Existence of one non-zero solution for a two point boundary value problem involving a fourth-order equation

Antonia Chinnì
University of Messina (Italy)
Department of Engineering

Giornate di Equazioni Differenziali Ordinarie: metodi e prospettive Ancona, 27-29 Settembre 2018

$$
\left\{\begin{array}{l}
u^{(i v)}(x)+\lambda f(x, u(x))=0 \text { in }[0,1] \\
u(0)=u^{\prime}(0)=0 \\
u^{\prime \prime}(1)=0 \quad u^{\prime \prime \prime}(1)=\mu g(u(1))
\end{array}\right.
$$

- $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ is an L^{1}-Carathéodory function
- $g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function
- λ, μ are positive parameters

The problem
Physical meaning
Variational structure of problem $\left(P_{\lambda, \mu}\right)$
The main tool
The main result
Proof of Theorem 2
Consequences
Bibliography

- $u(0)=u^{\prime}(0)=0$
- $u^{\prime \prime}(1)=0, u^{\prime \prime \prime}(1)=\mu g(u(1))$
- variational methods
- L. Yang, H. Chen, X. Yang,
- Appl. Math. Letters (2011) existence of three solutions for problem $\left(P_{\lambda, 1}\right)$
- Appl. Math. and Computations (2011) existence of three solutions for problem ($P_{\lambda, \lambda}$)
- T.F. Ma, Appl. Math. and Computations (2004) existence of at least two positive solutions for problem ($P_{1,1}$)
- A. Cabada, S. Tersian, Appl. Math. and Computations, (2013) existence of two non trivial solutions for problem ($P_{\lambda, \lambda}$)
- iterative methods
- T.F. Ma, J. Da Silva, Appl. Math. Letters (2004) problem $\left(P_{\lambda, \mu}\right)$.

The problem
Physical meaning

Variational structure of problem $\left(P_{\lambda, \mu}\right)$

The main tool
The main result
Proof of Theorem 2
Consequences
Bibliography

$$
\begin{gathered}
X:=\left\{u \in H^{2}([0,1]): u(0)=u^{\prime}(0)=0\right\} \\
\|u\|:=\left(\int_{0}^{1}\left(u^{\prime \prime}(t)\right)^{2} d t\right)^{\frac{1}{2}}
\end{gathered}
$$

- the embedding $X \hookrightarrow C^{1}([0,1])$ is compact

$$
\begin{gathered}
X:=\left\{u \in H^{2}([0,1]): u(0)=u^{\prime}(0)=0\right\} \\
\|u\|:=\left(\int_{0}^{1}\left(u^{\prime \prime}(t)\right)^{2} d t\right)^{\frac{1}{2}}
\end{gathered}
$$

- the embedding $X \hookrightarrow C^{1}([0,1])$ is compact
- $\|u\|_{C^{1}([0,1])}:=\max \left\{\|u\|_{\infty},\left\|u^{\prime}\right\|_{\infty}\right\} \leq\|u\|$ for each $u \in X$

The functional Φ

$$
\forall x \in X \quad \Phi(u):=\frac{1}{2}\|u\|^{2}
$$

- Φ is Frechét differentiable, $\Phi \in C^{1}(X)$
- $\left\langle\Phi^{\prime}(u), v\right\rangle=\int_{0}^{1} u^{\prime \prime}(x) v^{\prime \prime}(x) d x$, for each $u, v \in X$
- Φ is sequentially weakly lower semi-continuous and coercive
- Φ^{\prime} admits a continuous inverse on X^{*}

The functional Φ

$$
\forall x \in X \quad \Phi(u):=\frac{1}{2}\|u\|^{2}
$$

- Φ is Frechét differentiable, $\Phi \in C^{1}(X)$
- $\left\langle\Phi^{\prime}(u), v\right\rangle=\int_{0}^{1} u^{\prime \prime}(x) v^{\prime \prime}(x) d x$, for each $u, v \in X$
- Φ is sequentially weakly lower semi-continuous and coercive
- Φ^{\prime} admits a continuous inverse on X^{*}

The functional $\Psi_{\lambda, \mu}$

$\forall \lambda, \mu>0, \forall u \in X$

$$
\Psi_{\lambda, \mu}(u):=\int_{0}^{1} F(x, u(x)) d x+\frac{\mu}{\lambda} G(u(1))
$$

- $F(x, \xi):=\int_{0}^{\xi} f(x, t) d t$ for each $x \in[0,1], \xi \in \mathbb{R}$
- $G(\xi):=\int_{0}^{\xi} g(t) d t$ for each $\xi \in \mathbb{R}$
- $\Psi_{\lambda, \mu}$ is Frechét differentiable, $\Psi_{\lambda, \mu} \in C^{1}(X)$
- $\left\langle\Psi_{\lambda, \ldots}^{\prime}(u), v\right\rangle=\int_{0}^{1} f(x, u(x)) v(x) d x+\frac{\mu}{\lambda} a(u(1)) v(1)$, for each $u, v \in \mathbb{X}$
- $\Psi_{\lambda, \mu}^{\prime}$ is compact

The functional $\Psi_{\lambda, \mu}$

$\forall \lambda, \mu>0, \forall u \in X$

$$
\Psi_{\lambda, \mu}(u):=\int_{0}^{1} F(x, u(x)) d x+\frac{\mu}{\lambda} G(u(1))
$$

- $F(x, \xi):=\int_{0}^{\xi} f(x, t) d t$ for each $x \in[0,1], \xi \in \mathbb{R}$
- $G(\xi):=\int_{0}^{\xi} g(t) d t$ for each $\xi \in \mathbb{R}$
- $\Psi_{\lambda, \mu}$ is Frechét differentiable, $\Psi_{\lambda, \mu} \in C^{1}(X)$
- $\left\langle\Psi_{\lambda, \mu}^{\prime}(u), v\right\rangle=\int_{0}^{1} f(x, u(x)) v(x) d x+\frac{\mu}{\lambda} g(u(1)) v(1)$, for each $u, v \in X$
- $\Psi_{\lambda, \mu}^{\prime}$ is compact

$$
I_{\lambda, \mu}:=\Phi-\lambda \Psi_{\lambda, \mu}
$$

L. Yang, H. Chen, X. Yang (2011)

For each $\lambda, \mu>0$, the critical points of $I_{\lambda, \mu}$ are classical solutions for problem ($P_{\lambda, \mu}$).

The problem

R．Bonanno，Relations between the mountain pass theorem and local minima，Adv．Nonlinear Anal．， 1 （2012），205－220．

$$
\begin{aligned}
& \left\{\begin{array}{l}
u^{(i v)}(x)+\lambda f(x, u(x))=0 \text { in }[0,1] \\
u(0)=u^{\prime}(0)=0 \\
u^{\prime \prime}(1)=0 \quad u^{\prime \prime \prime}(1)=\mu g(u(1))
\end{array}\right. \\
& \text { admits at least one non-zero solution }
\end{aligned}
$$

R G. Bonanno, Relations between the mountain pass theorem and local minima, Adv. Nonlinear Anal., 1 (2012), 205-220.

$$
\begin{gathered}
\Downarrow \\
\left\{\begin{array}{l}
u^{(i v)}(x)+\lambda f(x, u(x))=0 \text { in }[0,1] \\
u(0)=u^{\prime}(0)=0 \\
u^{\prime \prime}(1)=0 \quad u^{\prime \prime \prime}(1)=\mu g(u(1))
\end{array}\right.
\end{gathered}
$$

admits at least one non-zero solution

The main tool

- X real Banach space
- $\Phi, \Psi: X \rightarrow \mathbb{R}, \Phi, \Psi \in C^{1}(X)$
- $\inf _{x \in X} \Phi(x)=\Phi(0)=\Psi(0)=0$
- $\exists r>0$ and $\bar{x} \in X, r<\Phi(\bar{x})$:

$$
\sup \Psi(x)
$$

$\left(a_{1}\right) \frac{\sup _{\Phi(x) \leq r} \Psi(x)}{r}<\frac{\Psi(\bar{x})}{\Phi(\bar{x})}$,
$\left(a_{2}\right)$ for each $\left.\lambda \in\right] \frac{\Phi(\bar{x})}{\Psi(\bar{x})}, \frac{r}{\sup _{\Phi(x)<r} \Psi(x)}$ [the functional $I_{\lambda}:=\Phi-\lambda \Psi$ satisfies (P.S. $)^{[r]}$ condition.3

The main tool

Theorem 1 (Bonanno(2012))

for each $\left.\lambda \in \Lambda_{r}:=\right] \frac{\Phi(\bar{x})}{\Psi(\bar{x})}, \frac{r}{\sup _{\Phi(x) \leq r} \Psi(x)}\left[\right.$, there is $x_{0, \lambda} \in \Phi^{-1}(] 0, r[)$ such that $I_{\lambda}^{\prime}\left(x_{0, \lambda}\right) \equiv \vartheta_{X^{*}}$ and $I_{\lambda}\left(x_{0, \lambda}\right) \leq I_{\lambda}(x)$ for all $x \in \Phi^{-1}(] 0, r[)$.

Notations

For $\alpha>0$, we put

$$
F^{\alpha}:=\int_{0}^{1} \max _{|\xi| \leq \alpha} F(x, \xi) d x
$$

and

$$
G^{\alpha}:=\max _{|\xi| \leq \alpha} G(\xi)
$$

The main result

(f_{1}) there exist $\delta, \gamma \in \mathbb{R}$, with $0<\delta<\gamma$, such that

$$
\frac{F^{\gamma}}{\gamma^{2}}<\frac{1}{8 \pi^{4}}\left(\frac{3}{2}\right)^{3} \frac{\int_{\frac{3}{4}}^{1} F(x, \delta) d x}{\delta^{2}}
$$

(f_{2}) $F(x, t) \geq 0$ for almost every $x \in[0,1]$ and for all $t \in[0, \delta]$.(5)

The main result

$$
\left.\Lambda_{\delta, \gamma}:=\right] 4 \pi^{4}\left(\frac{2}{3}\right)^{3} \frac{\delta^{2}}{\int_{\frac{3}{4}}^{1} F(x, \delta) d x}, \frac{\gamma^{2}}{2 F^{\gamma}}[
$$

Theorem 2 (Bonanno, C. , Tersian - Electronic Journal of Qualitative Theory of Differential Equations - (2015))

for each $\lambda \in \Lambda_{\delta, \gamma}$ and for each $g: \mathbb{R} \rightarrow \mathbb{R}$ continuous, there exists $\eta_{\lambda, g}>0$ such that for each $\left.\mu \in\right] 0, \eta_{\lambda, g}$ [the problem $\left(P_{\lambda, \mu}\right)$ admits at least one non-zero solution u_{λ} such that $\left\|u_{\lambda}\right\|_{\infty},\left\|u_{\lambda}^{\prime}\right\|_{\infty}<\gamma$

The main result

$$
\left.\Lambda_{\delta, \gamma}:=\right] 4 \pi^{4}\left(\frac{2}{3}\right)^{3} \frac{\delta^{2}}{\int_{\frac{3}{4}}^{1} F(x, \delta) d x}, \frac{\gamma^{2}}{2 F^{\gamma}}[
$$

Theorem 2 (Bonanno, C. , Tersian - Electronic Journal of Qualitative Theory of Differential Equations - (2015))
for each $\lambda \in \Lambda_{\delta, \gamma}$ and for each $g: \mathbb{R} \rightarrow \mathbb{R}$ continuous, there exists $\eta_{\lambda, g}>0$ such that for each $\left.\mu \in\right] 0, \eta_{\lambda, g}$ [the problem ($P_{\lambda, \mu}$) admits at least one non-zero solution u_{λ} such that $\left\|u_{\lambda}\right\|_{\infty},\left\|u_{\lambda}^{\prime}\right\|_{\infty}<\gamma$.

$$
\eta_{\lambda, g}= \begin{cases}\frac{\gamma^{2}-2 \lambda F^{\gamma}}{2 G} & \text { if } G(\delta) \geq 0 \\ \min \left\{\frac{\gamma^{2}-2 \lambda F^{\gamma}}{2 G^{\gamma}}, \frac{4 \pi^{4} \delta^{2}-\lambda\left(\frac{3}{2}\right)^{3} \int_{\frac{3}{4}}^{1} F(x, \delta) d x}{\left(\frac{3}{2}\right)^{3} G(\delta)}\right\} & \text { if } G(\delta)<0\end{cases}
$$

Remark

We read $\frac{\gamma^{2}-2 \lambda F^{\gamma}}{2 G^{\gamma}}=+\infty$ when $G^{\gamma}=0$

Remark

For each $\lambda \in \Lambda_{\delta, \gamma}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ continuous it results $\eta_{\lambda, g}>0$.

$$
\eta_{\lambda, g}= \begin{cases}\frac{\gamma^{2}-2 \lambda F^{\gamma}}{2 G G^{\gamma}} & \text { if } G(\delta) \geq 0 \\ \min \left\{\frac{\gamma^{2}-2 \lambda F^{\gamma}}{2 G^{\gamma}}, \frac{4 \pi^{4} \delta^{2}-\lambda\left(\frac{3}{2}\right)^{3} \int_{\frac{3}{4}}^{1} F(x, \delta) d x}{\left(\frac{3}{2}\right)^{3} G(\delta)}\right\} & \text { if } G(\delta)<0\end{cases}
$$

Remark

We read $\frac{\gamma^{2}-2 \lambda F^{\gamma}}{2 G^{\gamma}}=+\infty$ when $G^{\gamma}=0$

Remark

For each $\lambda \in \Lambda_{\delta, \gamma}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ continuous it results $\eta_{\lambda, g}>0$.

$$
\eta_{\lambda, g}= \begin{cases}\frac{\gamma^{2}-2 \lambda F^{\gamma}}{2 G^{\gamma}} & \text { if } G(\delta) \geq 0 \\ \min \left\{\frac{\gamma^{2}-2 \lambda F^{\gamma}}{2 G^{\gamma}}, \frac{4 \pi^{4} \delta^{2}-\lambda\left(\frac{3}{2}\right)^{3} \int_{\frac{3}{4}}^{1} F(x, \delta) d x}{\left(\frac{3}{2}\right)^{3} G(\delta)}\right\} & \text { if } G(\delta)<0\end{cases}
$$

Remark

We read $\frac{\gamma^{2}-2 \lambda F^{\gamma}}{2 G^{\gamma}}=+\infty$ when $G^{\gamma}=0$

Remark

For each $\lambda \in \Lambda_{\delta, \gamma}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ continuous it results $\eta_{\lambda, g}>0$.

- $X:=\left\{u \in H^{2}([0,1]): u(0)=u^{\prime}(0)=0\right\}$
- $\lambda \in \Lambda_{\delta, \gamma}, g: \mathbb{R} \rightarrow \mathbb{R}$ continuous, $\left.\mu \in\right] 0, \eta_{\lambda, g}[$

$$
I_{\lambda, \mu}(u):=\underbrace{\frac{1}{2}\|u\|^{2}}_{\Phi(u)}-\lambda(\underbrace{\int_{0}^{1} F(x, u(x)) d x+\frac{\mu}{\lambda} G(u(1))}_{\Psi_{\lambda, \mu}(u)})
$$

- $\inf _{x \in X} \Phi(x)=\Phi(0)=\Psi_{\lambda, \mu}(0)=0$

$I_{\lambda, \mu}$ verifies $\left(a_{2}\right)$ of Theorem 1

for all $r \in]-\infty,+\infty\left[\text { the function } I_{\lambda, \mu} \text { satisfies the (P.S. }\right)^{[r]}$-condition.
$I_{\lambda, \mu}$ verifies $\left(a_{2}\right)$ of Theorem 1

$I_{\lambda, \mu}$ verifies $\left(a_{2}\right)$ of Theorem 1

4
for all $r \in]-\infty,+\infty\left[\right.$ the function $I_{\lambda, \mu}$ satisfies the $(P . S .)^{[r]}$-condition.
\Downarrow
$I_{\lambda, \mu}$ verifies $\left(a_{2}\right)$ of Theorem 1

- \bar{v} depends on δ

$$
\bar{v}(x)=\left\{\begin{array}{cc}
0 & x \in\left[0, \frac{3}{8}\right] \\
\delta \cos ^{2}\left(\frac{4 \pi x}{3}\right) & x \in\left[\frac{3}{8}, \frac{3}{4}\right] \\
\delta & x \in\left[\frac{3}{4}, 1\right]
\end{array}\right.
$$

The problem

$$
\begin{gathered}
\Phi(\bar{v})=4 \pi^{4} \delta^{2}\left(\frac{2}{3}\right)^{3} \quad \bar{v}(x) \in[0, \delta] \forall x \in\left[\frac{3}{8}, \frac{3}{4}\right]+\left(f_{2}\right) 5 \\
\Downarrow \\
\Psi_{\lambda, \mu}(\bar{v}) \geq \int_{\frac{3}{4}}^{1} F(x, \delta) d x+\frac{\mu}{\lambda} G(\delta) \\
\Downarrow
\end{gathered}
$$

$$
\frac{\Psi_{\lambda, \mu}(\bar{v})}{\Phi(\bar{v})} \geq \frac{\int_{\frac{3}{4}}^{1} F(x, \delta) d x+\frac{\mu}{\lambda} G(\delta)}{4 \pi^{4} \delta^{2}\left(\frac{2}{3}\right)^{3}}
$$

- r depends on $\gamma, r=\frac{\gamma^{2}}{2}$

$$
\forall u \in X: \Phi(u) \leq r,
$$ \Downarrow

$$
\|u\|_{\infty} \leq \gamma
$$

\Downarrow

$$
\frac{1}{r} \sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)} \Psi_{\lambda, \mu}(u) \leq \frac{2}{\gamma^{2}} F^{\gamma}+\frac{2}{\gamma^{2}} \frac{\mu}{\lambda} G^{\gamma}
$$

r and \bar{v} verify $\left(a_{1}\right)$ of Theorem 1

- $G(\delta) \geq 0, \eta_{\lambda, g}=\frac{\gamma^{2}-2 \lambda F^{\gamma}}{2 G^{\gamma}}$

$$
\overbrace{\frac{2}{\gamma^{2}} F^{\gamma}+\frac{2}{\gamma^{2}} \frac{\mu}{\lambda} G^{\gamma}<\frac{1}{\lambda}}^{\mu<\eta_{\lambda, g}}
$$

$$
\underbrace{\frac{1}{\lambda}<\frac{\int_{\frac{3}{4}}^{1} F(x, \delta) d x}{4 \pi^{4} \delta^{2}\left(\frac{2}{3}\right)^{3}}}_{\lambda \in \Lambda_{\delta, \gamma}} \leq \frac{\int_{\frac{3}{4}}^{1} F(x, \delta) d x}{4 \pi^{4} \delta^{2}\left(\frac{2}{3}\right)^{3}}+\frac{\mu}{\lambda} \frac{G(\delta)}{4 \pi^{4} \delta^{2}\left(\frac{2}{3}\right)^{3}}
$$

r and \bar{v} verify $\left(a_{1}\right)$ of Theorem 1

- $G(\delta)<0, \eta_{\lambda, g}=\min \left\{\frac{\gamma^{2}-2 \lambda F^{\gamma}}{2 G^{\gamma}}, \frac{4 \pi^{4} \delta^{2}-\lambda\left(\frac{3}{2}\right)^{3} \int_{\frac{1}{2}}^{\frac{1}{2}} F(x, \delta) d x}{\left(\frac{3}{2}\right)^{3} G(\delta)}\right\}$

$$
\begin{aligned}
& \overbrace{\frac{2}{\gamma^{2}} F^{\gamma}+\frac{2}{\gamma^{2}} \frac{\mu}{\lambda} G^{\gamma}<\frac{1}{\lambda}}^{\mu<\eta_{\lambda, g}} \\
& \underbrace{\frac{1}{\lambda}<\frac{\int_{\frac{3}{3}}^{1} F(x, \delta) d x}{4 \pi^{4} \delta^{2}\left(\frac{2}{3}\right)^{3}}+\frac{\mu}{\lambda} \frac{G(\delta)}{4 \pi^{4} \delta^{2}\left(\frac{2}{3}\right)^{3}}}_{\mu<\eta \lambda, g}
\end{aligned}
$$

r and \bar{v} verify $\left(a_{1}\right)$ of Theorem 1

$$
\frac{2}{\gamma^{2}} F^{\gamma}+\frac{2}{\gamma^{2}} \frac{\mu}{\lambda} G^{\gamma}<\frac{1}{\lambda}<\frac{\int_{\frac{3}{4}}^{1} F(x, \delta) d x}{4 \pi^{4} \delta^{2}\left(\frac{2}{3}\right)^{3}}+\frac{\mu}{\lambda} \frac{G(\delta)}{4 \pi^{4} \delta^{2}\left(\frac{2}{3}\right)^{3}}
$$

$\left(a_{1}\right)$ of Theorem 1 is verified

r and \bar{v} verify $\left(a_{1}\right)$ of Theorem 1

$$
\frac{2}{\gamma^{2}} F^{\gamma}+\frac{2}{\gamma^{2}} \frac{\mu}{\lambda} G^{\gamma}<\frac{1}{\lambda}<\frac{\int_{\frac{3}{4}}^{1} F(x, \delta) d x}{4 \pi^{4} \delta^{2}\left(\frac{2}{3}\right)^{3}}+\frac{\mu}{\lambda} \frac{G(\delta)}{4 \pi^{4} \delta^{2}\left(\frac{2}{3}\right)^{3}}
$$

\Downarrow

$$
\begin{gathered}
\frac{1}{r} \sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)} \Psi_{\lambda, \mu}(u)<\frac{1}{\lambda}<\frac{\Psi_{\lambda, \mu}(\bar{v})}{\Phi(\bar{v})} \\
\Downarrow
\end{gathered}
$$

$\left(a_{1}\right)$ of Theorem 1 is verified
$\Phi(\bar{v})<r$

- $\delta<\gamma+\left(f_{1}\right) \Longrightarrow \sqrt{8 \pi^{4}\left(\frac{2}{3}\right)^{3}} \delta<\gamma$
\Downarrow

$$
\Phi(\bar{v})=4 \pi^{4} \delta^{2}\left(\frac{2}{3}\right)^{3}<\frac{\gamma^{2}}{2}=r
$$

- $\left.\lambda \in \Lambda_{\delta, \gamma} \subseteq\right] \frac{\Phi(\bar{v})}{\Psi_{\lambda, \mu}(\bar{v})}, \frac{r}{\sup _{\Phi(u) \leq r} \Psi_{\lambda, \mu}(u)}[$ \Downarrow

Theorem 1 guarantees the existence of a non-trivial classical solution of problem $\left(P_{\lambda, \mu}\right), u_{\lambda}$ such that $\left\|u_{\lambda}\right\|_{\infty},\left\|u_{\lambda}^{\prime}\right\|_{\infty}<\gamma$

An example of application of Theorem 2

- $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(u):= \begin{cases}0, & u<0, \\ u-u^{2}, & 0 \leq u \leq 1, \\ 0 & u>1 .\end{cases}
$$

- $\delta=\frac{1}{2}, \gamma=22$
for each $\lambda \in] 1385.4,1452[$ and each $g: \mathbb{R} \rightarrow \mathbb{R}$ continuous there exists $\eta_{\lambda, g}>0$ such that for each $\left.\mu \in\right] 0, \eta_{\lambda, g}\left[\right.$, the problem ($P_{\lambda, \mu}$) admits at least one non-zero solution u_{λ} with $\|u\|_{\infty},\left\|u^{\prime}\right\|_{\infty}<22$.

The problem
Physical meaning
Variational structure of problem $\left(P_{\lambda, \mu}\right)$
The main tool
The main result
Proof of Theorem 2
Consequences
Bibliography

A particular case of Theorem 2

$\left(f_{1}^{\prime \prime}\right) f: \mathbb{R} \rightarrow\left[0,+\infty\left[\right.\right.$ continuous, $\lim _{\sup }^{t \rightarrow 0^{+}} \frac{F(t)}{t^{2}}=+\infty$
\Downarrow

Theorem 3 (Bonanno, C. , Tersian - EJQTDE - (2015))

$\forall \gamma>0, \forall \lambda \in] 0, \frac{\gamma^{2}}{2 F(\gamma)}[, \forall g: \mathbb{R} \rightarrow[0,+\infty[$ continuous and $\forall \mu \in] 0, \frac{\gamma^{2}-2 F(\gamma) \lambda}{2 G(\gamma)}[$, the problem

$$
\left\{\begin{array}{l}
u^{(i v)}(x)+\lambda f(u(x))=0 \text { in }[0,1] \\
u(0)=u^{\prime}(0)=0 \\
u^{\prime \prime}(1)=0 \quad u^{\prime \prime \prime}(1)=\mu g(u(1))
\end{array}\right.
$$

admits at least one non-zero classical solution u such that $\|u\|_{\infty},\left\|u^{\prime}\right\|_{\infty}<\gamma$

variational structure in Theorem 2

$$
I_{\lambda, \mu}(u):=\underbrace{\frac{1}{2}\|u\|^{2}}_{\Phi(u)}-\lambda(\underbrace{\int_{0}^{1} F(x, u(x)) d x+\frac{\mu}{\lambda} G(u(1))}_{\Psi_{\lambda, \mu}(u)})
$$

variational structure in Theorem 2

$$
I_{\lambda, \mu}(u):=\underbrace{\frac{1}{2}\|u\|^{2}}_{\Phi(u)}-\lambda(\underbrace{\int_{0}^{1} F(x, u(x)) d x+\frac{\mu}{\lambda} G(u(1))}_{\Psi_{\lambda, \mu}(u)})
$$

$$
I_{\lambda, \mu}(u):=\underbrace{\frac{1}{2}\|u\|^{2}}_{\Phi(u)}-\mu(\underbrace{\frac{\lambda}{\mu} \int_{0}^{1} F(x, u(x)) d x+G(u(1))}_{\tilde{\Psi}_{\lambda, \mu}(u)})
$$

$\left(g_{1}\right)$ there exist $\delta, \gamma \in \mathbb{R}$ with $0<\delta<\gamma$:

$$
\frac{G^{\gamma}}{\gamma^{2}}<\frac{1}{8 \pi^{4}}\left(\frac{3}{2}\right)^{3} \frac{G(\delta)}{\delta^{2}}
$$

$$
\begin{gathered}
\left.\Gamma_{\delta, \gamma}:=\right] 4 \pi^{4}\left(\frac{2}{3}\right)^{3} \frac{\delta^{2}}{G(\delta)}, \frac{\gamma^{2}}{2 G^{\gamma}}[\\
\Downarrow
\end{gathered}
$$

Theorem 2'

for each $\mu \in \Gamma_{\delta, \gamma}$ and for each $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R} L^{1}$-Carathéodory function verifying condition $\left(f_{2}\right)$ of Theorem 26, there exists $\theta_{\mu, f}:=\frac{\gamma^{2}-2 \mu G^{\gamma}}{2 F^{\gamma}}>0$ such that for each $\left.\lambda \in\right] 0, \theta_{\mu, f}[$ the problem ($P_{\lambda, \mu}$) admits at least one non-zero solution u such that $\|u\|_{\infty},\left\|u^{\prime}\right\|_{\infty}<\gamma$

A particular case of Theorem 2'

$\left(g_{1}^{\prime \prime}\right) g: \mathbb{R} \rightarrow\left[0,+\infty\left[\right.\right.$ continuous, $\lim _{\sup }^{t \rightarrow 0^{+}} \frac{g(t)}{t}=+\infty$

Theorem 3' (Bonanno,C. , Tersian - EJQTDE - (2015))

$\forall \gamma>0, \forall \mu \in] 0, \frac{\gamma^{2}}{2 G(\gamma)}[, \forall f: \mathbb{R} \rightarrow[0,+\infty[$ continuous and $\forall \lambda \in] 0, \frac{\gamma^{2}-2 \mu G(\gamma)}{2 F(\gamma)}$ [, the problem

$$
\left\{\begin{array}{l}
u^{(i v)}(x)+\lambda f(u(x))=0 \text { in }[0,1] \\
u(0)=u^{\prime}(0)=0
\end{array}\right.
$$

$$
\left(\tilde{P}_{\lambda, \mu}\right)
$$

admits at least one non-zero classical solution u such that $\|u\|_{\infty},\left\|u^{\prime}\right\|_{\infty}<\gamma$

Corollary of Theorem 3'

$$
f: \mathbb{R} \rightarrow[0,+\infty[, f \text { continuous },
$$

\Downarrow

Corollary of Theorem 3'

for each $\lambda \in] 0, \frac{1}{10 \int_{0}^{2} f(t) d t}[$ the problem

$$
\left\{\begin{array}{l}
u^{(i v)}(x)+\lambda f(u(x))=0 \text { in }[0,1] \\
u(0)=u^{\prime}(0)=0 \\
u^{\prime \prime}(1)=0 \quad u^{\prime \prime \prime}(1)=\sqrt{|u(1)|}
\end{array}\right.
$$

admits at least one non-zero classical solution
G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Analysis 75(2012), 2992-3007.
R. Gonanno, Relations between the mountain pass theorem and local minima, Adv. Nonlinear Anal., 1 (2012), 205-220.

R-Bonanno, A.Chinnì, S.A.Tersian, Existence results for a two point boundary value problem involving a fourth-order equation, Electronic Journal of Qualitative Theory of Differential Equations, 33 (2015), 1-9.

國 G. Bonanno, B. Di Bella, A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl., 343 (2008), 1166-1176.

R- A. Cabada, S. Tersian, Multiplicity of solutions of a two point boundary value problem for a fourth-order equation, Appl. Math. and Computations, 219 (2013), n. 10, 5261-5267.
M.R. Grossinho M.R., S. Tersian, The dual variational principle and equilibria for a beam resting on a discontinuous nonlinear elastic foundation, Nonlinear Anal., 41 (2000), 417-431.
L. Yang, H. Chen, X. Yang, The multiplicity of solutions for fourth-order equations generated from a boundary condition, Appl. Math. Letters, 24 (2011), 1599-1603.

茥
T.F. Ma, J. Da Silva, Iterative solutions for a beam equation with nonlinear boundary conditions of third order, Appl. Math. Comput., 159 (2004), 11-18.

R T.F. MA, Positive solutions for a beam equation on a nonlinear elastic foundation, Appl. Math. Comput., 159 (2004), 11-18.

(P.S. $)^{[r]}$

- X real Banach space
- $\Phi, \Psi: X \rightarrow \mathbb{R}, \Phi, \Psi \in C^{1}(X)$
- $r \in \mathbb{R}$,
$I(\cdot)=\Phi(\cdot)-\Psi(\cdot)$ verifies $(P . S .)^{[r]}$ condition if any sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$
in X such that
(α) $\left\{I\left(u_{n}\right)\right\}$ is bounded;
(β) $\lim _{n \rightarrow+\infty}\left\|I^{\prime}\left(u_{n}\right)\right\|_{X^{*}}=0$;
(γ) $\Phi\left(u_{n}\right)<r$ for each $n \in \mathbb{N}$;
has a convergent subsequence.

(P.S. $)^{[r]}$

(Bonanno(2012))

X reflexive
$\Phi \in C^{1}(X)$
Φ s.w.l. semicontinuous

$$
\Psi \in C^{1}(X)
$$

Φ coercive
Φ^{\prime} admits a continuous inverse
Ψ^{\prime} compact
\Downarrow
for all $r \in]-\infty,+\infty\left[\right.$ the function $\Phi-\Psi$ satisfies the $(P . S .)^{[r]}$-condition.
(4)

Antonia Chinnì (University of Messina) Existence of one non-zero solution for a two point bol GEDO2018

