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The problem



−(p(t)u′(t))′ + q(t)u(t) = λf (t, u(t)) t ∈ [0, T ], t 6= tj

u(0) = u(T) = 0

∆u′(tj) = u′(t+j )− u′(t−j ) = µIj(u(tj)), j = 1, 2, ..., n

(Sλ,µ)

p ∈ C1([0, T ], ]0,+∞[), q ∈ L∞([0, T ]) with ess inft∈[0,T ] q(t) ≥ 0,

λ ∈ ]0,+∞[, µ ∈ ]0,+∞[, f : [0, T ]×R→ R,

0 = t0 < t1 < t2 < ... < tn < tn+1 = T ,

∆u′(tj) = u′(t+j )− u′(t−j ) = limt→t+j
u′(t)− limt→t−j

u′(t), Ij : R→ R

are continuous for every j = 1, 2, ..., n.
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In several recent papers impulsive boundary value problems are considered

via variational methods

• Bonanno G., Di Bella B. and Henderson J., Existence of solutions to

second-order boundary-value problems with small pertubations of

impulses, Electron. J. Differential Equations, 126, (2013), 1–14

• Bonanno G., Di Bella B. and Henderson J., Infinitely many solutions

for a boundary value problem with impulsive effects, Bound. Value

Probl, 278, (2013).

• Bonanno G., Rodriguez-Lopez R. and Tersian S., Existence of

solutions to boundary value problem for impulsive fractional

differential equations, Fract. Calc. Appl. Anal. 17/3 (2014), 717–744.
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• Cabada A. and Tersian S., Existence and multiplicity of solutions to

boundary value problems for fourth-order impulsive differential

equations, Bound. Value Probl, 2014:105, (2014).

• Chen H. and He Z., Variational approach to some damped Dirichlet

problems with impulses, Math. Methods Appl. Sci 36/18 (2013),

2564–2575.

• Drábek P. and Langerová M., Quasilinear boundary value problem
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Chen-He obtained, by using the Mountain Pass theorem, for the following

damped Dirichlet problem with impulses

−u′′(t) + q(t)u(t) = f (t, u(t)) t ∈ [0, T ], t 6= tj

u(0) = u(T) = 0

∆u′(tj) = u′(t+j )− u′(t−j ) = Ij(u(tj)), j = 1, 2, ..., n

(1)

the existence of at least one solution.
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For a Dirichlet boundary value problem involving the one dimensional

p−Laplace operator of type

−(|u′(x)|p−2u′(x))′ − λ|u(x)|p−2u(x) = f (x) x ∈ [0, 1], t 6= tj

u(0) = u(1) = 0

∆pu′(tj) = |u′(t+j )|p−2u′(t+j )− |u′(t−j )|p−2u′(t−j ) = Ij(u(tj)), j = 1, 2, ..., n
(2)

Drábek-Langerová proved the existence of at least one solution .The proof is

variational and relies on the linking theorem. .
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Nieto and O’Regan obtained, by using the Mountain Pass theorem, for the

following nonlinear Dirichlet problem with impulses

−u′′(t) + λu(t) = f (t, u(t)) a.e. t ∈ [0, T ]

u(0) = u(T) = 0

∆u′(tj) = u′(t+j )− u′(t−j ) = Ij(u(tj)), j = 1, 2, ..., n

(3)

the existence of at least one solution.
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The solution

A function u is called a solution of (Sλ,µ) if

• u ∈
{

w ∈ C([0, T ] : w|[tj ,tj+1] ∈ H2([tj, tj+1]), ∀j = 0, ..., n
}

• satisfies the equation in (Sλ,µ) a.e. on [0, T ] \ {t1, ...tn},

• the limits u′(t+j ), u′(t−j ) for all j = 1, ..., n exist

• satisfy the impulsive conditions ∆u′(tj) = µIj(u(tj))

• the boundary conditions u(0) = u(T) = 0 are verified.

If f is continuous then the classical solution u ∈ C2([tj, tj+1]), j = 0, 1, ...n

and satisfies the equation in (Sλ,µ) for all t ∈ [0, T ] \ {t1, ...tn}.
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In the Sobolev space H1
0(0, T), consider the inner product

(u, v) =
∫ T

0
p(t)u′(t)v′(t) dt +

∫ T

0
q(t)u(t)v(t) dt ,

which induces the norm

‖u‖ =
(∫ T

0
p(t)(u′(t))2 dt +

∫ T

0
q(t)(u(t))2 dt

)1/2

where p ∈ C1([0, T ], ]0,+∞[), q ∈ L∞([0, T ]) with ess inft∈[0,T ] q(t) ≥ 0.
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A function u ∈ H1
0(0, T) is said to be a weak solution of (Sλ,µ) if u satisfies

∫ T

0
p(t)u′(t)v′(t) dt +

∫ T

0
q(t)u(t)v(t)dt

−λ
∫ T

0
f (t, u(t))v(t) dt + µ

n

∑
j=1

p(tj)Ij(u(tj))v(tj) = 0,

(4)

for any v ∈ H1
0(0, T).
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Lemma

If u is a is weak solution of (Sλ,µ), then u ∈ H1
0(0, T) is a classical solution

of (Sλ,µ).
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The nonlinearity

f : [0, 1]×R→ R

(a) t→ f (t, x) is measurable ∀ x ∈ R;

(b) x→ f (t, x) is continuous a.e. t ∈ [0, T ];

(c) ∀ ρ > 0 ∃ lρ ∈ L1([0, T ]) t.c.

sup
|x|≤ρ

|f (t, x)| ≤ lρ(t) a.e. t ∈ [0, T ] .
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Lemma

Assume that f (t, x) ≥ 0 for all (t, x) ∈ [0, T ]×R and Ij(x) ≤ 0 for all

x ∈ R, j = 1, ...n. If u is a classical solution of (Sλ,µ), then u(t) ≥ 0 for all

t ∈ [0, T ].
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The abstract tools

Our results have been obtained by applying two abstract critical point

theorems obtained in

Bonanno G.,

Relations between the mountain pass theorem and local minima,

Adv. Nonlinear Anal., Volume 1, (2012) 205–220

Bonanno G. and D’Aguì G.,

Two non-zero solutions for elliptic Dirichlet problems,

Zeitschrift für Analysis und ihre Anwendungen, Volume 35, (2016)

449–464
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Eλ = Φ− λΨ

• Assume that there are r ∈ R and ũ ∈ X, with 0 < Φ(ũ) < r, such that

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
<

Ψ(ũ)
Φ(ũ)

(2.1)

• λ ∈
]Φ(ũ)

Ψ(ũ)
,

r
sup

u∈Φ−1(]−∞,r])
Ψ(u)

[
, the functional Eλ = Φ− λΨ

satisfies (PS)-condition and it is unbounded from below.

• Then, for each λ ∈
]Φ(ũ)

Ψ(ũ)
,

r
sup

u∈Φ−1(]−∞,r])
Ψ(u)

[
, the functional Eλ

admits at least two non-zero critical points uλ,1, uλ,2 such that

Eλ(uλ,1) < 0 < Eλ(uλ,2).
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Ψ(ũ)
Φ(ũ)
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Definition (1)

Let (X, ‖ · ‖), we say that the functional Eλ satisfies the Palais-Smale

condition, in short (PS)-condition, if any sequence {uk} ⊆ X such that

• {E(uk)} is bounded;

• lim
k→+∞

‖E′λ(uk)‖X∗ = 0;

has a convergent subsequence.
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Definition (2)

Let (X, ‖ · ‖) be a real Banach space and Φ, Ψ : X → R be two

continuously Gâteaux differentiable functionals; put E = Φ−Ψ and fix

r ∈ R. We say that the functional E satisfies the Palais-Smale condition cut

off upper r, in short (PS)[r]-condition, if any sequence {uk} ⊆ X such that

• {E(uk)} is bounded;

• lim
k→+∞

‖E′(uk)‖X∗ = 0;

• Φ(uk) < r for each k ∈N;

has a convergent subsequence.

If r = +∞ it coincides with the classical (PS)-condition.
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Definition (3)

We say that u ∈ X is a critical point of Eλ when E′λ(u) = 0X∗ , that is,

E′λ(u)(v) = 0 ∀v ∈ X.
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The variational setting

• F(t, ξ) =
∫ ξ

0
f (t, x)dx ∀(t, ξ) ∈ [0, 1]×R

• X := W1,2
0 ([0, T ])

• Eλ(u) := Φ(u)− λΨ(u)

• Φ(u) = 1
2 ||u||2, Ψ(u) =

∫ T
0 F(t, u(t)) dt− µ

λ ∑n
j=1 p(tj)

∫ u(tj)
0 Ij(x) dx

• Φ′(u)(v) =
∫ T

0 p(t)u′(t)v′(t) dt +
∫ T

0 q(t)u(t)v(t) dt

• Ψ′(u)(v) =
∫ T

0 f (t, u(t))v(t) dt− µ
λ ∑n

j=1 p(tj)Ij(u(tj))v(tj) .

As consequence, the critical points of Eλ are the weak solutions of the

problem (Sλ,µ).
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The first result guarantees the existence of one non trivial solution to

problem (Sλ,µ).

Assumptions

1 (h1) there exist constants α, β > 0 and σ ∈ [0, 1[ such that

|Ij(x)| ≤ α + β|x|σ for any x ∈ R, j = 1, 2, ..., n .

2 p̃ := ∑n
j=1 p(tj),

3 k := 6p∗

12‖p‖∞+T2‖q‖∞
,

4 Γc :=
α

c
+

(
β

σ + 1

)
cσ−1, where α, β, σ are given by (h1) and c is a

positive constant.
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Theorem (5)

Suppose that (h1) is satisfied. Furthermore, assume that there exist two

positive constants c, d, with d < c, such that

(a1) F(t, ξ) ≥ 0 for all (t, ξ) ∈
(
[0, T

4 ] ∪ [ 3T
4 , T ]

)
× [0, d];

(a2)

∫ T

0
max
|ξ|≤c

F(t, ξ) dt

c2 < k

∫ 3T/4

T/4
F(t, d) dt

d2 .
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Then, for every

λ ∈ Λ :=

2p∗

kT
d2∫ 3T/4

T/4
F(t, d) dt

,
2p∗

T
c2∫ T

0
max
|ξ|≤c

F(t, ξ) dt

 ,

there exists δ :=

1
Tp̃

min


2p∗c2 − λT

∫ T

0
max|ξ|≤c F(t, ξ) dt

c2Γc
,

kλT
∫ 3T/4

T/4
F(t, d) dt− 2p∗d2

d2Γ(d/
√

k)


such that, for each µ ∈]0, δ[ the problem (Sλ,µ) has at least one non-trivial

classical solution.
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Chen-He, in order to obtain one solution, assume a conditon on F at infinity:

there exists a constant a such that

lim
|u|→+∞

max[0,T ] F(t, u)

|u|2 ≤ a
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Let g : R→]0,+∞[ be a continuous function, put

G(ξ) =
∫ ξ

0
g(x) dx

for all ξ ∈ R, and k∗ :=
6(e−T/4 − e−3T/4)

(12 + T2)(eT − 1)
.

Corollary (1)

Suppose that (h1) is satisfied. Furthermore, assume that there exist two

positive constants c, d, with d < c, such that

(b)
G(c)

c2 < k∗
G(d)

d2 .

Then, for every λ ∈
]

2
k∗T(eT − 1)

d2

G(d)
,

2
T(eT − 1)

c2

G(c)

[
, there exists

δ =

1
T

min

2e−T c2 − λT(1− e−T )G(c)
c2Γc

,
k∗λT(e−T/4 − e−3T/4)G(d)− 2e−T d2

d2Γ(d/
√

k)


such that,
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for each µ ∈]0, δ[ the problem

−u′′(t) + u′(t) + u(t) = λg(u(t)) t ∈ [0, T ], t 6= tj

u(0) = u(T) = 0

∆u′(tj) = u′(t+j )− u′(t−j ) = µIj(u(tj)), j = 1, 2, ..., n

(5)

has at least one non-trivial classical solution.
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To establish the existence of two solutions to problem (Sλ,µ) we assume that

the nonlinear term f satisfies the Ambrosetti-Rabinowitz condition:

assume that there exist ν > 2 and R > 0 such that

0 < νF(t, ξ) ≤ ξf (t, ξ) ∀ t ∈ [0, T ], |ξ| ≥ R . (AR)
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Theorem (6)

Suppose that (h1), (a1), (a2) and (AR) are satisfied.

Then, for every λ ∈ Λ, there exists δ, where Λ and δ are introduced in the

statement of Theorem 5, such that, for each µ ∈]0, δ[, the problem (Sλ,µ) has

at least two distinct non-trivial solutions.
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Subquadratic behaviour at zero

Theorem (7)

Let f : R→ R be a continuous and non-negative function. Assume (AR)

and lim
ξ→0+

f (ξ)
ξ

= +∞. Put λ∗ =
2

T2 supc>0
c2

F(c)
.

Then, for all Ij : R→ R continuous functions, j = 1, 2, ..., n, satisfying

(h1), the following problem
−u′′(t) + u(t) = λf (u(t)) t ∈ [0, T ], t 6= tj

u(0) = u(T) = 0

∆u′(tj) = u′(t+j )− u′(t−j ) = µIj(u(tj)), j = 1, 2, ..., n

(Sλ,µ)

admits at least two non-trivial solutions for all λ ∈ ]0, λ∗[,

µ ∈
]
0, 1

TΓc

(
2− λT2 F(c)

c2

)[
.
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Example 4.
Consider the following problem:

−u′′(t) + u(t) = λf (u(t)) a.e. [0, 1]

u(0) = u(1) = 0

∆u′(t1) = u′(t+1 )− u′(t−1 ) = µI(u(t1))

(6)

where |I(x)| ≤ 3
2

√
|x| and

f (x) =

 12x− x2 if 0 < x < 12

0 otherwise.

Then, F(x) =


0 if x < 0

6x2 − x3

3 if 0 ≤ x ≤ 12

288 if x > 12.
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Let c = 20 and d = 6. It is easily verified that all conditions in Theorem 5

are satisfied. Then, problem (6) has at least one non-trivial solution for each

λ ∈
]

13
6

,
25
9

[
=]2.1667, 2.7778[ and for each µ ∈]0, δ[ where

δ = min
{√

5
(

4− 36
25

λ

)
, 2 4
√

78
(

6λ

13
− 1
)}

= h(λ).

For instance, for λ = 2.4 we have δ = 0.5724. If λ = 2.6 then δ =0.6400.

The graph of the function h is presented on Figure 1. Note that the equation
√

5
(
4− 36

25 λ
)
= 2 4
√

78
(

6λ
13 − 1

)
has unique solution λ0 = 2.4966 and the

maximum value of h(λ) in the interval ]2.1667, 2.7778[ is

δ0 = h(λ0) = 0.9053.
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Example 5

Owing to Theorem 7, the following superlinear problem:

−u′′(t) + u(t) = 3
√
|u(t)|+ |u(t)|3 a.e. [0, 1]

u(0) = u(1) = 0

∆u′(t1) = u′(t+1 )− u′(t−1 ) = log(|u(t1)|+ 1)

(7)

admits two non-zero solutions. Indeed, in this case we can choose

λ = µ = 1.
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