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The condition  f(0)>0  implies

1’

that is, f is sublinear at zero.  

2’

AR

The (AR) condition

is a bit more strong than  

q>1

that is, f is more than superlinear at infinity.  

In both cases 0 is not a solution of the problem.



where  0<s<1<q,  with q subcritical (or critical).



In this case  

f(u)=          

for which

0 is a solution of the problem 

that is, f is sublinear at zero

that is, f is more than 

superlinear at infinity
, q>1



The aim of this talk is to present an existence result of two positive

solutions for the previous problems by requiring, besides the (AR)

condition, a condition which is more general than the sublinearity

at zero. Precisely, in the ordinary case, we require:

F is the primitive of  f, with F(0)=0. 

implies 1’’

So, in particular, one has that

1’’



In addition, it may be satisfied also in some case where the 

functions f  are superlinear (or linear) at zero.

A similar situation one has for elliptic case. In this case 

such a condition is a bit less simple. 

The basic ingredients of such a result  are:

a theorem of local minimum

and

the Ambrosetti-Rabinowitz theorem.





Our aim is to present a local minimum theorem for

functionals of the type:

-
Φ - Ψ

BONANNO G., A critical point theorem via the Ekeland variational principle, Nonlinear Analysis, 75 (2012), 2992-3007.
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BONANNO G., D’AGUI’ G., Two non-zero solutions for elliptic Dirichlet problems, 

Zeitschrift für Analysis und ihre Anwendungen , 35 n.4 (2016), 449-464.



u0

local minimum u1 such that I(u1)<I(u0)

u1

LEVEL K>0

path









Superlinear at 0

Superlinear at + ∞



Linear at 0

Superlinear at + ∞



Sublinear at 0

Superlinear at + ∞



We recall that in the Crandall-Rabinowitz theorem, besides (AR) 

condition, the key assumption is

f(0)>0.

Hence, the Crandall-Rabinowitz theorem cannot applied to none of

previous examples since, there, one has f(0)=0.

Moreover, we also observe that

f(0) > 0 f sublinear at 0

f(0)>0

+



Now, put

Indeed, it is enough to observe that 

So, from our result applied to                 ( )) we obtain the 

conclusion.



We observe that our results and the Ambosetti-Brezis-Cerami as well as 

Crandall-Rabinowitz are mutually independent. Indeed, on the hand, we 

can apply our results to problems where ABC and CR cannot be applied, 

as seen in the previous examples. On the other hand, when we can apply 

both CR (or ABC) and our results, the value λ* obtained in CR (or ABC), 

even if given in a theorical form, is the best. So, in this latest case we can 

use our results as a complement to CR in order to give a numerical lower 

bound of λ*, that is,

λ ≤ λ*.

The same remark also for ABC holds, that is a lower bound of Λ is µ.

_

_



Previous results also for the ordinary case holds true. 

So, in particular, our result holds by assuming, besides the (AR) – condition, the 

following condition  

and in this case the interval becames 





We recall that in the Amann theorem, besides the condition

the key assumption is

Hence, the Amann theorem cannot applied to none of previous examples

since, there, f(0)=0 is assumed.

Moreover, we also observe that

f(0) > 0 f sublinear at 0

f(0)>0

+



We observe that our results and the Amann theorem are mutually

independent. Indeed, on the hand, we can apply our results to problems

where the result of Amann cannot be applied, as seen in the previous

examples. On the other hand, Amann requires only the superlinearity at

infinity and, in addition, when we can apply both the results, the value λ*

obtained in Amann, even if given in a theorical form, is the best. So, in

this latest case we can use our results as a complement to the result of

Amann in order to give a numerical lower bound of λ*, that is,

λ < λ*.

.

_

_
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We recall again the situation that we have obtained in order to the existence of two

solutions. Our condition expresses a growth which is less than quadratic of the

primitive in an appropriate interval, and it is clearly more general than the condition

requested by Crandall-Rabinowitz, Ambrosetti-Brezis-Cerami, Amann, which is f(0)>0

or the sublinearity of f at 0.

Precisely, the condition

is more general than the condition

which is, in turn, more general than the condition   



Nevertheless, when f is sublinear at 0 (or, also, f(0)>0) we do not say “the results of CR, ABC, A 

can be also obtained by our results”, but instead of this, we say “we can obtained a numerical 

estimate of the best value λ*”, precising that they are mutually independent. This because the λ*  

obtained from them is the best value for which the problem admits solutions while we do not 

know if our λ,  ensured by the local minimum theorem, is the best value, even if we know its 

numerical estimate. 

Here, we explicit better such a situation. We recall the general expression of our    obtained from 

the local minimum theorem. Precisely, one has



Some notes on





Who is



It is the King of lambdas



0

Solutions NO Solution

Pλ
)

Given the problem 

where                       is a subcritical, sublinear at zero and superlinear at infinity

continuous function. 



0

Solutions NO Solution

It is the best value for which 

problem P ) admits solutionsλ



0

Solutions NO Solution

Its existence has been proved by

Crandall-Rabinowitz, Amann, 

Ambrosetti-Brezis-Cerami…



0

Solutions NO Solution

WE DO NOT KNOW ITS 

NUMERICAL VALUE!



Solutions NO Solution

0

For instance, in the following works for general or specific problems:

Crandall-Rabinowitz,

De Coster-Habets,

Willem,

Brezis-Nirenberg,

Liu,

Laetsch,

…

In literature we have some estimates of    from above, that is, from some known results 

we can obtain 

UPPER BOUNDS of

LOWER BOUNDS of       

On the contrary, in literature only few papers deals with lower bounds. We refer for instance to

C. Bandle, Z. Liu,…  



Solutions NO Solution

0

For instance, Crandall-Rabinowitz established that P )

has no solution (f(0)≠ 0) if

λ > μ₁,

where μ₁ is the first eigenvalue of the following problem

UPPER BOUNDS of

λ



Solutions NO Solution

0

For instance, De Coster-Habets established (in the ordinary case)  that 

Pλ) has no solution (f(0)≠ 0) if 

λ>λ₁/K ,
where  K is such that f(u)≥ Ku  for all u ≥0.

UPPER BOUNDS of

For instance, in the book of Willem it is observed that the following 

problem 

has no solution if 

λ>λ₁.



Solutions NO Solution

0

ΛDH
≤ΛCR

≤

We focus on the constants of Crandall-Rabinowitz and De Coster 

–Habets, that we call ΛCR and ΛDH. So, we have:

Which is the best constant among them?

UPPER BOUNDS of

To give an idea, we consider the following problem 

(it is known as Gelfand problem)



Solutions NO Solution

0

From  Amann, it admits

at least two solutions if        

at least one solution if  

no solution if  

= ΛCR =π² ΛDH = π² 
e

≤ π² 
e

So, a good upper bound of         seems to be ΛDH



Solutions NO Solution

0

f(r)(

r  Λ = λ₁ sup

r       0

Solutions NO Solution

0 ΛDH

Proposition. If  λ > Λ, then Pλ) admits no solution.

The proof is the same of  De Coster –Habets, Willem, Liu, ABC,…

Clearly, Λ=ΛDH and it the same upper bound obtained 

by Liu for ABC problem in the ordinary case.

Moreover, as seen before, for the Gelfand problem one has:

Λ = π²
e



Solutions NO Solution

0 Λ

f(r)(

r  Λ = λ₁ sup

r       0



LOWER BOUNDS of       

In literature only few papers deals with lower bounds. Crandall-

Rabinowitz refer to C. Bandle (1973) (as you can see below) .   

Solutions NO Solution

0 Λ

Indeed, Bandle investigated some specific problems for n=2.

Zhaoli Liu obtained a lower bound for the ABC problem for n=1.

At the best of our knowledgements, only in a my old paper a

lower bound is established for general problem (even if when f(0)≠0).





This paper is based on two powerfull results:

1. A fixed point theorem due to Arino-Gautier-Penot.

2. A regularity result due to G. Talenti;







λT

λT



Solutions NO Solution

0 ΛλT

When   f(0) ≠ 0  one has:

Indeed, by using a variational approach, it is possible to prove 

that λT holds true even in the case f(0)=0.  Hence,  we have 

λT

By using in a suitable way the direct methods theorem instead of 

Arino-Gauthier-Penot fixed point theorem. 

BONANNO G., Dirichlet problems without asymptotic conditions on the nonlinear term, 

Rendiconti dell'Istituto di Matematica dell'Università di Trieste, 49 (2017), 319-333.



LOWER BOUNDS of       

Λ

Solutions NO Solution

0 λT







Where is the “position” of   

?





Solutions NO Solution

0 Λ



Λ

Solutions NO Solution

0 λT

Λ

Solutions NO Solution

0



Now, we summarise the situation!

λT

They are both lower bounds of 



λT

Λ

Solutions NO Solution

0 λT

=



So, it seems that we have the following situation:

In particular, we have 

Λ≤λT ≤

and, for the Gelfand problem, one has:

Λ

Solutions NO Solution

0 λT

In general, we have 

λT Λ



Taking into account of the expressions of λT and Λ, by using 

a suitable combination among the “costant function” and 

eigenfunction, and arguing as in the proof used for obtain λT

it is possible to establish the following result. 

So, when f is monotone, we have 





So, in particular for the Gelfand problem we have 

=
Hence, from such a result and the Amann result, we obtain that 

the problem

admits at least two positive solutions if  λ<     , , at least one  positive 

solution if  λ =     , no solution if  λ >       .      



λT0 Λ



λT0

A local minimum which is  a 

global minimum for the restriction

A global minimum for the associated functional

From Brezis-Nirenberg: A local minimum 



0

A local minimum which is  a 

global minimum for the restriction

From Brezis-Nirenberg: A local minimum 





To give an idea, taking into account of our usual notations:

Any local minimum of 

Ψ(u)=∫ f(u(x))dx,    u in Lᵖ(Ω)

is a global minimum.
Ω



Φˉ¹(]-∞,r])

x local minimum

If x is a local minimum for Φ-Ψ in X, it is a local minimum in

Φˉ¹(]-∞,r]), then it is a local minimum at its boundary, then it 

is a local minimum for the functional r-Ψ. 



So, we can obtain that:

If u0 is a local minimum for Φ-Ψ in the Sobolev space X,

then there is r>Φ(u0) such that 

Φ-Ψ admits a global minimum in Φˉ¹(]-∞,r]).

Hence, our target has been obtained. Indeed,



0

A local minimum which is  a 

global minimum for the restriction

From Brezis-Nirenberg: A local minimum 



0

A local minimum which is  a 

global minimum for the restriction

From Brezis-Nirenberg: A local minimum 





When f is monotone

0 = = Λ



0 =



So, now we can say that we can apply our two non-zero critical points 

theorem even when f is not sublinear at zero and, on the contrary, when f 

is sublinear at zero, we obtain the results as established by  ABC and CR.

=




