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Capillarity phenomena

. R. Finn, Equilibrium capillary surfaces, Springer-Verlag, New York, 1986.
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Basic features...

...of a Micro-Electro Mechanical System

Materials

A liquid and a solid in contact (small
scales)

Forces

• Capillary forces

• Electrostatic force

• Gravitational force or external
pressure
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A MEMS physical model

. N.D. Brubaker, Mathematical Theory of Electro-Capillary Surfaces, Ph.D. Thesis, University of Delaware, ProQuest
Dissertations Publishing, 2013.

• Parallel metallic plates

• Soap membrane suspended

Interplay of

• capillary

• electrostatic

• gravitational

forces

Which is the form of the soap drop at equilibrium?
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The MEMS mathematical model

−(1− bu) div

(
∇u√

1 + |∇u|2

)
=

a

(u − R)2
+

b√
1 + |∇u|2

in Ω,

u = 0 on ∂Ω

Ω bounded domain in RN

R distance of the plates vs diameter of the membrane

a = a(R) electrostatic force vs capillary forces

b = b(R) gravity force vs capillary forces

Parameters conditions

R > 0, a, b ∈ R
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Aim ... and troubles

Goals

• To study the qualitative and quantitative properties of the solutions
of the problem.

• To investigate the existence and regularity of positive solutions of the
problem.

• To analyse the multiplicity matter.

Focus

One-dimensional problem.

Difficulty

The Euclidean curvature operator produces possible occurrence of blow-up
gradient phenomena, in any dimension N ≥ 1.
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Special cases

No gravity: b = 0

−div
(

∇u√
1 + |∇u|2

)
=
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(u − R)2
in Ω.
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The one-dimensional case
1D problem:−(1− bu)

(
u′√

1 + |u′|2

)′
=

a

(u − R)2
+

b√
1 + |u′|2

in ]− r , r [,

u(−r) = 0, u(r) = 0.

Notion of (generalised) solution

u ∈ C 2(]− r , r [) ∩ C([−r , r ])

(a)
u′√

1 + |u′|2
∈ C([−r , r ]);

(b) u(t) < R and bu(t) < 1 for all t ∈ ]− r , r [;

(c) u satisfies the equation pointwise;

(d) either u(−r) = 0, or u(−r) > 0 and u′(−r+) = +∞, or u(−r) < 0 and
u′(−r+) = −∞;

(e) either u(r) = 0, or u(r) > 0 and u′(r−) = −∞, or u(r) < 0 and u′(r−) = +∞.

If moreover u(−r) = u(r) = 0, then u is a classical solution.

. A. Lichnewsky, R. Temam, Pseudosolutions of the time-dependent minimal surface problem, J. Differential Equation 30
(1978), 340-364.

. C. Corsato, C. De Coster, P. Omari, The Dirichlet problem for a prescribed anisotropic mean curvature equation:
existence, uniqueness and regularity of solutions, J. Differential Equations 260 (2016), no. 5, 4572-4618.
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Qualitative and quantitative results

Let u be a solution of the one-dimensional problem. Then

Properties

• Finite number of zeroes

• Symmetry w.r.t. the mid point of a maximal sign-unchanged interval

• At least one zero ⇒ u is a classical solution

• Even number of zeroes ⇒ u is even



Non existence of solutions

• Absence of gravity (b = 0)

Semilinear problem:
. J.A. Pelesko, D.H. Bernstein, Modeling MEMS and NEMS, Chapman and Hall/CRC, Boca Raton, FL, 2003.

General problem:
. N.D. Brubaker, Mathematical Theory of Electro-Capillary Surfaces, Ph.D. Thesis, University of Delaware,

ProQuest Dissertations Publishing, 2013.

Existence of a threshold â ∈ R+ discriminating between existence (for all
0 ≤ a < â) and non-existence (for all a > â).

• Possible presence of gravity (b ∈ R)

Theorem

For every b ∈ R, there exists â(b) ∈ R+ such that the (N-dimensional) problem
has no solutions for all a ≥ â(b).
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For every b ∈ R, there exists â(b) ∈ R+ such that the (N-dimensional) problem
has no solutions for all a ≥ â(b).



An estimate of interest in physics

For any b ∈ R, it is possible to upper estimate the pull-in voltage â(b):

â(b) ≤

 max
{

min
{ (|∂Ω|+|b|)(1+R|b|)

|Ω| R2, λ1

2 R3(1 + R|b|)
}
, (1+R|b|)2

|b|
}

if b < 0,

min
{ |∂Ω|
|Ω| R

2, λ1

2 R3
}

if b ≥ 0.

...what about the existence of solutions?



In absence of the electric field (a = 0)

1D-no-electric-field problem:−(1− bu)

(
u′√

1 + |u′|2

)′
=

b√
1 + |u′|2

, in ]− r , r [,

u(−r) = 0, u(r) = 0.

(1)

Proposition (Existence and exact multiplicity of solutions)

There exists b# = b#(r) ∈ R+ such that

b < 0 b > 0

|b| < b# u1, u2 � 0 u1, u2 � 0
|b| = b# u � 0 u � 0
|b| > b# – –
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Intermezzo

−(1− bu)

(
u′√
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a

(u − R)2
+

b√
1 + |u′|2

in ]− r , r [,

u(−r) = 0, u(r) = 0.

If
a

R2
+ b = 0

then 0 is a solution of the 1D problem.

What happens if
a

R2
+ b < 0,

a

R2
+ b > 0?

We will concentrate on

a ≥ 0,
a

R2
+ b > 0.
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A comparison result

u1 � u2



A comparison result, formalisation

Theorem (Ordering between positive solutions)

Let us assume

a1 ≥ 0,
a1

R2
+ b1 > 0,

a2 ≥ a1, b2 ≥ b1.

Let

u1 = u1(a1, b1) be the minimum positive solution,

u2 = u2(a2, b2) be a positive solution

of the associated problems.

If u1 6= u2, then it holds
u1 � u2.



An existence result
By the comparison theorem, an existence and regularity result of positive
solutions:



A regularity result



An existence result, formalisation

Theorem (Existence and regularity of positive solutions)

Let us set

b∗ = sup{b | the 1D-no-electric-field problem has a solution u with u(0) < R}.

Then we have 0 < b∗ < +∞ and there exists a decreasing function
a∗ : ]− R

2 λ1, b
∗[→ ]0,+∞[ such that

(a) for all b, a∗(b)
R2 + b > 0;

(b) the 1D problem has at least one positive solution u1 in the following cases:

• 0 ≤ b < b∗ and 0 < a ≤ a∗(b),
• −R

2 λ1 < b < 0 and −R2b < a ≤ a∗(b);

(c) the 1D problem has no positive solution in the following cases:

• b > b∗ and a > 0,
• −R

2 λ1 < b < b∗ and a > a∗(b).



A regularity result, formalisation

Theorem (continued)

The solution u1 of the 1D problem found is classical and, in particular,
u1 ∈ C 2([−r , r ]), in the following cases:

• 0 ≤ b < b∗ and 0 < a < a∗(b),

• πR ≤ 4r , −R
2 λ1 < b < 0 and −R2b < a < a∗(b),

• πR > 4r , − 2
R ≤ b < 0 and −R2b < a < a∗(b),

• πR > 4r , −R
2 λ1 < b < − 2

R and −R2b < a < a∗(− 2
R ).



Multiplicity of positive solutions

• Absence of gravity (b = 0)

Existence of a positive solution for â ∈ R+

⇓
Existence of (at least) two positive solutions for all 0 < a < â,

0� u1 � u2, and u1 is the minimum among all the positive solutions.

. N.D. Brubaker, J.A. Pelesko, Analysis of a one-dimensional prescribed mean curvature equation with singular
nonlinearity, Nonlinear Analysis 75 (2012), 5086-5102.

• General one-dimensional case
(
a ≥ 0,

a

R2
+ b > 0

)
Generalisation obtained (lower and upper solution method).
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A multiplicity result, qualitative graph



A multiplicity result, formalisation

Theorem (Existence and multiplicity of positive solutions)

Let us set b∗ as in the previous Theorem. Then the 1D problem has at least two
positive solutions u1 and u2, satisfying 0� u1 � u2, where u1 is its minimum
positive solution, in the following cases:

• 0 ≤ b < min{b∗, 1
R } and 0 < a < a∗(b),

• −R
2 λ1 < b < 0 and −R2b < a < a∗(b).

Moreover, the solution u1 is classical.
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Highlights

• We have considered a simplified physical model for Micro-Electro
Mechanical Systems and formulated its mathematical counterpart.

• We have focused the attention on the one-dimensional version of the
problem.

• We have analysed several qualitative and quantitative properties of its
solutions and stated existence, multiplicity and regularity result of its
positive solutions.
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Additional results obtained

−(1− bu)
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1 + |u′|2
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a

(u − R)2
+

b√
1 + |u′|2

in ]− r , r [,

u(−r) = 0, u(r) = 0.

• Existence and regularity of possibly sign-changing solutions, for
suitable choices of a, b,R, r .

• Bifurcation of nodal solutions.
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What about the N-dimensional problem?
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(u − R)2
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Follow-up: loading...

Investigation of qualitative properties, existence and regularity of solutions
of the general problem (2).
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Thank you for your attention!


