

Solvability of a MEMS model driven by capillarity and pressure effects

Chiara Corsato, Colette De Coster, Franco Obersnel, Pierpaolo Omari

Dipartimento di Scienze Economiche, Aziendali, Matematiche e Statistiche Università degli Studi di Trieste

Giornate di Equazioni Differenziali Ordinarie: metodi e prospettive Ancona September 27, 2018

Capillarity phenomena

S. Finn, Equilibrium capillary surfaces, Springer-Verlag, New York, 1986.

Outline

1. Motivations

- A Micro-Electro Mechanical System model
- 2. Solvability of the one-dimensional problem
 - Properties of solutions
 - Non-existence/Existence of positive solutions
 - Multiplicity of positive solutions

3. Conclusions

• Highlights and additional results

... of a Micro-Electro Mechanical System

Materials

A liquid and a solid in contact (small scales)

- Capillary forces
- Electrostatic force
- Gravitational force or external pressure

... of a Micro-Electro Mechanical System

Materials

A liquid and a solid in contact (small scales)

- Capillary forces
- Electrostatic force
- Gravitational force or external pressure

... of a Micro-Electro Mechanical System

Materials

A liquid and a solid in contact (small scales)

- Capillary forces
- Electrostatic force
- Gravitational force or external pressure

... of a Micro-Electro Mechanical System

Materials

A liquid and a solid in contact (small scales)

- Capillary forces
- Electrostatic force
- Gravitational force or external pressure

N.D. Brubaker, Mathematical Theory of Electro-Capillary Surfaces, Ph.D. Thesis, University of Delaware, ProQuest Dissertations Publishing, 2013.

N.D. Brubaker, Mathematical Theory of Electro-Capillary Surfaces, Ph.D. Thesis, University of Delaware, ProQuest Dissertations Publishing, 2013.

- Parallel metallic plates
- Soap membrane suspended

- N.D. Brubaker, Mathematical Theory of Electro-Capillary Surfaces, Ph.D. Thesis, University of Delaware, ProQuest Dissertations Publishing, 2013.
 - Interplay of
 - capillary
- Parallel metallic plates
- Soap membrane suspended

- electrostatic
- gravitational

forces

N.D. Brubaker, Mathematical Theory of Electro-Capillary Surfaces, Ph.D. Thesis, University of Delaware, ProQuest Dissertations Publishing, 2013.

Interplay of

capillary

- Parallel metallic plates
- Soap membrane suspended

- electrostatic
- gravitational

forces

Which is the form of the soap drop at equilibrium?

The MEMS mathematical model

$$\begin{cases} -(1-bu)\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = \frac{a}{(u-R)^2} + \frac{b}{\sqrt{1+|\nabla u|^2}} & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega \end{cases}$$

The MEMS mathematical model

$$\begin{cases} -(1-bu)\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = \frac{a}{(u-R)^2} + \frac{b}{\sqrt{1+|\nabla u|^2}} & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega \end{cases}$$

Ω	bounded domain in \mathbb{R}^N
R	distance of the plates vs diameter of the membrane
a = a(R)	electrostatic force vs capillary forces
b = b(R)	gravity force vs capillary forces

The MEMS mathematical model

$$\begin{cases} -(1-bu)\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = \frac{a}{(u-R)^2} + \frac{b}{\sqrt{1+|\nabla u|^2}} & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega \end{cases}$$

$$\begin{aligned} \Omega & \qquad \text{bounded domain in } \mathbb{R}^N \\ R & \qquad \text{distance of the plates vs diameter of the membrane} \\ a = a(R) & \qquad \text{electrostatic force vs capillary forces} \\ b = b(R) & \qquad \text{gravity force vs capillary forces} \end{aligned}$$

Parameters conditions

 $R > 0, \quad a, b \in \mathbb{R}$

Aim ... and troubles

Goals

- To study the qualitative and quantitative properties of the solutions of the problem.
- To investigate the existence and regularity of positive solutions of the problem.
- To analyse the multiplicity matter.

Aim ... and troubles

Goals

- To study the qualitative and quantitative properties of the solutions of the problem.
- To investigate the existence and regularity of positive solutions of the problem.
- To analyse the multiplicity matter.

Focus One-dimensional problem.

Aim ... and troubles

Goals

- To study the qualitative and quantitative properties of the solutions of the problem.
- To investigate the existence and regularity of positive solutions of the problem.
- To analyse the multiplicity matter.

Focus

One-dimensional problem.

Difficulty

The Euclidean curvature operator produces possible occurrence of blow-up gradient phenomena, in any dimension $N \ge 1$.

Special cases

No gravity: b = 0

$$-\operatorname{div}\left(rac{
abla u}{\sqrt{1+|
abla u|^2}}
ight)=rac{a}{(u-R)^2}\quad ext{in }\Omega.$$

N.D. Brubaker, Mathematical Theory of Electro-Capillary Surfaces, Ph.D. Thesis, University of Delaware, ProQuest Dissertations Publishing, 2013.

Special cases

No gravity: b = 0

$$-\mathrm{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = \frac{a}{(u-R)^2} \quad \text{in } \Omega.$$

N.D. Brubaker, Mathematical Theory of Electro-Capillary Surfaces, Ph.D. Thesis, University of Delaware, ProQuest Dissertations Publishing, 2013.

No electric field:
$$a = 0$$

 $-(1 - bu) \operatorname{div}\left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}}\right) = \frac{b}{\sqrt{1 + |\nabla u|^2}}$ in Ω .
To be studied!

The one-dimensional case

1D problem:

$$\begin{cases} -(1-bu)\left(\frac{u'}{\sqrt{1+|u'|^2}}\right)' = \frac{a}{(u-R)^2} + \frac{b}{\sqrt{1+|u'|^2}} & \text{in }]-r,r[, u(-r) = 0, \ u(r) = 0. \end{cases}$$

The one-dimensional case

1D problem:

$$\begin{cases} -(1-bu)\left(\frac{u'}{\sqrt{1+|u'|^2}}\right)' = \frac{a}{(u-R)^2} + \frac{b}{\sqrt{1+|u'|^2}} & \text{in }]-r, r[u] \\ u(-r) = 0, \ u(r) = 0. \end{cases}$$

Notion of (generalised) solution

$$u \in C^2(]-r,r[) \cap C([-r,r])$$

(a)
$$\frac{u'}{\sqrt{1+|u'|^2}} \in C([-r,r]);$$

(b)
$$u(t) < R$$
 and $bu(t) < 1$ for all $t \in] - r, r[;$

- (c) *u* satisfies the equation pointwise;
- (d) either u(-r) = 0, or u(-r) > 0 and $u'(-r^+) = +\infty$, or u(-r) < 0 and $u'(-r^+) = -\infty$;

(e) either u(r) = 0, or u(r) > 0 and $u'(r^{-}) = -\infty$, or u(r) < 0 and $u'(r^{-}) = +\infty$.

If moreover u(-r) = u(r) = 0, then u is a classical solution.

A. Lichnewsky, R. Temam, Pseudosolutions of the time-dependent minimal surface problem, J. Differential Equation 30 (1978), 340-364.

C. Corsato, C. De Coster, P. Omari, The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions, J. Differential Equations 260 (2016), no. 5, 4572-4618.

Qualitative and quantitative results

Let u be a solution of the one-dimensional problem. Then

Properties

- Finite number of zeroes
- Symmetry w.r.t. the mid point of a maximal sign-unchanged interval
- At least one zero \Rightarrow *u* is a classical solution
- Even number of zeroes \Rightarrow *u* is even

Non existence of solutions

• Absence of gravity (*b* = 0)

Semilinear problem:

S.A. Pelesko, D.H. Bernstein, Modeling MEMS and NEMS, Chapman and Hall/CRC, Boca Raton, FL, 2003.

General problem:

Existence of a threshold $\hat{a} \in \mathbb{R}^+$ discriminating between existence (for all $0 \le a < \hat{a}$) and non-existence (for all $a > \hat{a}$).

N.D. Brubaker, Mathematical Theory of Electro-Capillary Surfaces, Ph.D. Thesis, University of Delaware, ProQuest Dissertations Publishing, 2013.

Non existence of solutions

• Absence of gravity (*b* = 0)

Semilinear problem:

S.A. Pelesko, D.H. Bernstein, Modeling MEMS and NEMS, Chapman and Hall/CRC, Boca Raton, FL, 2003.

General problem:

N.D. Brubaker, Mathematical Theory of Electro-Capillary Surfaces, Ph.D. Thesis, University of Delaware, ProQuest Dissertations Publishing, 2013.

Existence of a threshold $\hat{a} \in \mathbb{R}^+$ discriminating between existence (for all $0 \le a < \hat{a}$) and non-existence (for all $a > \hat{a}$).

• Possible presence of gravity $(b \in \mathbb{R})$

Theorem

For every $b \in \mathbb{R}$, there exists $\hat{a}(b) \in \mathbb{R}^+$ such that the (*N*-dimensional) problem has no solutions for all $a \ge \hat{a}(b)$.

An estimate of interest in physics

For any $b \in \mathbb{R}$, it is possible to upper estimate the *pull-in voltage* $\hat{a}(b)$:

$$\hat{a}(b) \leq \begin{cases} \max\left\{\min\left\{\frac{(|\partial\Omega|+|b|)(1+R|b|)}{|\Omega|}R^2, \frac{\lambda_1}{2}R^3(1+R|b|)\right\}, \frac{(1+R|b|)^2}{|b|}\right\} & \text{if } b < 0, \\ \min\left\{\frac{|\partial\Omega|}{|\Omega|}R^2, \frac{\lambda_1}{2}R^3\right\} & \text{if } b \ge 0. \end{cases}$$

...what about the existence of solutions?

In absence of the electric field (a = 0)

1D-no-electric-field problem:

$$\begin{cases} -(1-bu)\left(\frac{u'}{\sqrt{1+|u'|^2}}\right)' = \frac{b}{\sqrt{1+|u'|^2}}, & \text{in }]-r, r[,\\ u(-r) = 0, \ u(r) = 0. \end{cases}$$
(1)

In absence of the electric field (a = 0)

1D-no-electric-field problem:

$$\begin{cases} -(1-bu)\left(\frac{u'}{\sqrt{1+|u'|^2}}\right)' = \frac{b}{\sqrt{1+|u'|^2}}, & \text{in }]-r, r[, \\ u(-r) = 0, \ u(r) = 0. \end{cases}$$
(1)

Proposition (Existence and exact multiplicity of solutions) There exists $b^{\#} = b^{\#}(r) \in \mathbb{R}^+$ such that

Intermezzo

lf

$$\begin{cases} -(1-bu)\left(\frac{u'}{\sqrt{1+|u'|^2}}\right)' = \frac{a}{(u-R)^2} + \frac{b}{\sqrt{1+|u'|^2}} & \text{in }]-r, r[,\\ u(-r) = 0, \ u(r) = 0. \end{cases}$$
$$\frac{a}{R^2} + b = 0$$

then 0 is a solution of the 1D problem.

Intermezzo

lf

$$\begin{cases} -(1-bu)\left(\frac{u'}{\sqrt{1+|u'|^2}}\right)' = \frac{a}{(u-R)^2} + \frac{b}{\sqrt{1+|u'|^2}} & \text{in }]-r, r[,\\ u(-r) = 0, \ u(r) = 0. \end{cases}$$
$$\frac{a}{R^2} + b = 0$$

then 0 is a solution of the 1D problem.

What happens if

$$\frac{a}{R^2}+b<0, \quad \frac{a}{R^2}+b>0?$$

Intermezzo

lf

$$\begin{cases} -(1-bu)\left(\frac{u'}{\sqrt{1+|u'|^2}}\right)' = \frac{a}{(u-R)^2} + \frac{b}{\sqrt{1+|u'|^2}} & \text{in }]-r, r[,\\ u(-r) = 0, \ u(r) = 0. \end{cases}$$
$$\frac{a}{R^2} + b = 0$$

then 0 is a solution of the 1D problem.

What happens if

$$\frac{a}{R^2}+b<0, \quad \frac{a}{R^2}+b>0?$$

We will concentrate on

$$a\geq 0, \quad rac{a}{R^2}+b>0.$$

A comparison result

 $u_1 \ll u_2$

A comparison result, formalisation

Theorem (Ordering between positive solutions) Let us assume

$$a_1 \ge 0,$$
 $\frac{a_1}{R^2} + b_1 > 0,$
 $a_2 \ge a_1,$ $b_2 \ge b_1.$

Let

 $u_1 = u_1(a_1, b_1)$ be the minimum positive solution, $u_2 = u_2(a_2, b_2)$ be a positive solution

of the associated problems.

If $u_1 \neq u_2$, then it holds

 $u_1 \ll u_2$.

An existence result

By the comparison theorem, an existence and regularity result of positive solutions:

A regularity result

An existence result, formalisation

Theorem (Existence and regularity of positive solutions) Let us set

 $b^* = \sup\{b \mid \text{the 1D-no-electric-field problem has a solution } u \text{ with } u(0) < R\}.$

Then we have $0 < b^* < +\infty$ and there exists a decreasing function $a^*:] - \frac{R}{2}\lambda_1, b^*[\rightarrow]0, +\infty[$ such that

(a) for all *b*,
$$\frac{a^*(b)}{R^2} + b > 0$$
;

(b) the 1D problem has at least one positive solution u_1 in the following cases:

•
$$0 \le b < b^*$$
 and $0 < a \le a^*(b)$,
• $-\frac{R}{2}\lambda_1 < b < 0$ and $-R^2b < a \le a^*(b)$;

(c) the 1D problem has no positive solution in the following cases:

•
$$b > b^*$$
 and $a > 0$,
• $-\frac{R}{2}\lambda_1 < b < b^*$ and $a > a^*(b)$

A regularity result, formalisation

Theorem (continued)

The solution u_1 of the 1D problem found is classical and, in particular, $u_1 \in C^2([-r, r])$, in the following cases:

•
$$0 \le b < b^*$$
 and $0 < a < a^*(b)$

•
$$\pi R \leq 4r$$
, $-\frac{R}{2}\lambda_1 < b < 0$ and $-R^2b < a < a^*(b)$,

•
$$\pi R > 4r$$
, $-\frac{2}{R} \le b < 0$ and $-R^2 b < a < a^*(b)$,

•
$$\pi R > 4r$$
, $-\frac{R}{2}\lambda_1 < b < -\frac{2}{R}$ and $-R^2b < a < a^*(-\frac{2}{R})$.

Multiplicity of positive solutions

• Absence of gravity (b=0)

Existence of a positive solution for $\hat{a} \in \mathbb{R}^+$ \downarrow Existence of (at least) two positive solutions for all $0 < a < \hat{a}$, $0 \ll u_1 \ll u_2$, and u_1 is the minimum among all the positive solutions.

N.D. Brubaker, J.A. Pelesko, Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity, Nonlinear Analysis 75 (2012), 5086-5102.

Multiplicity of positive solutions

• Absence of gravity (b=0)

Existence of a positive solution for $\hat{a} \in \mathbb{R}^+$ \Downarrow Existence of (at least) two positive solutions for all $0 < a < \hat{a}$, $0 \ll u_1 \ll u_2$, and u_1 is the minimum among all the positive solutions.

N.D. Brubaker, J.A. Pelesko, Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity, Nonlinear Analysis 75 (2012), 5086-5102.

• General one-dimensional case $(a \ge 0, \frac{a}{R^2} + b > 0)$

Generalisation obtained (lower and upper solution method).

A multiplicity result, qualitative graph

A multiplicity result, formalisation

Theorem (Existence and multiplicity of positive solutions)

Let us set b^* as in the previous Theorem. Then the 1D problem has at least two positive solutions u_1 and u_2 , satisfying $0 \ll u_1 \ll u_2$, where u_1 is its minimum positive solution, in the following cases:

- $0 \le b < \min\{b^*, \frac{1}{R}\}$ and $0 < a < a^*(b)$,
- $-\frac{R}{2}\lambda_1 < b < 0$ and $-R^2b < a < a^*(b)$.

A multiplicity result, formalisation

Theorem (Existence and multiplicity of positive solutions)

Let us set b^* as in the previous Theorem. Then the 1D problem has at least two positive solutions u_1 and u_2 , satisfying $0 \ll u_1 \ll u_2$, where u_1 is its minimum positive solution, in the following cases:

• $0 \le b < \min\{b^*, \frac{1}{R}\}$ and $0 < a < a^*(b)$,

•
$$-\frac{R}{2}\lambda_1 < b < 0$$
 and $-R^2b < a < a^*(b)$.

Moreover, the solution u_1 is classical.

Highlights

• We have considered a simplified physical model for Micro-Electro Mechanical Systems and formulated its mathematical counterpart.

Highlights

- We have considered a simplified physical model for Micro-Electro Mechanical Systems and formulated its mathematical counterpart.
- We have focused the attention on the one-dimensional version of the problem.

Highlights

- We have considered a simplified physical model for Micro-Electro Mechanical Systems and formulated its mathematical counterpart.
- We have focused the attention on the one-dimensional version of the problem.
- We have analysed several qualitative and quantitative properties of its solutions and stated existence, multiplicity and regularity result of its positive solutions.

Additional results obtained

$$\begin{cases} -(1-bu)\left(\frac{u'}{\sqrt{1+|u'|^2}}\right)' = \frac{a}{(u-R)^2} + \frac{b}{\sqrt{1+|u'|^2}} & \text{in }]-r,r[, u(-r) = 0, \ u(r) = 0. \end{cases}$$

• Existence and regularity of possibly sign-changing solutions, for suitable choices of *a*, *b*, *R*, *r*.

Additional results obtained

$$\begin{cases} -(1-bu)\left(\frac{u'}{\sqrt{1+|u'|^2}}\right)' = \frac{a}{(u-R)^2} + \frac{b}{\sqrt{1+|u'|^2}} & \text{in }]-r,r[, u(-r) = 0, \ u(r) = 0. \end{cases}$$

- Existence and regularity of possibly sign-changing solutions, for suitable choices of *a*, *b*, *R*, *r*.
- Bifurcation of nodal solutions.

What about the *N*-dimensional problem?

$$\begin{cases} -(1-bu)\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = \frac{a}{(u-R)^2} + \frac{b}{\sqrt{1+|\nabla u|^2}} & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$
(2)

What about the N-dimensional problem?

$$\begin{cases} -(1-bu)\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = \frac{a}{(u-R)^2} + \frac{b}{\sqrt{1+|\nabla u|^2}} & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$
(2)

Follow-up: loading...

Investigation of qualitative properties, existence and regularity of solutions of the general problem (2).

Thank you for your attention!