x, b) \quad$ (twist condition).

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism, and writing

$$
\mathcal{P}(x, y)=(x+f(x, y), y+g(x, y)),
$$

both $f(x, y)$ and $g(x, y)$ are continuous, 2π-periodic in x,

$$
g(x, a)=0=g(x, b) \quad \text { (boundary invariance) }
$$

and
($) \quad f(x, a)<0<f(x, b) \quad$ (twist condition).

An equivalent formulation

$\mathcal{S}=\mathbb{R} \times[a, b]$ is a planar strip

$\mathcal{P}: \mathcal{S} \rightarrow \mathcal{S}$ is an area preserving homeomorphism, and writing

$$
\mathcal{P}(x, y)=(x+f(x, y), y+g(x, y)),
$$

both $f(x, y)$ and $g(x, y)$ are continuous, 2π-periodic in x,

$$
g(x, a)=0=g(x, b) \quad \text { (boundary invariance) }
$$

and
() $\quad f(x, a)<0<f(x, b) \quad$ (twist condition).
Then, \mathcal{P} has at least two geometrically distinct fixed points.

George David Birkhoff (1884-1944)

The Poincaré - Birkhoff theorem

In 1913-1925, Birkhoff proved Poincaré's "théorème de géométrie", so that it now carries the name

"Poincaré - Birkhoff Theorem".

The Poincaré - Birkhoff theorem

In 1913 - 1925, Birkhoff proved Poincaré's "théorème de géométrie", so that it now carries the name
"Poincaré - Birkhoff Theorem".

Variants and different proofs have been proposed by:
Brown-Neumann, Carter, W.-Y. Ding, Franks, Guillou, Jacobowitz, de Kérékjartó, Le Calvez, Moser, Rebelo, Slaminka, ...

The Poincaré - Birkhoff theorem

In 1913 - 1925, Birkhoff proved Poincaré's "théorème de géométrie", so that it now carries the name
"Poincaré - Birkhoff Theorem".

Variants and different proofs have been proposed by:
Brown-Neumann, Carter, W.-Y. Ding, Franks, Guillou, Jacobowitz, de Kérékjartó, Le Calvez, Moser, Rebelo, Slaminka, ...

Applications to the existence of periodic solutions were provided by:
Bartsch, Bonheure, Boscaggin, Butler, Calamai, Corsato, Dalbono, Del Pino, T. Ding, Dondè, Fabry, Feltrin, Garrione, Gidoni, Hartman, Manásevich, Margheri, Mawhin, Omari, Sabatini, Sfecci, Smets, Toader, Torres, Wang, Zanini, Zanolin, ...

Generalizing the Poincaré - Birkhoff theorem (in the framework of Hamiltonian systems)

Consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

Generalizing the Poincaré - Birkhoff theorem (in the framework of Hamiltonian systems)

Consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y)
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
Assume $H(t, x, y)$ to be also τ-periodic in x.

Generalizing the Poincaré - Birkhoff theorem (in the framework of Hamiltonian systems)

Consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y)
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
Assume $H(t, x, y)$ to be also τ-periodic in x.
Let $\mathcal{S}=\mathbb{R} \times[a, b]$ be a planar strip.

Generalizing the Poincaré - Birkhoff theorem (in the framework of Hamiltonian systems)

Consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y)
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.
Assume $H(t, x, y)$ to be also τ-periodic in x.
Let $\mathcal{S}=\mathbb{R} \times[a, b]$ be a planar strip.
Twist condition: the solutions $(x(t), y(t))$ with starting point $(x(0), y(0))$ on $\partial \mathcal{S}$ are defined on $[0, T]$ and satisfy

$$
x(T)-x(0) \begin{cases}<0, & \text { if } y(0)=a \\ >0, & \text { if } y(0)=b\end{cases}
$$

Generalizing the Poincaré - Birkhoff theorem (in the framework of Hamiltonian systems)

Consider the system

$$
\dot{x}=\frac{\partial H}{\partial y}(t, x, y), \quad \dot{y}=-\frac{\partial H}{\partial x}(t, x, y)
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t.

$$
\text { Assume } H(t, x, y) \text { to be also } \tau \text {-periodic in } x \text {. }
$$

Let $\mathcal{S}=\mathbb{R} \times[a, b]$ be a planar strip.
Twist condition: the solutions $(x(t), y(t))$ with starting point $(x(0), y(0))$ on $\partial \mathcal{S}$ are defined on $[0, T]$ and satisfy

$$
x(T)-x(0) \begin{cases}<0, & \text { if } y(0)=a \\ >0, & \text { if } y(0)=b\end{cases}
$$

Then, there are at least two distinct T-periodic solutions, with

$$
(x(0), y(0)) \in \mathcal{S} .
$$

Going to higher dimensions

Going to higher dimensions

"The outstanding question as to the possibility of a higher dimensional extension of Poincarés last geometric theorem."
[Birkhoff, Acta Mathematica 1925]

Going to higher dimensions

"The outstanding question as to the possibility of a higher dimensional extension of Poincaré's last geometric theorem."
[Birkhoff, Acta Mathematica 1925]

Attempts in some directions have been made by:
Amann, Arnold, Bertotti, Birkhoff, K.C. Chang, Conley, Felmer, Golé, Hingston, Josellis, J.Q. Liu, Mawhin, Moser, Rabinowitz, Szulkin, Weinstein, Willem, Winkelnkemper, Zehnder, ...

Going to higher dimensions

"The outstanding question as to the possibility of a higher dimensional extension of Poincarés last geometric theorem."
[Birkhoff, Acta Mathematica 1925]

Attempts in some directions have been made by:
Amann, Arnold, Bertotti, Birkhoff, K.C. Chang, Conley, Felmer, Golé, Hingston, Josellis, J.Q. Liu, Mawhin, Moser, Rabinowitz, Szulkin, Weinstein, Willem, Winkelnkemper, Zehnder, ...

However,
"A genuine generalization of the Poincaré - Birkhoff theorem to higher dimensions has never been given."
[Moser and Zehnder, Notes on Dynamical Systems, 2005]

The finite-dimensional case (F. - Ureña, 2017)

Consider the system

$$
\dot{x}=\nabla_{y} H(t, x, y), \quad \dot{y}=-\nabla_{x} H(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t. Here, $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$ and $y=\left(y_{1}, \ldots, y_{N}\right) \in \mathbb{R}^{N}$.

The finite-dimensional case (F. - Ureña, 2017)

Consider the system

$$
\dot{x}=\nabla_{y} H(t, x, y), \quad \dot{y}=-\nabla_{x} H(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t. Here, $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$ and $y=\left(y_{1}, \ldots, y_{N}\right) \in \mathbb{R}^{N}$.

Assume $H(t, x, y)$ to be also τ_{k}-periodic in x_{k}, for each $k=1, \ldots, N$.

The finite-dimensional case (F. - Ureña, 2017)

Consider the system

$$
\dot{x}=\nabla_{y} H(t, x, y), \quad \dot{y}=-\nabla_{x} H(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t. Here, $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$ and $y=\left(y_{1}, \ldots, y_{N}\right) \in \mathbb{R}^{N}$.

Assume $H(t, x, y)$ to be also τ_{k}-periodic in x_{k}, for each $k=1, \ldots, N$.
Let $\mathcal{S}_{N}=\mathbb{R}^{N} \times \prod_{k=1}^{N}\left[a_{k}, b_{k}\right]$ be a $2 N$-dimensional strip.

The finite-dimensional case (F. - Ureña, 2017)

Consider the system

$$
\dot{x}=\nabla_{y} H(t, x, y), \quad \dot{y}=-\nabla_{x} H(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t. Here, $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$ and $y=\left(y_{1}, \ldots, y_{N}\right) \in \mathbb{R}^{N}$.

Assume $H(t, x, y)$ to be also τ_{k}-periodic in x_{k}, for each $k=1, \ldots, N$.
Let $\mathcal{S}_{N}=\mathbb{R}^{N} \times \prod_{k=1}^{N}\left[a_{k}, b_{k}\right]$ be a $2 N$-dimensional strip.
Twist condition: the solutions $(x(t), y(t))$ with starting point $(x(0), y(0))$ on $\partial \mathcal{S}_{N}$ are defined on $[0, T]$ and satisfy

$$
x_{k}(T)-x_{k}(0) \begin{cases}<0, & \text { if } y_{k}(0)=a_{k} \\ >0, & \text { if } y_{k}(0)=b_{k}\end{cases}
$$

The finite-dimensional case (F. - Ureña, 2017)

Consider the system

$$
\dot{x}=\nabla_{y} H(t, x, y), \quad \dot{y}=-\nabla_{x} H(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t. Here, $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$ and $y=\left(y_{1}, \ldots, y_{N}\right) \in \mathbb{R}^{N}$.

Assume $H(t, x, y)$ to be also τ_{k}-periodic in x_{k}, for each $k=1, \ldots, N$.
Let $\mathcal{S}_{N}=\mathbb{R}^{N} \times \prod_{k=1}^{N}\left[a_{k}, b_{k}\right]$ be a $2 N$-dimensional strip.
Twist condition: the solutions $(x(t), y(t))$ with starting point $(x(0), y(0))$ on $\partial \mathcal{S}_{N}$ are defined on $[0, T]$ and satisfy

$$
x_{k}(T)-x_{k}(0) \begin{cases}<0, & \text { if } y_{k}(0)=a_{k} \\ >0, & \text { if } y_{k}(0)=b_{k}\end{cases}
$$

Then, there are at least $N+1$ distinct T-periodic solutions, with

$$
(x(0), y(0)) \in \mathcal{S}_{N} .
$$

Why $N+1$ solutions?

Why $N+1$ solutions?

The proof is variational, it uses an
infinite dimensional Lusternik - Schnirelmann theory.

Why $N+1$ solutions?

The proof is variational, it uses an

> infinite dimensional Lusternik - Schnirelmann theory.

The periodicity in x_{1}, \ldots, x_{N} permits to define the action functional on the product of a Hilbert space E and the N-torus \mathbb{T}^{N} :

$$
\varphi: E \times \mathbb{T}^{N} \rightarrow \mathbb{R}
$$

Why $N+1$ solutions?

The proof is variational, it uses an
infinite dimensional Lusternik - Schnirelmann theory.
The periodicity in x_{1}, \ldots, x_{N} permits to define the action functional on the product of a Hilbert space E and the N-torus \mathbb{T}^{N} :

$$
\varphi: E \times \mathbb{T}^{N} \rightarrow \mathbb{R}
$$

The result then follows from the fact that

$$
\operatorname{cat}\left(\mathbb{T}^{N}\right)=N+1
$$

Some applications:

A. Fonda and A. Sfecci,

Periodic solutions of weakly coupled superlinear systems,
Journal of Differential Equations (2016)
A. Fonda, M. Garrione and P. Gidoni,

Periodic perturbations of Hamiltonian systems, Advances in Nonlinear Analysis (2016)
A. Fonda and A. Sfecci,

Multiple periodic solutions of Hamiltonian systems confined in a box,
Discrete and Continuous Dynamical Systems (2017)
A. Fonda and P. Gidoni,

An avoiding cones condition for the Poincaré-Birkhoff theorem, Journal of Differential Equations (2017)
A. Fonda and R. Toader,

Subharmonic solutions of Hamiltonian systems displaying some kind of sublinear growth, Advances in Nonlinear Analysis (2017)

The infinite-dimensional case

Consider the system

$$
\dot{x}=\nabla_{y} H(t, x, y), \quad \dot{y}=-\nabla_{x} H(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t. Here, $x=\left(x_{1}, \ldots, x_{N}, \ldots\right) \in \ell^{2}$ and $y=\left(y_{1}, \ldots, y_{N}, \ldots\right) \in \ell^{2}$.

The infinite-dimensional case

Consider the system

$$
\dot{x}=\nabla_{y} H(t, x, y), \quad \dot{y}=-\nabla_{x} H(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t. Here, $x=\left(x_{1}, \ldots, x_{N}, \ldots\right) \in \ell^{2}$ and $y=\left(y_{1}, \ldots, y_{N}, \ldots\right) \in \ell^{2}$.

Assume $H(t, x, y)$ to be also τ_{k}-periodic in x_{k}, for each $k=1,2, \ldots$

The infinite-dimensional case

Consider the system

$$
\dot{x}=\nabla_{y} H(t, x, y), \quad \dot{y}=-\nabla_{x} H(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t. Here, $x=\left(x_{1}, \ldots, x_{N}, \ldots\right) \in \ell^{2}$ and $y=\left(y_{1}, \ldots, y_{N}, \ldots\right) \in \ell^{2}$.

Assume $H(t, x, y)$ to be also τ_{k}-periodic in x_{k}, for each $k=1,2, \ldots$
Let $\mathcal{S}_{\infty}=\ell^{2} \times \prod_{k=1}^{\infty}\left[a_{k}, b_{k}\right]$ be an infinite-dimensional strip.

The infinite-dimensional case

Consider the system

$$
\dot{x}=\nabla_{y} H(t, x, y), \quad \dot{y}=-\nabla_{x} H(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t. Here, $x=\left(x_{1}, \ldots, x_{N}, \ldots\right) \in \ell^{2}$ and $y=\left(y_{1}, \ldots, y_{N}, \ldots\right) \in \ell^{2}$.

Assume $H(t, x, y)$ to be also τ_{k}-periodic in x_{k}, for each $k=1,2, \ldots$
Let $\mathcal{S}_{\infty}=\ell^{2} \times \prod_{k=1}^{\infty}\left[a_{k}, b_{k}\right]$ be an infinite-dimensional strip.
Assume that the sequences $\left(\tau_{k}\right)_{k}$ and $\left(b_{k}-a_{k}\right)_{k}$ belong to ℓ^{2}.

The infinite-dimensional case

Consider the system

$$
\dot{x}=\nabla_{y} H(t, x, y), \quad \dot{y}=-\nabla_{x} H(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t. Here, $x=\left(x_{1}, \ldots, x_{N}, \ldots\right) \in \ell^{2}$ and $y=\left(y_{1}, \ldots, y_{N}, \ldots\right) \in \ell^{2}$.

Assume $H(t, x, y)$ to be also τ_{k}-periodic in x_{k}, for each $k=1,2, \ldots$
Let $\mathcal{S}_{\infty}=\ell^{2} \times \prod_{k=1}^{\infty}\left[a_{k}, b_{k}\right]$ be an infinite-dimensional strip.
Assume that the sequences $\left(\tau_{k}\right)_{k}$ and $\left(b_{k}-a_{k}\right)_{k}$ belong to ℓ^{2}.
Moreover, the Hamiltonian $\nabla H: \mathbb{R} \times \ell^{2} \times \ell^{2} \rightarrow \ell^{2} \times \ell^{2}$ satisfies:

- at most linear growth
- Lipschitz continuity on bounded sets.

The infinite-dimensional case

Consider the system

$$
\dot{x}=\nabla_{y} H(t, x, y), \quad \dot{y}=-\nabla_{x} H(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t. Here, $x=\left(x_{1}, \ldots, x_{N}, \ldots\right) \in \ell^{2}$ and $y=\left(y_{1}, \ldots, y_{N}, \ldots\right) \in \ell^{2}$.

The infinite-dimensional case

Consider the system

$$
\dot{x}=\nabla_{y} H(t, x, y), \quad \dot{y}=-\nabla_{x} H(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t. Here, $x=\left(x_{1}, \ldots, x_{N}, \ldots\right) \in \ell^{2}$ and $y=\left(y_{1}, \ldots, y_{N}, \ldots\right) \in \ell^{2}$.

We define:

- the projection $P_{N}: \ell^{2} \rightarrow \mathbb{R}^{N}$ as

$$
P_{N}\left(\xi_{1}, \xi_{2}, \ldots\right)=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{N}\right)
$$

The infinite-dimensional case

Consider the system

$$
\dot{x}=\nabla_{y} H(t, x, y), \quad \dot{y}=-\nabla_{x} H(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t. Here, $x=\left(x_{1}, \ldots, x_{N}, \ldots\right) \in \ell^{2}$ and $y=\left(y_{1}, \ldots, y_{N}, \ldots\right) \in \ell^{2}$.

We define:

- the projection $P_{N}: \ell^{2} \rightarrow \mathbb{R}^{N}$ as

$$
P_{N}\left(\xi_{1}, \xi_{2}, \ldots\right)=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{N}\right) ;
$$

- the immersion $I_{N}: \mathbb{R}^{N} \rightarrow \ell^{2}$ as

$$
I_{N}\left(\eta_{1}, \eta_{2}, \ldots, \eta_{N}\right)=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{N}, 0,0, \ldots\right) ;
$$

The infinite-dimensional case

Consider the system

$$
\dot{x}=\nabla_{y} H(t, x, y), \quad \dot{y}=-\nabla_{x} H(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t. Here, $x=\left(x_{1}, \ldots, x_{N}, \ldots\right) \in \ell^{2}$ and $y=\left(y_{1}, \ldots, y_{N}, \ldots\right) \in \ell^{2}$.

We define:

- the projection $P_{N}: \ell^{2} \rightarrow \mathbb{R}^{N}$ as

$$
P_{N}\left(\xi_{1}, \xi_{2}, \ldots\right)=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{N}\right) ;
$$

- the immersion $I_{N}: \mathbb{R}^{N} \rightarrow \ell^{2}$ as

$$
I_{N}\left(\eta_{1}, \eta_{2}, \ldots, \eta_{N}\right)=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{N}, 0,0, \ldots\right) ;
$$

- the function $H_{N}: \mathbb{R} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ as

$$
H_{N}(t, u, v)=H\left(t, I_{N} u, I_{N} v\right) .
$$

The infinite-dimensional case

Consider the system

$$
\dot{x}=\nabla_{y} H(t, x, y), \quad \dot{y}=-\nabla_{x} H(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t. Here, $x=\left(x_{1}, \ldots, x_{N}, \ldots\right) \in \ell^{2}$ and $y=\left(y_{1}, \ldots, y_{N}, \ldots\right) \in \ell^{2}$.

The infinite-dimensional case

Consider the system

$$
\dot{x}=\nabla_{y} H(t, x, y), \quad \dot{y}=-\nabla_{x} H(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t. Here, $x=\left(x_{1}, \ldots, x_{N}, \ldots\right) \in \ell^{2}$ and $y=\left(y_{1}, \ldots, y_{N}, \ldots\right) \in \ell^{2}$.

Twist condition: for every sufficiently large integer N, the solutions of

$$
u^{\prime}=\nabla_{v} H_{N}(t, u, v), \quad v^{\prime}=-\nabla_{u} H_{N}(t, u, v),
$$

with starting point $(u(0), v(0)) \in \partial \mathcal{S}_{N}$ satisfy

$$
u_{k}(T)-u_{k}(0) \begin{cases}<0, & \text { if } v_{k}(0)=a_{k}, \\ >0, & \text { if } v_{k}(0)=b_{k}\end{cases}
$$

The infinite-dimensional case

Consider the system

$$
\dot{x}=\nabla_{y} H(t, x, y), \quad \dot{y}=-\nabla_{x} H(t, x, y),
$$

and assume that the Hamiltonian $H(t, x, y)$ is T-periodic in t. Here, $x=\left(x_{1}, \ldots, x_{N}, \ldots\right) \in \ell^{2}$ and $y=\left(y_{1}, \ldots, y_{N}, \ldots\right) \in \ell^{2}$.

Twist condition: for every sufficiently large integer N, the solutions of

$$
u^{\prime}=\nabla_{v} H_{N}(t, u, v), \quad v^{\prime}=-\nabla_{u} H_{N}(t, u, v),
$$

with starting point $(u(0), v(0)) \in \partial \mathcal{S}_{N}$ satisfy
$(*) \quad u_{k}(T)-u_{k}(0) \begin{cases}<0, & \text { if } v_{k}(0)=a_{k}, \\ >0, & \text { if } v_{k}(0)=b_{k} .\end{cases}$

Theorem

In the above setting, there exists at least one T-periodic solution, with

$$
(x(0), y(0)) \in \mathcal{S}_{\infty}
$$

An application

Consider the system

$$
x_{k}^{\prime \prime}+\frac{\partial \mathcal{V}}{\partial x_{k}}\left(t, x_{1}, \ldots, x_{k}, \ldots\right)=e_{k}(t), \quad k=1,2, \ldots,
$$

An application

Consider the system

$$
x_{k}^{\prime \prime}+\frac{\partial \mathcal{V}}{\partial x_{k}}\left(t, x_{1}, \ldots, x_{k}, \ldots\right)=e_{k}(t), \quad k=1,2, \ldots,
$$

where

- $\mathcal{V}: \mathbb{R} \times \ell^{2} \rightarrow \mathbb{R}$ is T-periodic in t and τ_{k}-periodic in x_{k};

An application

Consider the system

$$
x_{k}^{\prime \prime}+\frac{\partial \mathcal{V}}{\partial x_{k}}\left(t, x_{1}, \ldots, x_{k}, \ldots\right)=e_{k}(t), \quad k=1,2, \ldots,
$$

where

- $\mathcal{V}: \mathbb{R} \times \ell^{2} \rightarrow \mathbb{R}$ is T-periodic in t and τ_{k}-periodic in x_{k};
- $\nabla_{x} \mathcal{V}: \mathbb{R} \times \ell^{2} \rightarrow \ell^{2}$ is Lipschitz continuous on bounded sets;

An application

Consider the system

$$
x_{k}^{\prime \prime}+\frac{\partial \mathcal{V}}{\partial x_{k}}\left(t, x_{1}, \ldots, x_{k}, \ldots\right)=e_{k}(t), \quad k=1,2, \ldots,
$$

where

- $\mathcal{V}: \mathbb{R} \times \ell^{2} \rightarrow \mathbb{R}$ is T-periodic in t and τ_{k}-periodic in x_{k};
- $\nabla_{x} \mathcal{V}: \mathbb{R} \times \ell^{2} \rightarrow \ell^{2}$ is Lipschitz continuous on bounded sets;
- $e: \mathbb{R} \rightarrow \ell^{2}$ is T-periodic with $\int_{0}^{T} e(t) d t=0$.

An application

Consider the system

$$
x_{k}^{\prime \prime}+\frac{\partial \mathcal{V}}{\partial x_{k}}\left(t, x_{1}, \ldots, x_{k}, \ldots\right)=e_{k}(t), \quad k=1,2, \ldots,
$$

where

- $\mathcal{V}: \mathbb{R} \times \ell^{2} \rightarrow \mathbb{R}$ is T-periodic in t and τ_{k}-periodic in x_{k};
- $\nabla_{X} \mathcal{V}: \mathbb{R} \times \ell^{2} \rightarrow \ell^{2}$ is Lipschitz continuous on bounded sets;
- $e: \mathbb{R} \rightarrow \ell^{2}$ is T-periodic with $\int_{0}^{T} e(t) d t=0$.

Theorem

Assume that $\left(\tau_{k}\right)_{k}$ belongs to ℓ^{2} and that there exists $\left(M_{k}\right)_{k}$ in ℓ^{2} such that

$$
\left|\frac{\partial \mathcal{V}}{\partial x_{k}}(t, x)\right| \leq M_{k}, \quad \text { for every }(t, x) \in[0, T] \times \ell^{2}
$$

Then, there is at least one T-periodic solution.

Grazie per l'attenzione!

