Solvability of a MEMS model driven by capillarity and pressure effects

Chiara Corsato, Colette De Coster, Franco Obersnel, Pierpaolo Omari

Dipartimento di Scienze Economiche, Aziendali, Matematiche e Statistiche Università degli Studi di Trieste

Giornate di Equazioni Differenziali Ordinarie: metodi e prospettive Ancona
September 27, 2018

Capillarity phenomena

Q R. Finn, Equilibrium capillary surfaces, Springer-Verlag, New York, 1986.

Outline

1. Motivations

- A Micro-Electro Mechanical System model

2. Solvability of the one-dimensional problem

- Properties of solutions
- Non-existence/Existence of positive solutions
- Multiplicity of positive solutions

3. Conclusions

- Highlights and additional results

Basic features...

...of a Micro-Electro Mechanical System

Materials
 A liquid and a solid in contact (small scales)

Forces

- Capillary forces
- Electrostatic force
- Gravitational force or external pressure

Basic features...

...of a Micro-Electro Mechanical System

Materials
A liquid and a solid in contact (small scales)

Forces

- Capillary forces
- Electrostatic force
- Gravitational force or external pressure

Basic features...

...of a Micro-Electro Mechanical System

Materials

A liquid and a solid in contact (small scales)

Forces

- Capillary forces
- Electrostatic force
- Gravitational force or external pressure

Basic features...

...of a Micro-Electro Mechanical System

Forces

- Capillary forces
- Electrostatic force
- Gravitational force or external pressure

A MEMS physical model

2 N.D. Brubaker, Mathematical Theory of Electro-Capillary Surfaces, Ph.D. Thesis, University of Delaware, ProQuest Dissertations Publishing, 2013.

A MEMS physical model

Q N.D. Brubaker, Mathematical Theory of Electro-Capillary Surfaces, Ph.D. Thesis, University of Delaware, ProQuest Dissertations Publishing, 2013.

- Parallel metallic plates
- Soap membrane suspended

A MEMS physical model

2 N.D. Brubaker, Mathematical Theory of Electro-Capillary Surfaces, Ph.D. Thesis, University of Delaware, ProQuest Dissertations Publishing, 2013.

Interplay of

- capillary
- electrostatic
- gravitational
forces

A MEMS physical model

2 N.D. Brubaker, Mathematical Theory of Electro-Capillary Surfaces, Ph.D. Thesis, University of Delaware, ProQuest Dissertations Publishing, 2013.

Interplay of

- capillary
- electrostatic
- gravitational
forces
Which is the form of the soap drop at equilibrium?

The MEMS mathematical model

$$
\begin{cases}-(1-b u) \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=\frac{a}{(u-R)^{2}}+\frac{b}{\sqrt{1+|\nabla u|^{2}}} & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

The MEMS mathematical model

$$
\begin{cases}-(1-b u) \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=\frac{a}{(u-R)^{2}}+\frac{b}{\sqrt{1+|\nabla u|^{2}}} & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Ω
R

$$
\begin{aligned}
& a=a(R) \\
& b=b(R)
\end{aligned}
$$

bounded domain in \mathbb{R}^{N}
distance of the plates vs diameter of the membrane electrostatic force vs capillary forces gravity force vs capillary forces

The MEMS mathematical model

$$
\begin{cases}-(1-b u) \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=\frac{a}{(u-R)^{2}}+\frac{b}{\sqrt{1+|\nabla u|^{2}}} & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

```
\Omega
R
a=a(R)
b=b(R)
```

bounded domain in \mathbb{R}^{N}
distance of the plates vs diameter of the membrane electrostatic force vs capillary forces gravity force vs capillary forces

Parameters conditions

$$
R>0, \quad a, b \in \mathbb{R}
$$

Aim ... and troubles

Goals

- To study the qualitative and quantitative properties of the solutions of the problem.
- To investigate the existence and regularity of positive solutions of the problem.
- To analyse the multiplicity matter.

Aim ... and troubles

Goals

- To study the qualitative and quantitative properties of the solutions of the problem.
- To investigate the existence and regularity of positive solutions of the problem.
- To analyse the multiplicity matter.

Focus
 One-dimensional problem.

Aim ... and troubles

Goals

- To study the qualitative and quantitative properties of the solutions of the problem.
- To investigate the existence and regularity of positive solutions of the problem.
- To analyse the multiplicity matter.

```
Focus
One-dimensional problem.
```


Difficulty

The Euclidean curvature operator produces possible occurrence of blow-up gradient phenomena, in any dimension $N \geq 1$.

Special cases

No gravity: $b=0$

$$
-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=\frac{a}{(u-R)^{2}} \quad \text { in } \Omega .
$$

Q N.D. Brubaker, Mathematical Theory of Electro-Capillary Surfaces, Ph.D. Thesis, University of Delaware, ProQuest Dissertations Publishing, 2013.

Special cases

No gravity: $b=0$

$$
-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=\frac{a}{(u-R)^{2}} \quad \text { in } \Omega .
$$

Q N.D. Brubaker, Mathematical Theory of Electro-Capillary Surfaces, Ph.D. Thesis, University of Delaware, ProQuest Dissertations Publishing, 2013.

No electric field: $a=0$

$$
-(1-b u) \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=\frac{b}{\sqrt{1+|\nabla u|^{2}}} \quad \text { in } \Omega \text {. }
$$

To be studied!

The one-dimensional case

1D problem:

$$
\left\{\begin{array}{l}
\left.-(1-b u)\left(\frac{u^{\prime}}{\sqrt{1+\left|u^{\prime}\right|^{2}}}\right)^{\prime}=\frac{a}{(u-R)^{2}}+\frac{b}{\sqrt{1+\left|u^{\prime}\right|^{2}}} \text { in }\right]-r, r[, \\
u(-r)=0, u(r)=0 .
\end{array}\right.
$$

The one-dimensional case

1D problem:

$$
\left\{\begin{array}{l}
\left.-(1-b u)\left(\frac{u^{\prime}}{\sqrt{1+\left|u^{\prime}\right|^{2}}}\right)^{\prime}=\frac{a}{(u-R)^{2}}+\frac{b}{\sqrt{1+\left|u^{\prime}\right|^{2}}} \text { in }\right]-r, r[, \\
u(-r)=0, u(r)=0 .
\end{array}\right.
$$

Notion of (generalised) solution

$u \in C^{2}(]-r, r[) \cap C([-r, r])$
(a) $\frac{u^{\prime}}{\sqrt{1+\left|u^{\prime}\right|^{2}}} \in C([-r, r])$;
(b) $u(t)<R$ and $b u(t)<1$ for all $t \in]-r, r[$;
(c) u satisfies the equation pointwise;
(d) either $u(-r)=0$, or $u(-r)>0$ and $u^{\prime}\left(-r^{+}\right)=+\infty$, or $u(-r)<0$ and $u^{\prime}\left(-r^{+}\right)=-\infty$;
(e) either $u(r)=0$, or $u(r)>0$ and $u^{\prime}\left(r^{-}\right)=-\infty$, or $u(r)<0$ and $u^{\prime}\left(r^{-}\right)=+\infty$.

If moreover $u(-r)=u(r)=0$, then u is a classical solution.

Q A. Lichnewsky, R. Temam, Pseudosolutions of the time-dependent minimal surface problem, J. Differential Equation 30 (1978), 340-364.

Q C. Corsato, C. De Coster, P. Omari, The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions, J. Differential Equations 260 (2016), no. 5, 4572-4618.

Qualitative and quantitative results

Let u be a solution of the one-dimensional problem. Then

Properties

- Finite number of zeroes
- Symmetry w.r.t. the mid point of a maximal sign-unchanged interval
- At least one zero $\Rightarrow u$ is a classical solution
- Even number of zeroes $\Rightarrow u$ is even

Non existence of solutions

- Absence of gravity $(b=0)$

Semilinear problem:
Q J.A. Pelesko, D.H. Bernstein, Modeling MEMS and NEMS, Chapman and Hall/CRC, Boca Raton, FL, 2003. General problem:

* N.D. Brubaker, Mathematical Theory of Electro-Capillary Surfaces, Ph.D. Thesis, University of Delaware, ProQuest Dissertations Publishing, 2013.

Existence of a threshold $\hat{a} \in \mathbb{R}^{+}$discriminating between existence (for all $0 \leq a<\hat{a}$) and non-existence (for all $a>\hat{a}$).

Non existence of solutions

- Absence of gravity $(b=0)$

Semilinear problem:
Q J.A. Pelesko, D.H. Bernstein, Modeling MEMS and NEMS, Chapman and Hall/CRC, Boca Raton, FL, 2003.
General problem:
2 N.D. Brubaker, Mathematical Theory of Electro-Capillary Surfaces, Ph.D. Thesis, University of Delaware, ProQuest Dissertations Publishing, 2013.

Existence of a threshold $\hat{a} \in \mathbb{R}^{+}$discriminating between existence (for all $0 \leq a<\hat{a}$) and non-existence (for all $a>\hat{a}$).

- Possible presence of gravity ($b \in \mathbb{R}$)

Theorem

For every $b \in \mathbb{R}$, there exists $\hat{a}(b) \in \mathbb{R}^{+}$such that the (N-dimensional) problem has no solutions for all $a \geq \hat{a}(b)$.

An estimate of interest in physics

For any $b \in \mathbb{R}$, it is possible to upper estimate the pull-in voltage $\hat{a}(b)$:
$\hat{a}(b) \leq \begin{cases}\max \left\{\min \left\{\frac{(|\partial \Omega|+||| |)(1+R|b|)}{|\Omega|} R^{2}, \frac{\lambda_{1}}{2} R^{3}(1+R|b|)\right\}, \frac{(1+R|b|)^{2}}{|b|}\right\} & \text { if } b<0, \\ \min \left\{\frac{|\Omega \Omega|}{|\Omega|} R^{2}, \frac{\lambda_{1}}{2} R^{3}\right\} & \text { if } b \geq 0 .\end{cases}$

...what about the existence of solutions?

In absence of the electric field $(a=0)$

1D-no-electric-field problem:

$$
\left\{\begin{array}{l}
\left.-(1-b u)\left(\frac{u^{\prime}}{\sqrt{1+\left|u^{\prime}\right|^{2}}}\right)^{\prime}=\frac{b}{\sqrt{1+\left|u^{\prime}\right|^{\prime}}}, \quad \text { in }\right]-r, r[, \tag{1}\\
u(-r)=0, u(r)=0
\end{array}\right.
$$

In absence of the electric field $(a=0)$

1D-no-electric-field problem:

$$
\left\{\begin{array}{l}
\left.-(1-b u)\left(\frac{u^{\prime}}{\sqrt{1+\left|u^{\prime}\right|^{2}}}\right)^{\prime}=\frac{b}{\sqrt{1+\left|u^{\prime}\right|^{2}}}, \quad \text { in }\right]-r, r[, \tag{1}\\
u(-r)=0, u(r)=0
\end{array}\right.
$$

Proposition (Existence and exact multiplicity of solutions)

There exists $b^{\#}=b^{\#}(r) \in \mathbb{R}^{+}$such that

$$
\begin{array}{c|c|c}
& b<0 & b>0 \\
\hline|b|<b^{\#} & u_{1}, u_{2} \ll 0 & u_{1}, u_{2} \gg 0 \\
|b|=b^{\#} & u \ll 0 & u \gg 0 \\
|b|>b^{\#} & - & -
\end{array}
$$

Intermezzo

$$
\left\{\begin{array}{l}
\left.-(1-b u)\left(\frac{u^{\prime}}{\sqrt{1+\left|u^{\prime}\right|^{2}}}\right)^{\prime}=\frac{a}{(u-R)^{2}}+\frac{b}{\sqrt{1+\left|u^{\prime}\right|^{2}}} \text { in }\right]-r, r[, \\
u(-r)=0, u(r)=0
\end{array}\right.
$$

If

$$
\frac{a}{R^{2}}+b=0
$$

then 0 is a solution of the 1 D problem.

Intermezzo

$$
\left\{\begin{array}{l}
\left.-(1-b u)\left(\frac{u^{\prime}}{\sqrt{1+\left|u^{\prime}\right|^{2}}}\right)^{\prime}=\frac{a}{(u-R)^{2}}+\frac{b}{\sqrt{1+\left|u^{\prime}\right|^{2}}} \text { in }\right]-r, r[, \\
u(-r)=0, u(r)=0 .
\end{array}\right.
$$

If

$$
\frac{a}{R^{2}}+b=0
$$

then 0 is a solution of the 1 D problem.

What happens if

$$
\frac{a}{R^{2}}+b<0, \quad \frac{a}{R^{2}}+b>0 ?
$$

Intermezzo

$$
\left\{\begin{array}{l}
\left.-(1-b u)\left(\frac{u^{\prime}}{\sqrt{1+\left|u^{\prime}\right|^{2}}}\right)^{\prime}=\frac{a}{(u-R)^{2}}+\frac{b}{\sqrt{1+\left|u^{\prime}\right|^{2}}} \text { in }\right]-r, r[, \\
u(-r)=0, u(r)=0 .
\end{array}\right.
$$

If

$$
\frac{a}{R^{2}}+b=0
$$

then 0 is a solution of the 1 D problem.

What happens if

$$
\frac{a}{R^{2}}+b<0, \quad \frac{a}{R^{2}}+b>0 ?
$$

We will concentrate on

$$
a \geq 0, \quad \frac{a}{R^{2}}+b>0
$$

A comparison result

$$
u_{1} \ll u_{2}
$$

A comparison result, formalisation

Theorem (Ordering between positive solutions)

Let us assume

$$
\begin{array}{lr}
a_{1} \geq 0, & \frac{a_{1}}{R^{2}}+b_{1}>0, \\
a_{2} \geq a_{1}, & b_{2} \geq b_{1} .
\end{array}
$$

Let

$$
\begin{array}{lr}
u_{1}=u_{1}\left(a_{1}, b_{1}\right) & \text { be the minimum positive solution }, \\
u_{2}=u_{2}\left(a_{2}, b_{2}\right) & \text { be a positive solution }
\end{array}
$$

of the associated problems.
If $u_{1} \neq u_{2}$, then it holds

$$
u_{1} \ll u_{2} .
$$

An existence result

By the comparison theorem, an existence and regularity result of positive solutions:

A regularity result

An existence result, formalisation

Theorem (Existence and regularity of positive solutions)

Let us set
$b^{*}=\sup \{b \mid$ the 1D-no-electric-field problem has a solution u with $u(0)<R\}$.
Then we have $0<b^{*}<+\infty$ and there exists a decreasing function $\left.a^{*}:\right]-\frac{R}{2} \lambda_{1}, b^{*}[\rightarrow] 0,+\infty[$ such that
(a) for all $b, \frac{a^{*}(b)}{R^{2}}+b>0$;
(b) the 1D problem has at least one positive solution u_{1} in the following cases:

- $0 \leq b<b^{*}$ and $0<a \leq a^{*}(b)$,
- $-\frac{\bar{R}}{2} \lambda_{1}<b<0$ and $-R^{2} b<a \leq a^{*}(b)$;
(c) the 1D problem has no positive solution in the following cases:
- $b>b^{*}$ and $a>0$,
- $-\frac{R}{2} \lambda_{1}<b<b^{*}$ and $a>a^{*}(b)$.

A regularity result, formalisation

Theorem (continued)

The solution u_{1} of the 1 D problem found is classical and, in particular, $u_{1} \in C^{2}([-r, r])$, in the following cases:

- $0 \leq b<b^{*}$ and $0<a<a^{*}(b)$,
- $\pi R \leq 4 r,-\frac{R}{2} \lambda_{1}<b<0$ and $-R^{2} b<a<a^{*}(b)$,
- $\pi R>4 r,-\frac{2}{R} \leq b<0$ and $-R^{2} b<a<a^{*}(b)$,
- $\pi R>4 r,-\frac{R}{2} \lambda_{1}<b<-\frac{2}{R}$ and $-R^{2} b<a<a^{*}\left(-\frac{2}{R}\right)$.

Multiplicity of positive solutions

- Absence of gravity $(b=0)$

Existence of a positive solution for $\hat{a} \in \mathbb{R}^{+}$
Existence of (at least) two positive solutions for all $0<a<\hat{a}$, $0 \ll u_{1} \ll u_{2}$, and u_{1} is the minimum among all the positive solutions.

[^0]
Multiplicity of positive solutions

- Absence of gravity $(b=0)$

Existence of a positive solution for $\hat{a} \in \mathbb{R}^{+}$
Existence of (at least) two positive solutions for all $0<a<\hat{a}$, $0 \ll u_{1} \ll u_{2}$, and u_{1} is the minimum among all the positive solutions.

2 N.D. Brubaker, J.A. Pelesko, Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity, Nonlinear Analysis 75 (2012), 5086-5102.

- General one-dimensional case $\left(a \geq 0, \frac{a}{R^{2}}+b>0\right)$

Generalisation obtained (lower and upper solution method).

A multiplicity result, qualitative graph

A multiplicity result, formalisation

Theorem (Existence and multiplicity of positive solutions)

Let us set b^{*} as in the previous Theorem. Then the 1D problem has at least two positive solutions u_{1} and u_{2}, satisfying $0 \ll u_{1} \ll u_{2}$, where u_{1} is its minimum positive solution, in the following cases:

- $0 \leq b<\min \left\{b^{*}, \frac{1}{R}\right\}$ and $0<a<a^{*}(b)$,
- $-\frac{R}{2} \lambda_{1}<b<0$ and $-R^{2} b<a<a^{*}(b)$.

A multiplicity result, formalisation

Theorem (Existence and multiplicity of positive solutions)
Let us set b^{*} as in the previous Theorem. Then the 1D problem has at least two positive solutions u_{1} and u_{2}, satisfying $0 \ll u_{1} \ll u_{2}$, where u_{1} is its minimum positive solution, in the following cases:

- $0 \leq b<\min \left\{b^{*}, \frac{1}{R}\right\}$ and $0<a<a^{*}(b)$,
- $-\frac{R}{2} \lambda_{1}<b<0$ and $-R^{2} b<a<a^{*}(b)$.

Moreover, the solution u_{1} is classical.

Highlights

- We have considered a simplified physical model for Micro-Electro Mechanical Systems and formulated its mathematical counterpart.

Highlights

- We have considered a simplified physical model for Micro-Electro Mechanical Systems and formulated its mathematical counterpart.
- We have focused the attention on the one-dimensional version of the problem.

Highlights

- We have considered a simplified physical model for Micro-Electro Mechanical Systems and formulated its mathematical counterpart.
- We have focused the attention on the one-dimensional version of the problem.
- We have analysed several qualitative and quantitative properties of its solutions and stated existence, multiplicity and regularity result of its positive solutions.

Additional results obtained

$$
\left\{\begin{array}{l}
\left.-(1-b u)\left(\frac{u^{\prime}}{\sqrt{1+\left|u^{\prime}\right|^{2}}}\right)^{\prime}=\frac{a}{(u-R)^{2}}+\frac{b}{\sqrt{1+\left|u^{\prime}\right|^{2}}} \text { in }\right]-r, r[, \\
u(-r)=0, u(r)=0 .
\end{array}\right.
$$

- Existence and regularity of possibly sign-changing solutions, for suitable choices of a, b, R, r.

Additional results obtained

$$
\left\{\begin{array}{l}
\left.-(1-b u)\left(\frac{u^{\prime}}{\sqrt{1+\left|u^{\prime}\right|^{2}}}\right)^{\prime}=\frac{a}{(u-R)^{2}}+\frac{b}{\sqrt{1+\left|u^{\prime}\right|^{2}}} \text { in }\right]-r, r[, \\
u(-r)=0, u(r)=0 .
\end{array}\right.
$$

- Existence and regularity of possibly sign-changing solutions, for suitable choices of a, b, R, r.
- Bifurcation of nodal solutions.

What about the N -dimensional problem?

$$
\begin{cases}-(1-b u) \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=\frac{a}{(u-R)^{2}}+\frac{b}{\sqrt{1+|\nabla u|^{2}}} & \text { in } \Omega, \tag{2}\\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

What about the N-dimensional problem?

$$
\begin{cases}-(1-b u) \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=\frac{a}{(u-R)^{2}}+\frac{b}{\sqrt{1+|\nabla u|^{2}}} & \text { in } \Omega, \tag{2}\\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

Follow-up: loading...
Investigation of qualitative properties, existence and regularity of solutions of the general problem (2).

Thank you for your attention!

[^0]: 2 N.D. Brubaker, J.A. Pelesko, Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity, Nonlinear Analysis 75 (2012), 5086-5102.

