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∆u + K(|x|) u
n+2
n−2 = 0 (E)

The existence of positive solutions with fast decay

is equivalent to

the existence of a metric in Rn

with scalar curvature K

conformally equivalent to the Euclidean metric



The problem

A perturbative result

Our main results

References

Non-existence results

If K has a maximum

If K has a minimum

Methods

Radial symmetry

G. BIANCHI, Comm. Partial Diff. Eqns. (1996-1997)

• K decreases in (0, 1) and increases in (1,∞)

⇓

each solution of (E) is radially symmetric

Hence, we equivalently study the radial singular equation:

(u′(r) rn−1)′ + K (r) rn−1 u
n+2
n−2 = 0 , r ∈ (0,∞), (P)

obtained by setting r = |x |
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We concentrate on problem (P):

(u′(r) rn−1)′ + K (r) rn−1 u
n+2
n−2 = 0 , r ∈ (0,∞),

We are interested in
REGULAR SOLUTIONS

u(0) = d > 0, u′(0) = 0

GROUND STATE SOLUTIONS

u is a regular solution defined in [0,+∞): lim
r→∞

u(r) = 0

FAST DECAY SOLUTIONS

lim
r→+∞

u(r)rn−2 = L > 0
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Problem: (u′(r) rn−1)′ + K(r) rn−1 u
n+2
n−2 = 0, K ∈ C 1

(K0) K(r) = [1 + εk(r)] , 0 < k(r) < 1

(K1) K (r) = K
(
1
r

)
for 0 < r ≤ 1

(K2) K′(r) ≤ 0 for 0 < r ≤ 1, K ′(r) 6≡ 0

(K3)

K(r) = K(0)− Arl + h(r), A > 0,

0 < l <
n− 2
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lim
r→0

|h(r)|
rl

+
|h′(r)|

rl−1
= 0.
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∀ ` ∈ N ∃ ε` > 0 : ∀ ε ∈ (0, ε`)

equation (P) admits at least ` G.S. with fast decay

u1, . . . , u` :

uj(r) r
n−2

2 has j local maxima and (j − 1) local minima.

Perturbative result
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[X q(ε3) +W(ε3)]
2
q = X 2(ε3) +

2

q
W(ε3) ,

where

X (ε3) =
(

q
2(ε3+1)

) 1
q−2

, W(ε3) = 1 + 1
ε3

(
1− q

2

)
, q = 2n

n−2 .
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n+2
n−2 = 0, K ∈ C 1

Replace

(K0) K(r) = [1 + εk(r)] , 0 < k(r) < 1

with

(K0)′ 0 < K ≤ K(r) ≤ K, ∀ r > 0

Assume (K0)′ - (K1) - (K2) - (K3)

∀ ` ∈ N ∃ a computable ε` > 0 :

if
K

K
< 1 + ε`

=⇒ equation (P) admits at least ` G.S. with fast decay
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Assume

(K0) K(r) = [1 + εk(r)] , 0 < k(r) < 1

(K1) K(r) = K
(

1
r

)
for 0 < r ≤ 1

Remove

(K2) K′(r) ≤ 0 for 0 < r ≤ 1, K ′(r) 6≡ 0

(K3) K(r) = K(0)− Arl + h(r), A > 0,

0 < l <
n − 2

2
, lim

r→0

|h(r)|
r l

+
|h′(r)|
r l−1

= 0

Moreover, suppose that

0 < ε ≤ ε1 :=
2

n− 2

THEN

Equation (P) admits at least one G.S. with fast decay
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Denote by u(r; d) the regular solution of (P):

u(0) = d > 0, u′(0) = 0.

=⇒ ∃ a unique d∗ : u(r , d∗) is a G.S. with f.d.
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Our approach is based on

The Fowler transformation

Invariant manifold theory

Phase plane analysis

Concept of barrier sets

Fowler transformation:

x(t) = u(r)rα, y(t) = αu(r)rα + u′(r) rα+1

α = n−2
2 , r = et , K(t) = K (et)

R.H. Fowler, Quart. J. Math. (1931).
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Fowler transformation

By Fowler transformation, (P) is equivalent to

(
ẋ
ẏ

)
=

(
0 1
α2 0

)(
x
y

)
+

(
0

−K(t) x
n+2
n−2

)
(S)

Assumption (K1) ⇐⇒ K (r) = K
(
1
r

)
for 0 < r ≤ 1

As immediate consequence of assumption (K1)

K(−t) = K(t) ∀ t ∈ R.

An easy characterization of the solutions

x(t) > 0 in (−∞, 0), y(0) = 0 =⇒ u(r) is a G.S. with f.d.

=⇒ x(t) is even, y(t) is odd
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Idea of the proof

Let u(r; d) be the solution of (P): u(0) = d, u′(0) = 0

(x(t; d), y(t; d)) denotes the corresponding trajectory of (S)

Denote by T`(d) the `th zero of y(t; d)

u(r) is a G.S. with f.d. if

x(t) > 0 in (−∞, 0), y(0) = 0

m

∃ ` ∈ N, ∃ d∗ > 0 : T`(d∗) = 0
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Assume (K0). Suppose that 0 < ε ≤ ε1.

∃ d` > 0 : T`(d`) > 0

Assume (K0)-(K2)-(K3).

∃D` > 0 : T`(d`) < 0
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ẏ

)
=

(
0 1
α2 0

)(
x
y

)
+

(
0

−K(t) x
n+2
n−2

)

∀ ` ∈ N, we look for d∗ > 0 : T`(d∗) = 0

Assume (K0). Suppose that 0 < ε ≤ ε1.

∃ d` > 0 : T`(d`) > 0

Assume (K0)-(K2)-(K3).

∃D` > 0 : T`(d`) < 0

The thesis would follow from the continuity of T`



The problem

A perturbative result

Our main results

References

Non-existence results

If K has a maximum

If K has a minimum

Methods

Continuity of T`

Assume (K0)-(K2).

Suppose that 0 < ε ≤ ε`, where ε` is a computable constant.

T`(d) ≤ 0 =⇒ T`(d) is continuous

Shooting argument =⇒ ∃ d∗` ∈ (d`,D`) : T`(d∗` ) = 0

The proof of continuity of T` is based on a barrier argument

ensuring that (x(t; d), y(t; d)) intersects the x-axis transversally



The problem

A perturbative result

Our main results

References

Non-existence results

If K has a maximum

If K has a minimum

Methods

Continuity of T`

Assume (K0)-(K2).

Suppose that 0 < ε ≤ ε`, where ε` is a computable constant.

T`(d) ≤ 0 =⇒ T`(d) is continuous

Shooting argument =⇒ ∃ d∗` ∈ (d`,D`) : T`(d∗` ) = 0

The proof of continuity of T` is based on a barrier argument

ensuring that (x(t; d), y(t; d)) intersects the x-axis transversally



The problem

A perturbative result

Our main results

References

Non-existence results

If K has a maximum

If K has a minimum

Methods

Continuity of T`

Assume (K0)-(K2).

Suppose that 0 < ε ≤ ε`, where ε` is a computable constant.

T`(d) ≤ 0 =⇒ T`(d) is continuous

Shooting argument =⇒ ∃ d∗` ∈ (d`,D`) : T`(d∗` ) = 0

The proof of continuity of T` is based on a barrier argument

ensuring that (x(t; d), y(t; d)) intersects the x-axis transversally



The problem

A perturbative result

Our main results

References

Non-existence results

If K has a maximum

If K has a minimum

Methods

Barrier sets

Consider the autonomous system, by setting K(t) ≡ 1 + c
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ẏ

)
=

(
0 1
α2 0

)(
x
y

)
+

(
0

−(1 + c) x
n+2
n−2

)
.

It admits a unique critical point P∗(c) = (P∗x (c), 0) s.t. P∗x (c) > 0

Introduce the corresponding energy function

Hc(x , y) :=
y2

2
− α2 x2

2
+ (1 + c)

xq

q
, where q :=

2n

n − 2
.

Recalling that 1 < K(t) < 1 + ε =⇒ 0 < c < ε

We define a spiral γ rotating around P∗(ε) and P∗(0), for ε small
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Recalling that 1 < K(t) < 1 + ε =⇒ 0 < c < ε

We define a spiral γ rotating around P∗(ε) and P∗(0), for ε small

The spiral γ controls the behaviour of the trajectories (x , y) of (S):

lim
t→−∞

(x(t), y(t)) −→ (0, 0).
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Definition

A` := (A`, 0) is the `th intersection between γ and the x-axis.

The spiral γ rotating around P∗(ε) and P∗(0) is well defined if

A2 < . . . < A2i < . . . <P∗x (ε) < P∗x (0)< . . . < A2i+1 < . . . < A1

The critical value ε` is the only value which satisfies

A` = P∗x (ε`) if ` is even, A` = P∗x (0) if ` is odd.
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