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H. AIVIANN

—u" = Af(u) in )0, 1]
(P

f IR — IR is a continuous and nonnegative function

such that 7(0) > 0: Cao
.
lim M = +00. <«

t——+o00 {

Then, there is \* > 0 such that the problem (P))
has at least two positive solutions for 0 < X < \*:

at least one for A = \*; none for A\ > \*.



CRANDALL-RABINOWITZ

—Au = \f(u) in
(Fy)

=0 on )
f IR — IR s a continuous, nonnegative and sub-critical

function such that
f(0) > 0; 1
m>2 1>0 0<mF(&) <Ef(E) forall§ =1 @

Then, there is \* > 0 such that the problem (P))

has at least two positive solutions for 0 < X < \*:

at least one for A = \*; none for A\ > \*.



The (AR) condition

m>2 1>0 0<mF(§) <Ef(E) forall§ =1 ®
IS a bit more strong than

lim @ = 400 g>1 <D

t—+o0 {4

that 1s, T 1s more than superlinear at infinity.

The condition f(0)>0 implies

T
lim fEL) = +00 0

t—(0+

that is, f is sublinear at zero.

In both cases 0 iIs not a solution of the problem.



ANMIBROSETTI-BREZIS-CERAM I

—Au = pu® + ul m )
(Fu)
u =10 on  0f)

where 0<s<1<q, with g subcritical (or critical).

Then, there is/\ > 0 such that the problem (P,)

has at least two positive solutions for () < p < A:
at least one for ;1 = A\; none for |t > \.



In this case
f(u)=pu” + ut

for which
0 is a solution of the problem
) o
lim ——~* = +00 that is, f is sublinear at zero
t—0+
. t ic fi
lim f( ) = 400, g>1 that |s,_f IS mor_e tha_n
t—+oo 14 superlinear at infinity



The aim of this talk is to present an existence result of two positive
solutions for the previous problems by requiring, besides the (AR)
condition, a condition which is more general than the sublinearity
at zero. Precisely, in the ordinary case, we require:

there are two positive constants c, d, with d < ¢, such that

PO g

2 4

F is the primitive of f, with F(0)=0.

So, In particular, one has that

. f(t)
lim 1 = impli
lim == = 400 implies L 17



In addition, it may be satisfied also in some case where the
functions f are superlinear (or linear) at zero.

A similar situation one has for elliptic case. In this case
such a condition is a bit less simple.

The basic ingredients of such a result are:
a theorem of local minimum
and
the Ambrosetti-Rabinowitz theorem.



HE AMIBROSETTI-RABINOWITZ THEOREIWI

Let X be a real Banach space, I : X — R a continuously
Gateaur differentiable function which verifies (PS).

Assume that

(G) there are ug,uy € X and r € IR, with
0 <r < ||[uy —ugl|, such that

inf  I(u) > max{/(up), [(uy)}.

lu—uol|=r f

Then, I admaits a critical value ¢ characterized by
¢ = inf max I(v(t))
yer te[0.1]
where

[={ve C(0,1], X) : v(0) = up;y(1) = uy }.



A LOCAL MINIMUM THEORE M

BONANNO G., A critical point theorem via the Ekeland variational principle, Nonlinear Analysis, 75 (2012), 2992-3007.

Our aim Is to present a local minimum theorem for
functionals of the type:

3 = o

O-Y




A LOCAL MINIMUM THEORE M

Let X be a real Banach space and .V : X — IR two
continuously Gateauz differentiable functions. Put

[ =] —

and assume that there are ro € X and r1.79 € IR, with
r1 < ®(xg) < ro, such that

sup  W(u) <1y — D(xo) + U(wo), ENB

ucd—1 (Jr1,r2])

sup U(u) <1y — P(xg) + V(zp). ‘E’

ue®—1(]—oo,r1])

Moreover, assume that I satisfies "1(P.S)"-condition.
Then, there is ug € O Yr.r < I(u)
for all uw € ®=(]ry, o




A CONSEQUENCE:
A NON-ZERO LOCAL MINIMUM THEORE WM

Let X be a real Banach space and let &, W : X — IR be
two continuously Gateaur differentiable functionals such
that infx ® = ®&(0) = ¥(0) = 0. Assume that there are
rell and u e X, with 0 < ®(u) < r, such that
sup W(u) w
ue®@—1(]—cc.r[) - Y(u)
T D)
D) r
(i)’ sup W ((ae)
ucd—1{]—oc,r)

I, = ® — AV satisfies (PS)"-condition.

D (1) r
Then, for each A T(a)’ i T () [,
ucs®—1(]—ooc.r)

ug € 710, r]) (hence, ug £ 0) such that Iy(ug) < Ih(u)
for all u € ®1(]0,r[) and I} (ug) = 0.

and, for each A E} [, the functional

there is



A TWO NONZERO CRITICAL POINTS THEOREWN

Theorem 2.1. Let X be a real Banach space and let &, W : X — IR be two con-
tinuously Gateaux differentiable functionals such that infx & = ¢(0) = ¥(0) = 0.
Assume that there are r € R and u € X, with 0 < ®(u) < r, such that

sup  U(u)

ue®—1(]—oc0,r]) KD(ﬂ)
r = {Ip(ﬂ) @

o1 : | |
(i) p 10 [ the functional Iy, = ® — AWV satisfies
ue®—1(]—o0,r])

(PS)-condition and it is unbounded from below.

(_]:) .“. -
Then, for each \ € (lf) ?
() sup  W(u)
uEfi'_l{]—:o,r]}
non-zero critical points uy 1, uy2 such that Iy(uy1) <0 < Iy(uy2).

and, for each \ € ]

[; the functional Iy admits at least two

BONANNO G., D’AGUTI’ G., Two non-zero solutions for elliptic Dirichlet problems,
Zeitschrift fir Analysis und ihre Anwendungen , 35 n.4 (2016), 449-464.



ath
LEVEL K>0

Uz
0

local minimum ux such that I(u1)<I(uo)



Consider the problem

—Au = \f(u) n

(P\)
=0 on  Jf)

where f: IR — IR is a function which is nonnegative and continuous in [0, 400/

Assume that

(h) there exist s € 1,2, ¢ € |2,2N/(N — 2)| and two positive constants as, a,
such that

£(t) < adtl™" + agltl*"
for allt > 0.



Moreover, put R(z) = sup{d : B(z,0) C Q} for all z € 2, and R = sup,, R(x), for

which there exists xg € (2 such that B(xzg, R) C 2. Finally, put
. R* 1
I&“ — OfiaN ) - 2
2028 — 1) 2120 %
and
- 1 1 (5? 1 B 1 1
T RQFRFQ) T )R Byt 4 e

where 7,0 are positive constants.

T 1 ( N! )UN
B \/\(\ — 7 2I(1 + N/2)

lullper @) < Tlul| Yue H3(Q)



Theorem 3.1. Assume that (h) holds. Moreover, assume that there are two positive
constants v and o, with O < =, such that

3 F(S
”S - 2+'f; -2 ﬁ% (3.1)

and there are two constants m > 2 and [ > 0 such that, for all £ > [, one has
0 < mF(€) < E(6). (AR)

Then, for each \ €|=5, A,|, problem (P \ ) admits at least two positive weak solutions.

_ 2-s 2-s
_ 1 (5)‘3—_? qg\* [2—5s\9"°q—2
AT o Q7 \a, aq q—2 q—s

Corollary 3.1. Assume (h),

F(¢) ._
> = 400 (3.1°)

lim sup
£—=0+

and (AR).
Then, for each A\ €]0, )\ [, problem (P\) admits at least two positive weak solutions.



Example 3.1. Let Q = {z € R? : |2| < 1} and let f: IR — IR be a function defined
as follows

( 2
(50 if t< (&)
2
W=y vi it (&) <t<1,
2 if t>1

\

Owing to previous theorem, the problem

{—5u:fw)in Q.

ulan =0,

admits at least two positivie weak solutions.

t*  Superlinear at + oo

71

(5(])31‘2
Superlinear at 0



Let Q= {x € R’ : |z| <1} and let f: R — IR be a function defined
as follows

- (50)t it tg(%)g.
2
W=y vi it (&) <t<1,
2 if t> 1

Owing to previous theorem, the problem

{—Au.:f(u) in Q.

ulag = 0,

admits at least two positive weak |[solutions.

/Id Superlinear at + o

NG

(50)t

Linear at O




V3
472|0)
{ —Au = Amax{{/u,u?} in Q.

Hlaﬂ = 0,

Example 3.2. Owing to Corollary 3.1, for each A\ € ‘[]. 5 { the problem

N

admits at least two positive weak solutions. Moreover, m particular
if Q= {r € R’:|z| < 1}, the problem

{ —Au = s max{y/u, v’} in Q

Hlag — (),

(] =
S
Ll bk

admits at least two positive weak solutions, since % < A= % NE] (

Superlinear at + oo

2

sl

Sublinear at O




We recall that in the Crandall-Rabinowitz theorem, besides (AR)
condition, the key assumption is

Hence, the Crandall-Rabinowitz theorem cannot applied to none of
previous examples since, there, one has f(0)=0.
Moreover, we also observe that

f(0) >0 mm)  fsublinearat0”




Now, put

1 q—2 2—s (2 — 3)(2_5} QITE
T (q — Nga—=2 | -
lii 2]_'2‘52‘% b(’q —)Qq (q — S)I:q—sj

Corollary 3.2. Fiz 1 < s <2 < q < 2*. Then, for each i €0, ji [ problem

_ —Au=pust+u?t in Q.
{D; ) { U‘ﬁ'ﬂ — 0

admats at least two positive weak solutions.

Indeed, It Is enough to observe that

— | s\ 2-s [2—8\Tqg—2
)\ = — | — (q)a—s : =~ 1
2720~ \ q— 2 q—S

So, from our result applied to —Aw =) (uus—! + w2-11) We obtain the
conclusion.




We observe that our results and the Ambosetti-Brezis-Cerami as well as

Crandall-Rabinowitz are mutually independent. Indeed, on the hand, we
can apply our results to problems where ABC and CR cannot be applied,
as seen In the previous examples. On the other hand, when we can apply
both CR (or ABC) and our results, the value 2* obtained in CR (or ABC),
even if given in a theorical form, is the best. So, in this latest case we can

use our results as a complement to CR in order to give a numerical lower
bound of 4*, that Is,

A<Il*

The same remark also for ABC holds, that is a lower bound of A is L.



Previous results also for the ordinary case holds true.

Theorem 3.2. Let f: [0, +oc[— [0, +00| be a continuous function and assume that
(AR) holds. Moreover, assume that there are two positive constants +, o, with 6 < =
such that

F(v)  1F(0)

!

~2 o8 (3.17)
Then, for each A ] 8 27 { the probl
en, for each A € —, . the problem
F(0) F(v)
—u" = Af(u) in |0, 1], f
{ w(0) = u(1) = 0, (£3)
admits at least two positive classical solutions.
. F(0) o . :
If Iim sup \};2 = +oo then (3.1”) holds true and in this case the interval becames
o .
a_ 0+ i )2
0,\|. where \ = sup ——.
J0.A] 0 F(7)
So, in particular, our result holds by assuming, besides the (AR) — condition, the
following condition (t)
lim —~* = +o00.

t—0+



Example 3.3. Let f: IR — IR be the function defined as follows

2 if t<l,
fy=< Vvt if 1<t <102
ost? bt > 107

Owing to Theorem 3.2, the problem

{— 2f(u) in 0. 1],
(0) = (1):0.

1 F(3)
admits at least two positive classical solutions. It 1s enough to to verify E% <
1 1 F(1) i . : . . : :
= < T We observe that in this case, the nonlinearity f 1s not sublinear at
r)
Ze10.

Example 3.4. For each A € |0, 3| the problem

{ —u" = Amax{/u, v} in ]0,1].
u(0) =u(l) =0,

admits at least two positive classical solutions.



We recall that in the Amgnn} theo_rem, besides the condition

the key assumption is

Hence, the Amann theorem cannot applied to none of previous examples
since, there, f(0)=0 is assumed.
Moreover, we also observe that

f(0) >0 ‘ f sublinearat 0 ™



We observe that our results and the Amann theorem are mutually
Independent. Indeed, on the hand, we can apply our results to problems
where the result of Amann cannot be applied, as seen In the previous
examples. On the other hand, Amann requires only the superlinearity at
Infinity and, in addition, when we can apply both the results, the value 4*
obtained in Amann, even If given in a theorical form, is the best. So, In
this latest case we can use our results as a complement to the result of
Amann in order to give a numerical lower bound of A*, that is,

A< *
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We recall again the situation that we have obtained in order to the existence of two
solutions. Our condition expresses a growth which is less than quadratic of the
primitive in an appropriate interval, and it is clearly more general than the condition

requested by Crandall-Rabinowitz, Ambrosetti-Brezis-Cerami, Amann, which is f(0)>0
or the sublinearity of f at 0.

Precisely, the condition

F(c) _ 1 F'(d)
2 4 d?

for some d<c

IS more general than the condition

lim @ — +o¢

t—0+ f

which is, in turn, more general than the condition

£(0) >0



Nevertheless, when f is sublinear at 0 (or, also, f(0)>0) we do not say “the results of CR, ABC, A
can be also obtained by our results”, but instead of this, we say “we can obtained a numerical
estimate of the best value 1*”, precising that they are mutually independent. This because the A*
obtained from them is the best value for which the problem admits solutions while we do not
know if our )\, ensured by the local minimum theorem, is the best value, even if we know its
numerical estimate.

Here, we explicit better such a situation. We recall the general expression of our A obtained from
the local minimum theorem. Precisely, one has

< r— ®(v)

A= sup sup |
r>infy ® pedp—1 {:]—rx‘::‘-]‘[j 5111] '*II{H.) — 1];' (1)
ued—1{]—oo,r()
A(r) = :

sup U(u)

ue®—1(]—oo,r|)
— .?'1

r>0 >0 sup U(u)
ugd—(]—oo,r])




Some notes on

3%
A













Given the problem

—Au = Af(u) in

P, ) |
u=1>0 on  df)

where f : IR — IR is a subcritical, sublinear at zero and superlinear at infinity

continuous function.

1

P -\:‘/
Sy

S

0 A
—

Solutions NO Solution




Solutions NO Solution



— *‘—“ -
ey

i

0 A
—_—

Solutions NO Solution




— *‘—“ -
ey

i

0 A
—_—

Solutions NO Solution




| A
Solutions NO Solution

In literature we have some estimates of A from above, that is, from some known results

we can obtain
UPPER BOUNDS of A

For instance, in the following works for general or specific problems:
Crandall-Rabinowitz,

De Coster-Habets,

Willem,

Brezis-Nirenberg,

Liu,

Laetsch,

L OWER BOUNDS of A

On the contrary, in literature only few papers deals with lower bounds. We refer for instance to
C. Bandle, Z. Livu,...




R %
o

Solutions NO Solution

UPPER BOUNDS of A

For instance, Crandall-Rabinowitz established that P;)
has no solution (f(0)# 0) If

A >,
where . 1S the first eigenvalue of the following problem

[ —Au=puf'(0)u in Q

u = () on  Jf)

.



| A

Solutions NO Solution
UPPER BOUNDS of A

For instance, De Coster-Habets established (in the ordinary case) that
P/) has no solution (f(0)# 0) if

>u/K
where K 1s such that f(u)> Ku for all u >0.

For instance, in the book of Willem it is observed that the following

problem
—Au + \u = |ulP~%u,
u > 0,u € Hy(52),

has no solution If
A>ha.



‘éf

5

Solutions NO Solution

UPPER BOUNDS of A

We focus on the constants of Crandall-Rabinowitz and De Coster
—Habets, that we call ACR and ADH. So, we have:

\ <
A S ACR x - ADH
Which is the best constant among them?

To give an idea, we consider the following problem
(it is known as Gelfand problem)

—u" = Ae" in |0, 1]



Solutions

—u" = \e* in ]0,1]

From Amann, it admits

ke
at least two solutions if AL < A
at least one solution if = x ACR —7T
A A

no solution if

Ao 2
A< L
e

So, a good upper bound of )., seems to be Aox

NO Solution



Solutions NO Solution

N =M sup -

r~2o0 f(r)

Proposition. If 4> A, then Pz) admits no solution.

The proof is the same of De Coster —Habets, Willem, Liu, ABC,...
Clearly, A=Ao+ and it the same upper bound obtained
by Liu for ABC problem in the ordinary case.

Moreover, as seen before, for the Gelfand problem one has:




A A
Solutions NQO Solution

A =M sup -

r~=~» f(l’)




Solutions Nb Solution

LOWER BOUNDS of A

In literature only few papers deals with lower bounds. Crandall-
Rabinowitz refer to C. Bandle (1973) (as you can see below) .

role. BANDLE [4, 5] has determined some bounds for solutions of (1) provided
that the solution satisfies a constraint, but it is not clear how to verify this side
condition. In the same papers, she has also obtained sharp lower bounds on 4.

Indeed, Bandle investigated some specific problems for n=2.
Zhaoli Liu obtained a lower bound for the ABC problem for n=1.

At the best of our knowledgements, only in a my old paper a
lower bound is established for general problem (even if when (0)£0).



Proceedings of the Edinburgh Mathematical Society (1996) 39, 31-36 ©

EXISTENCE THEOREMS ON THE DIRICHLET PROBLEM
FOR THE EQUATION Au+ f(x,u)=0

by GABRIELE BONANNO
(Received 24th February 1994)

In this note we consider the Dirichlet problem Au+ f(x,u)=0in £, u=0 on J; here £ is a bounded domain
in R" (n=3), with smooth boundary éQ2. We prove the existence of strong solutions to the previous problem,
which are positive if f satisfies a suitable condition. As a consequence we find that the problem with

(x,u)= uL“"”’“'"l“+g{x, u), may have positive solutions even if g is not a lower-order perturbation of
ﬂtf‘"””‘"‘ " Next, we examine the case f(x,u)=[u]®* 2/~ 2) 4 h(x).

1991 Mathematics subject classification: 3565, 35160.

1. Introduction

Let Q be a bounded domain in R", n=>3, with a C'!-boundary 9Q, and let f be



This paper is based on two powerfull results:
1. Afixed point theorem due to Arino-Gautier-Penot.
2. Areqgularity result due to G. Talenti;

Funkcialaj Ekvacioj, 27 (1984), 273-279

A Fixed Point Theorem for Sequentially Continuous Mappings
with Application to Ordinary Differential Equations

By

0. ARINO, S. GAUTIER, J. P. PENOT

(Université de Pau et des Pays de I’Adour, France)

As everybody knows, the road to Hell is paved with good intentions... and
faults. The story of existence results for ordinary differential equations is an illus-
tration of this saying. WNot only the common belief that continuous vector fields



ANNALI DELLA
SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

GIORGIO TALENTI
Elliptic equations and rearrangements

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4° série, tome 3,n°4
(1976), p. 697-718

Elliptic Equations and Rearrangements.

GIORGIO TALENTI (*)

dedicated to Jean Leray

1. — Introduction.

We are concerned with linear elliptic second-order partial differential
equations in divergence form. The equations we deal with are uniformly



Fix a bounded open set Q C IR", n > 3, with a C'''— boundary 99 and v € L*(2).
Moreover, consider the problem
—Au=wv(z) in
| (P)
u=10 on of).

It is well known that (P) admits a unique weak solution u € W;”(9) (see, for
instance, [24, Theorem 9.15]). Moreover, owing to the regularity result of Talenti [34,
Theorem 2] one has u € L>(€2) and

|ulloo < Blv]l (2.1)

where

2
!

B = ﬁ (F (1 + ;) |Q|) (2.2)
(see 34, Remark 1]).

- T - - . - a=






When f(0) # 0 one has:

0 M A A

—— .
S N(S Solution

olutions

Indeed, by using a variational approach, it is possible to prove
that 4+ holds true even in the case f(0)=0. Hence, we have

1 S
Sl
A= 559 ax 7(0)
te|0,s]

By using in a suitable way the direct methods theorem instead of
Arino-Gauthier-Penot fixed point theorem.

BONANNO G., Dirichlet problems without asymptotic conditions on the nonlinear term,
Rendiconti dell'lstituto di Matematica dell'Universita di Trieste, 49 (2017), 319-333.



i Ar 7‘\" A
A _(5—
Solutions NO Solution

LOWER BOUNDS of }

A= sup sup r— o)
-rji::infi— g 1JEiIl—I1{]—::x:_.:r'[f| SUp "I’(H) o 11'[(1)
ue®—1(]—oc,r)










Where 1s the “position” of

Ny

7







A A A

e BEEE— .
Solutions NB Solution

i— Sup SUp r— o)
r>infy @ 1,5{1,—'1{]_%?.[3 Sup U(u) — ¥(v)
ue®~1(]—oo,r()

N <A

— — T
A= Ar) =
750 (r) b sup U ()
ue®—1(]—oo,r[)




A X

0 A 5 A

Y EEE— .
Solutions NO Eolutlon

) Ak A
Solutions NO Solution



Now, we summarise the situation!

. _ H(v
A= sup sup i (v)

r>infyxy ® ved—1(]—oo,r|) SUup l];i’(-u) o 1]?(1)
ue®@1(]—eo,r))

1 S
Sl
A= B3 ax F(D)
te|0,s]

e
They are both lower bounds of ),



—u" = \e* in ]0,1]




So, it seems that we have the following situation:

&8

i Ao XA A
" Solufions ' NOSolution
Solutions NO Solution

In particular, we have

M = A < A 2
and, for the Gelfand problem, one has: 7\, < [E ?}
In general, we have

;\, — —sup—" = A -
T B0 sup f(t) A~ L0 f(r)

i € i%u L A\ Sup —
B o sup f(t) "' f(r)

te[0,r]




Taking into account of the expressions of Ar and A, by using
a suitable combination among the “costant function” and
eigenfunction, and arguing as in the proof used for obtain -
It Is possible to establish the following result.

Put ) .
A= A sl .
1 _11}103 sup f(t)

te[0,r]

e

Then, for each A € [0, A|, problem (Py) admits at least one positive solution.

So, when f 1S monotone, we have

;;\ — J‘L






So, in particular for the Gelfand problem we have

Hence, from such a result and the Amann result, we obtain that
the problem L e in 10,1[

admits at least two positive solutions if A< =2, , at least one positive

solution if A: =* , nosolutionif A> =* . ¢
€ €



-
>k

Ar



A(Ilocal minimum which is a
glabal minimum for the restriction

\
|

A global minimum for the associated functional
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Abstract. In this note we introduce a suitable class of functionals. including the class of integral
functionals. and prove that any (strict) local minimum of a functional of this class. defined on a
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THEOREM 1. Let J : M —— R be a strictly increasing functional. Then, any
local minimum u of Jy in X, such that J;(u) € R is a global minimum. Moreover;
Joreveryvv € X, one has f(t.u(t)) < f(t.v(t)) p-a.e.inT .

A classical example of a functional of this type is the integral functional, namely

/\.
Ir(u) = / f(t, u(t))dp.
J1

_ ~ We assume that X 1s decomposable.
This means thatif A € F andu, v € X, then 1 yu + 1y yv € X, where | 4 15 the
characteristic function of A.

To give an idea, taking into account of our usual notations:
Any local minimum of

Y’(u)=j f(u(x))dx, uin LP(Q)
Is a global minimum.”
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<«— X local minimum

If X 1S a local minimum for @-¥ in X, 1t i1s a local minimum In
®(]-00,r]), then it is a local minimum at its boundary, then it
IS a local minimum for the functional r-¥.



So, we can obtain that:
If wo Is a local minimum for &@-% in the Sobolev space X,

then there Is r>d(uo) such that
@-¥ admits a global minimum in @7(]-o0,7/).

Hence, our target has been obtained. Indeed,
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A TWO NONZERO CRITICAL POINTS THEOREM

So, now we can say that we can apply our two non-zero critical points
theorem even when f is not sublinear at zero and, on the contrary, when f
IS sublinear at zero, we obtain the results as established by ABC and CR.







