Some existence results for boundary value problems associated with singular equations

Stefano Biagi

Dipartimento di Ingegneria Industriale e Scienze Matematiche (DIISM)
Università Politecnica delle Marche - Ancona

Giornate di Equazioni Differenziali Ordinarie: metodi e prospettive September 27-29, 2018-Università Politecnica delle Marche (Ancona)

The results presented in this talk were obtained in a joint work with A. Calamai ${ }^{1}$ and F. Papalini ${ }^{2}$.

[^0]
Main assumptions and notations

We are interested in strongly nonlinear differential equations of the type

$$
(\star) \quad\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e. on } I:=[0, T]
$$

where Φ, a and f satisfy the following structural assumptions:
$\Phi: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly increasing homeomorphism;
$a \in C(l \times \mathbb{R}, \mathbb{R})$ and there exists $h \in C(l, \mathbb{R})$ such that $h \geq 0$ on I and $1 / h \in L^{p}(I)$ (for some $p>1$); $a(t, x) \geq h(t)$ for every $t \in I$ and every $x \in \mathbb{R}$; $f: I \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a Carathéodory function,

Main assumptions and notations

We are interested in strongly nonlinear differential equations of the type

$$
(\star) \quad\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e. on } I:=[0, T]
$$

where Φ, a and f satisfy the following structural assumptions:
(A1) $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly increasing homeomorphism;

$a \in C(I \times \mathbb{R}, \mathbb{R})$ and there exists $h \in C(I, \mathbb{R})$ such that $h \geq 0$ on I and $1 / h \in L^{p}(I)$ (for some $p>1$); $a(t, x) \geq h(t)$ for every $t \in I$ and every $x \in \mathbb{R}$;

 $f: I \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a Carathéodory function,
Main assumptions and notations

We are interested in strongly nonlinear differential equations of the type

$$
(\star) \quad\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e. on } I:=[0, T]
$$

where Φ, a and f satisfy the following structural assumptions:
(A1) $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly increasing homeomorphism;
(A2) $a \in C(I \times \mathbb{R}, \mathbb{R})$ and there exists $h \in C(I, \mathbb{R})$ such that
> $h \geq 0$ on I and $1 / h \in L^{p}(I)$ (for some $p>1$); $a(t, x) \geq h(t)$ for every $t \in I$ and every $x \in \mathbb{R} ;$ $f: I \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a Carathéodory function,

Main assumptions and notations

We are interested in strongly nonlinear differential equations of the type

$$
(\star) \quad\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e. on } I:=[0, T]
$$

where Φ, a and f satisfy the following structural assumptions:
(A1) $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly increasing homeomorphism;
(A2) $a \in C(I \times \mathbb{R}, \mathbb{R})$ and there exists $h \in C(I, \mathbb{R})$ such that
(A2) ${ }_{1} h \geq 0$ on I and $1 / h \in L^{P}(I)$ (for some $p>1$);
$(\mathrm{A} 2)_{2} a(t, x) \geq h(t)$ for every $t \in I$ and every $x \in \mathbb{R}$;
$f: I \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a Carathéodory function,

Main assumptions and notations

We are interested in strongly nonlinear differential equations of the type

$$
(\star) \quad\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e. on } I:=[0, T]
$$

where Φ, a and f satisfy the following structural assumptions:
(A1) $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly increasing homeomorphism;
(A2) $a \in C(I \times \mathbb{R}, \mathbb{R})$ and there exists $h \in C(I, \mathbb{R})$ such that
(A2) ${ }_{1} h \geq 0$ on I and $1 / h \in L^{P}(I)$ (for some $p>1$);
$(\mathrm{A} 2)_{2} a(t, x) \geq h(t)$ for every $t \in I$ and every $x \in \mathbb{R}$;
(A3) $f: I \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a Carathéodory function,

The reasons of our interest

Ordinary differential equations of the form $(\boldsymbol{\star})$ intervene in several models:

- non-Newtonian fluid theory;
- diffusion of flows in porous media;
- nonlinear elasticity;
- theory of capillary surfaces.

The reasons of our interest

Ordinary differential equations of the form $(\boldsymbol{\star})$ intervene in several models:

- non-Newtonian fluid theory;
- diffusion of flows in porous media;
- nonlinear elasticity;
- theory of capillary surfaces.

The reasons of our interest

Ordinary differential equations of the form $(\boldsymbol{\star})$ intervene in several models:

- non-Newtonian fluid theory;
- diffusion of flows in porous media;
- nonlinear elasticity;
- theory of capillary surfaces.

The reasons of our interest

Ordinary differential equations of the form $(\boldsymbol{\star})$ intervene in several models:

- non-Newtonian fluid theory;
- diffusion of flows in porous media;
- nonlinear elasticity;
- theory of capillary surfaces.

Our main aim

To prove the existence of a solution for several classes of boundary value problems associated with ODEs of the form (\star).
what we mean by a solution of an ODE of the form (\star) ?

Our main aim

To prove the existence of a solution for several classes of boundary value problems associated with ODEs of the form (\star).

But...

 what we mean by a solution of an ODE of the form (\star) ?
Solution of an ODE of the form (\star)

Definition

We say that $x \in W^{1, p}(I)$ is a solution of the $\operatorname{ODE}(\star)$ if:
(1) $t \mapsto \Phi\left(a(t, x(t)) x^{\prime}(t)\right) \in W^{1,1}(I)$;
(2) $\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right)$ for almost every $t \in I$;

An important remark

If $x \in W^{1, p}(I)$ is any solution of the ODE ($*$), we indicate by \mathcal{A}_{x} the unique continuous function on I such that

$$
a(t, x(t)) x^{\prime}(t)=\mathcal{A}_{x}(t) \quad \text { for a.e. } t \in I
$$

Solution of an ODE of the form (\star)

Definition

We say that $x \in W^{1, p}(I)$ is a solution of the $\operatorname{ODE}(\star)$ if:
(1) $t \mapsto \Phi\left(a(t, x(t)) x^{\prime}(t)\right) \in W^{1,1}(I)$;
(2) $\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right)$ for almost every $t \in I$;

An important remark

If $x \in W^{1, p}(I)$ is any solution of the $\operatorname{ODE}(\star)$, we indicate by \mathcal{A}_{x} the unique continuous function on I such that

$$
a(t, x(t)) x^{\prime}(t)=\mathcal{A}_{x}(t) \quad \text { for a.e. } t \in I
$$

Some references

For the Φ-Laplacian operator: $\Phi\left(x^{\prime}\right)^{\prime}=f\left(t, x, x^{\prime}\right)$

- Cabada and Pouso (1997, 1999); Cabada, O'Regan and Pouso (2008); El Khattabi, Frigon and Ayyadi (2013).

For singular or non-surjective operators: $\left(a(x) \Phi\left(x^{\prime}\right)\right)^{\prime}=f\left(t, x, x^{\prime}\right)$

- Bereanu and Mawhin (2008); Ferracuti and Papalini (2009); Calamai (2011).

For mixed differential operators: $\left(a(t, x) \Phi\left(x^{\prime}\right)\right)^{\prime}=f\left(t, x, x^{\prime}\right)$ (with a >0)

- Cupini, Marcelli and Papalini (2011); Marcelli (2012, 2013); Marcelli and Papalini (2017).

For possibly singular equations: $\left(\Phi\left(k(t) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x, x^{\prime}\right)$

- Liu (2012); Liu and Yang (2015); Calamai, Marcelli and Papalini (2018).

Some references

For the Φ-Laplacian operator: $\Phi\left(x^{\prime}\right)^{\prime}=f\left(t, x, x^{\prime}\right)$

- Cabada and Pouso (1997, 1999); Cabada, O’Regan and Pouso (2008); El Khattabi, Frigon and Ayyadi (2013).

For singular or non-surjective operators: $\left(a(x) \Phi\left(x^{\prime}\right)\right)^{\prime}=f\left(t, x, x^{\prime}\right)$

- Bereanu and Mawhin (2008); Ferracuti and Papalini (2009); Calamai (2011).

For mixed differential operators: $\left(a(t, x) \Phi\left(x^{\prime}\right)\right)^{\prime}=f\left(t, x, x^{\prime}\right)$ (with $\left.a>0\right)$

- Cupini, Marcelli and Papalini (2011); Marcelli (2012, 2013); Marcelli and Papalini (2017).

For possibly singular equations: $\left(\Phi\left(k(t) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x, x^{\prime}\right)$

- Liu (2012); Liu and Yang (2015); Calamai, Marcelli and Papalini (2018).

The Dirichlet problem for ($\boldsymbol{\star}$)

The Dirichlet problem for $(\boldsymbol{\star})$

Let $\nu_{1}, \nu_{2} \in \mathbb{R}$ be fixed. We consider the following Dirichlet problem for (*)

$$
\left\{\begin{array}{l}
\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e. on } I, \\
x(0)=\nu_{1}, x(T)=\nu_{2} .
\end{array}\right.
$$

Our main aim

To prove the existence of (at least) one solution of (DP), i.e., the existence of a solution $x \in W^{1, p}(I)$ of the ODE (\star) satisfying

$$
x(0)=\nu_{1} \text { and } x(T)=\nu_{2} .
$$

The Dirichlet problem for $(\boldsymbol{\star})$

Let $\nu_{1}, \nu_{2} \in \mathbb{R}$ be fixed. We consider the following Dirichlet problem for $(\boldsymbol{\star})$

$$
\left\{\begin{array}{l}
\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e. on } I, \\
x(0)=\nu_{1}, x(T)=\nu_{2} .
\end{array}\right.
$$

Our main aim

To prove the existence of (at least) one solution of (DP), i.e., the existence of a solution $x \in W^{1, p}(I)$ of the ODE (\star) satisfying

$$
x(0)=\nu_{1} \text { and } x(T)=\nu_{2} .
$$

The Dirichlet problem for (\star)

Let $\nu_{1}, \nu_{2} \in \mathbb{R}$ be fixed. We consider the following Dirichlet problem for (\star)

$$
(\mathrm{DP}) \quad\left\{\begin{array}{l}
\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e.on } I \\
x(0)=\nu_{1}, x(T)=\nu_{2}
\end{array}\right.
$$

Our main aim

To prove the existence of (at least) one solution of (DP), i.e., the existence of a solution $x \in W^{1, p}(I)$ of the ODE (\star) satisfying

$$
x(0)=\nu_{1} \text { and } x(T)=\nu_{2} .
$$

The Dirichlet problem for $(\boldsymbol{\star})$

Let $\nu_{1}, \nu_{2} \in \mathbb{R}$ be fixed. We consider the following Dirichlet problem for $(\boldsymbol{\star})$

$$
(\mathrm{DP}) \quad\left\{\begin{array}{l}
\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e. on } I \\
x(0)=\nu_{1}, x(T)=\nu_{2}
\end{array}\right.
$$

Our main aim

To prove the existence of (at least) one solution of (DP), i.e., the existence of a solution $x \in W^{1, p}(I)$ of the ODE (\star) satisfying

$$
x(0)=v_{1} \text { and } x(T)=v_{2} \text {. }
$$

The Dirichlet problem for (\star)

Let $\nu_{1}, \nu_{2} \in \mathbb{R}$ be fixed. We consider the following Dirichlet problem for $(\boldsymbol{\star})$

$$
(\mathrm{DP}) \quad\left\{\begin{array}{l}
\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e. on } I, \\
x(0)=\nu_{1}, x(T)=\nu_{2}
\end{array}\right.
$$

Our main aim

To prove the existence of (at least) one solution of (DP), i.e., the existence of a solution $x \in W^{1, p}(I)$ of the $\operatorname{ODE}(\star)$ satisfying

$$
x(0)=\nu_{1} \text { and } x(T)=\nu_{2}
$$

Our approach

A suitable combination of the method of lower/upper solutions with a fixed-point technique (applied to an auxiliary functional problem).

Another important remark

If $\alpha \in W^{1, p}(I)$ is a lower/upper solution of the ODE ($*$), we indicate by \mathcal{A}_{α} the unique continuous function on $/$ satisfying

$$
a^{\prime}(t, a(t)) a^{\prime}(t)=\mathcal{A}_{\alpha}(t) \quad \text { for a.e. } t \in I
$$

Our approach

A suitable combination of the method of lower/upper solutions with a fixed-point technique (applied to an auxiliary functional problem).

Another important remark

If $\alpha \in W^{1, p}(I)$ is a lower/upper solution of the ODE ($*$), we indicate by \mathcal{A}_{α} the unique continuous function on $/$ satisfying

$$
a^{\prime}(t, a(i)) a^{\prime}(i)=\mathcal{A}_{\alpha}(i) \quad \text { for a.e. } t \in I .
$$

Our approach

A suitable combination of the method of lower/upper solutions with a fixed-point technique (applied to an auxiliary functional problem).

Definition: lower/upper solution

We say that $\alpha \in W^{1, p}(I)$ is a lower [resp. upper] solution of the ODE (\star) if (1) $t \mapsto \Phi\left(a(t, \alpha(t)) \alpha^{\prime}(t)\right) \in W^{1,1}(I)$;
(2) $\left(\Phi\left(a(t, \alpha(t)) \alpha^{\prime}(t)\right)\right)^{\prime} \geq[\leq] f\left(t, \alpha(t), \alpha^{\prime}(t)\right)$ for almost every $t \in I$.

Another important remark

If $\alpha \in W^{1, p}(I)$ is a lower/upper solution of the $\operatorname{ODE}(\star)$, we indicate by \mathcal{A}_{α} the unique continuous function on I satisfying

$$
a(t, \alpha(t)) \alpha^{\prime}(t)=\mathcal{A}_{\alpha}(t) \quad \text { for a.e. } t \in I
$$

Our approach

A suitable combination of the method of lower/upper solutions with a fixed-point technique (applied to an auxiliary functional problem).

Definition: lower/upper solution

We say that $\alpha \in W^{1, p}(I)$ is a lower [resp. upper] solution of the ODE (\star) if (1) $t \mapsto \Phi\left(a(t, \alpha(t)) \alpha^{\prime}(t)\right) \in W^{1,1}(I)$;
(2) $\left(\Phi\left(a(t, \alpha(t)) \alpha^{\prime}(t)\right)\right)^{\prime} \geq[\leq] f\left(t, \alpha(t), \alpha^{\prime}(t)\right)$ for almost every $t \in I$.

Another important remark

If $\alpha \in W^{1, p}(I)$ is a lower/upper solution of the $\operatorname{ODE}(\boldsymbol{\star})$, we indicate by \mathcal{A}_{α} the unique continuous function on I satisfying

$$
a(t, \alpha(t)) \alpha^{\prime}(t)=\mathcal{A}_{\alpha}(t) \quad \text { for a.e. } t \in I
$$

Our main result

We assume that，together with（A1）－to－（A3），the following hypotheses hold：
－there exists a pair of lower and upper solutions $\alpha, \beta \in W^{1, p}(I)$ of (\star) such that $\alpha(t) \leq \beta(t)$ for every $t \in I$ ；
－for every $R>0$ and every non－negative function $\gamma \in L^{P}(I)$ there exists a non－negative function $h=h_{R, \gamma} \in L^{P}(I)$ such that
$|f(t, x, y(t))| \leq h_{R, \gamma}(t)$ for a．e．$t \in I$ ，every $|x| \leq R$ and every $y \in L^{p}(I)$ with $|y(t)| \leq \gamma(t)$ a．e．on I ．
－there exist $H>0$ ，a non－negative function $u \in L^{q}(I)$（for some $1<a<\infty$ ），a non－negative function $I \in L^{1}(I)$ and a non－negative measurable function $\psi:(0, \infty) \rightarrow(0, \infty)$ such that
$(*) 1 / \psi \in L_{l o c}^{1}(0, \infty)$ and $\int_{1}^{\infty} \frac{1}{\psi(t)} d t=\infty ;$
$(\star)|f(t, x, y)| \leq \psi(|\Phi(a(t, x) y)|) \cdot\left(I(t)+\mu(t)|y|^{\frac{q-1}{q}}\right) ;$
for a．e．$t \in I$ every $x \in[\alpha(t), \beta(t)]$ and everv $y \in \mathbb{R}$ with $|y|>H$ ．

Our main result

Theorem 1 (B., Calamai and Papalini)

We assume that, together with (A1)-to-(A3), the following hypotheses hold:

- there exists a pair of lower and upper solutions $\alpha, \beta \in W^{1, p}(I)$ of (\star) such that $\alpha(t) \leq \beta(t)$ for every $t \in I$;
- for every $R>0$ and every non-negative function $\gamma \in L^{p}(I)$ there exists a non-negative function $h=h_{R, \gamma} \in L^{p}(I)$ such that

$$
\begin{equation*}
|f(t, x, y(t))| \leq h_{R, \gamma}(t) \tag{1}
\end{equation*}
$$

for a.e. $t \in I$, every $|x| \leq R$ and every $y \in L^{p}(I)$ with $|y(t)| \leq \gamma(t)$ a.e. on I.

- there exist $H>0$, a non-negative function $\mu \in L^{q}(I)$ (for some $1<q \leq \infty$), a non-negative function $I \in L^{1}(I)$ and a non-negative measurable function $\psi:(0, \infty) \rightarrow(0, \infty)$ such that

$$
\begin{align*}
& \text { (夫) } 1 / \psi \in L_{\mathrm{loc}}^{1}(0, \infty) \quad \text { and } \quad \int_{1}^{\infty} \frac{1}{\psi(t)} \mathrm{d} t=\infty \\
& (\star)|f(t, x, y)| \leq \psi(|\Phi(a(t, x) y)|) \cdot\left(I(t)+\mu(t)|y|^{\frac{q-1}{q}}\right) \tag{2}
\end{align*}
$$

for a.e. $t \in I$, every $x \in[\alpha(t), \beta(t)]$ and every $y \in \mathbb{R}$ with $|y| \geq H$.

Our main result

Theorem 1 (B., Calamai and Papalini) - continued

Then, for every $\nu_{1} \in[\alpha(0), \beta(0)]$ and every $\nu_{2} \in[\alpha(T), \beta(T)]$, the Dirichlet problem (DP) possesses at least one solution $x \in W^{1, p}(I)$ satisfying

$$
\alpha(t) \leq x(t) \leq \beta(t) \quad \text { for every } t \in I
$$

Furthermore, if $M>0$ is any real number such that sup, $|\alpha|$, sup, $|\beta| \leq M$, it is possible to find a real $L_{0}>0$, only depending on M, with the following property: if $L \geq L_{0}$ is any real number such that $\sup _{\text {, }}\left|\mathcal{A}_{\alpha}\right|$, sup, $\left|\mathcal{A}_{\beta}\right| \leq L$, then

Our main result

Theorem 1 (B., Calamai and Papalini) - continued

Then, for every $\nu_{1} \in[\alpha(0), \beta(0)]$ and every $\nu_{2} \in[\alpha(T), \beta(T)]$, the Dirichlet problem (DP) possesses at least one solution $x \in W^{1, p}(I)$ satisfying

$$
\alpha(t) \leq x(t) \leq \beta(t) \quad \text { for every } t \in I
$$

Furthermore, if $M>0$ is any real number such that sup, $|\alpha|$, sup, $|\beta| \leq M$, it is possible to find a real $L_{0}>0$, only depending on M, with the following property: if $L \geq L_{0}$ is any real number such that $\sup _{l}\left|\mathcal{A}_{\alpha}\right|$, sup, $\left|\mathcal{A}_{\beta}\right| \leq L$, then

$$
\max _{t \in I}|x(t)| \leq M \quad \text { and } \quad \max _{t \in I}\left|\mathcal{A}_{x}(t)\right| \leq L
$$

A couple of examples

Let us consider the Dirichlet problem

$$
\left\{\begin{array}{l}
\left(\phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=\sigma(t)(x(t)+p(t))+g(x(t)) x^{\prime}(t) \\
x(0)=\nu_{1}, x(T)=\nu_{2}
\end{array}\right.
$$

where Φ, a, σ, ρ and g satisfy the following assumptions:
$(\star) \Phi: \mathbb{D} \rightarrow \mathbb{D}$ is a generic strictly increasing homeomorphism;
$(\star) a \in C(I \times \mathbb{R}, \mathbb{R})$ satisfies assumption (A2);
$(+) \sigma \in I^{1}(I)$ and $\sigma \geq 0$ a.e on I;
$(\star) \rho \in C(I)$ and $g \in C(\mathbb{R}, \mathbb{R})$ are generic.

A couple of examples

(1) Let us consider the Dirichlet problem

$$
\left\{\begin{array}{l}
\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=\sigma(t)(x(t)+\rho(t))+g(x(t)) x^{\prime}(t) \\
x(0)=\nu_{1}, x(T)=\nu_{2}
\end{array}\right.
$$

where Φ, a, σ, ρ and g satisfy the following assumptions:
$(\star) \Phi: \mathbb{R} \rightarrow \mathbb{R}$ is a generic strictly increasing homeomorphism;
$(\star) a \in C(I \times \mathbb{R}, \mathbb{R})$ satisfies assumption (A2);
(夫) $\sigma \in L^{1}(I)$ and $\sigma \geq 0$ a.e. on I;
$(\star) \rho \in C(I)$ and $g \in C(\mathbb{R}, \mathbb{R})$ are generic.

A couple of examples

It is not difficult to recognize that:
Setting $N:=\max _{I}|\rho|$, the constant functions

$$
\alpha(t):=-N \quad \beta(t):=N \quad(\text { for } t \in l)
$$

are, respectively, a lower and a upper solution of (\star) s.t. $\alpha \leq \beta$ on $/$.
(b) Setting $f(t, x, y):=\sigma(t)(x+\rho(t))+g(x) y$, we have

- f is a Caratheodory function on $/ \times \mathbb{R}^{2}$;
- f fulfills (1) with the choice

$$
h_{R, \gamma}(t):=\sigma(t)(R+|\rho(t)|)+\left(\max _{[-R, R]}|g|\right) \cdot \gamma(t)
$$

- f fulfills (2) with the choice

$$
H:=1, \quad u=1, \quad\left|(t):=2 N \sigma(t), \quad \mu(t):=\max _{[-N, N]}\right| g \mid \quad \text { and } \quad q=\infty
$$

A couple of examples

It is not difficult to recognize that:
(a) Setting $N:=\max _{\boldsymbol{I}}|\rho|$, the constant functions

$$
\alpha(t):=-N \quad \beta(t):=N \quad(\text { for } t \in I)
$$

are, respectively, a lower and a upper solution of (\star) s.t. $\alpha \leq \beta$ on I.
Setting $f(t, x, y):=\sigma(t)(x+\rho(t))+g(x) y$, we have

- f is a Carathéodory function on $I \times \mathbb{R}^{2}$;
- f fulfills (1) with the choice

- f fulfills (2) with the choice

A couple of examples

It is not difficult to recognize that:
(a) Setting $N:=\max _{1}|\rho|$, the constant functions

$$
\alpha(t):=-N \quad \beta(t):=N \quad(\text { for } t \in I)
$$

are, respectively, a lower and a upper solution of (\star) s.t. $\alpha \leq \beta$ on I.
(b) Setting $f(t, x, y):=\sigma(t)(x+\rho(t))+g(x) y$, we have

- f is a Carathéodory function on $I \times \mathbb{R}^{2}$;
- f fulfills (1) with the choice

$$
h_{R, \gamma}(t):=\sigma(t)(R+|\rho(t)|)+\left(\max _{[-R, R]}|g|\right) \cdot \gamma(t) ;
$$

- f fulfills (2) with the choice

$$
H:=1, \quad \psi \equiv 1, \quad I(t):=2 N \sigma(t), \quad \mu(t):=\max _{[-N, N]}|g| \quad \text { and } \quad q=\infty
$$

A couple of examples

(2) Let us consider the Dirichlet problem

$$
\left\{\begin{array}{l}
\left(\Phi_{r}\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=\sigma(t) \cdot g(x(t)) \cdot\left|x^{\prime}(t)\right|^{\delta} \\
u(0)=v_{1}, u(T)=v_{2}
\end{array}\right.
$$

where Φ_{r}, a, σ, g and the exponent δ satisfy the following assumptions:
$(+) \Phi: \mathbb{P} \rightarrow \mathbb{R}, \infty(\xi):=|\xi|^{r-2} . \xi \quad$ (for a suitable $r>1$)
$(\star) a \in C(I \times \mathbb{R}, \mathbb{R})$ satisfies assumption (A2);
$(*) \sigma \in I^{\tau}(I)$ for a suitable $\tau>1$ satisfying the relation

$(\star) g \in C(\mathbb{R}, \mathbb{R})$ is a generic function;
$(\star) \delta$ is a nositive real constant satisfying the relation

$$
\delta \leq 1-\frac{1}{\tau}+(r-1)\left(1-\frac{1}{p}\right)
$$

A couple of examples

(2) Let us consider the Dirichlet problem

$$
\left\{\begin{array}{l}
\left(\Phi_{r}\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=\sigma(t) \cdot g(x(t)) \cdot\left|x^{\prime}(t)\right|^{\delta} \\
u(0)=\nu_{1}, u(T)=\nu_{2}
\end{array}\right.
$$

where Φ_{r}, a, σ, g and the exponent δ satisfy the following assumptions:
$(\star) \Phi_{r}: \mathbb{R} \rightarrow \mathbb{R}, \Phi_{r}(\xi):=|\xi|^{r-2} \cdot \xi \quad$ (for a suitable $\left.r>1\right)$.
$(\star) a \in C(I \times \mathbb{R}, \mathbb{R})$ satisfies assumption (A2);
(*) $\sigma \in L^{\tau}(I)$ for a suitable $\tau>1$ satisfying the relation

$$
\frac{1}{\tau}+\frac{r-1}{p}<1
$$

$(\star) g \in C(\mathbb{R}, \mathbb{R})$ is a generic function;
$(\star) \delta$ is a positive real constant satisfying the relation

$$
\delta \leq 1-\frac{1}{\tau}+(r-1)\left(1-\frac{1}{p}\right) .
$$

A couple of examples

It is not difficult to recognize that:
For every fixed $N \in \mathbb{R}$, the constant functions

$$
\begin{aligned}
& \qquad \alpha(t):=-N \quad \beta(t):=N \quad(\text { for } t \in /) \\
& \text { are, respectively, a lower and a upper solution of }(t) \text { s.t. } \alpha \leq \beta \text { on } / .
\end{aligned}
$$

(b) Setting $f(t, x, y):=\sigma(t) \cdot g(x) \cdot|y|^{\delta}$, we have

- f is a Carathéodory function on $1 \times \mathbb{m}^{2}$;
- f fulfills (1) with the choice

$$
h_{R, \gamma}(t):=\left(\max _{[-R, R]}|g|\right) \cdot|\sigma(t)| \cdot(\gamma(t))^{\delta}
$$

- f fulfills (2) with the choice

$$
H:=1, \quad \psi(s):=s, \quad l(t):=0, \quad \mu(t):=\frac{\left(\max _{[-N, N]}|g|\right) \cdot|\sigma(t)|}{(h(t))^{r-1}} .
$$

A couple of examples

It is not difficult to recognize that:
(a) For every fixed $N \in \mathbb{R}$, the constant functions

$$
\alpha(t):=-N \quad \beta(t):=N \quad(\text { for } t \in I)
$$

are, respectively, a lower and a upper solution of (\star) s.t. $\alpha \leq \beta$ on I.
Setting $f(t, x, y):=\sigma(t) \cdot g(x) \cdot|y|^{\delta}$, we have

- f is a Carathéodory function on $I \times \mathbb{R}^{2}$;
- f fulfills (1) with the choice

- f fulfills (2) with the choice

A couple of examples

It is not difficult to recognize that:
(a) For every fixed $N \in \mathbb{R}$, the constant functions

$$
\alpha(t):=-N \quad \beta(t):=N \quad(\text { for } t \in I)
$$

are, respectively, a lower and a upper solution of $(\boldsymbol{\star})$ s.t. $\alpha \leq \beta$ on I.
(b) Setting $f(t, x, y):=\sigma(t) \cdot g(x) \cdot|y|^{\delta}$, we have

- f is a Carathéodory function on $I \times \mathbb{R}^{2}$;
- f fulfills (1) with the choice

$$
h_{R, \gamma}(t):=\left(\max _{[-R, R]}|g|\right) \cdot|\sigma(t)| \cdot(\gamma(t))^{\delta} ;
$$

- f fulfills (2) with the choice

$$
H:=1, \quad \psi(s):=s, \quad l(t):=0, \quad \mu(t):=\frac{\left(\max _{[-N, N]}|g|\right) \cdot|\sigma(t)|}{(h(t))^{r-1}} .
$$

Idea of the proof

```
- Truncating operators: Let }\alpha,\beta\in\mp@subsup{W}{}{1,p}(I) be, respectively, a lower and a upper solution of the equation \((\star)\) such that \(\alpha \leq \beta\) on \(I\). We define
```

$$
\begin{aligned}
& \qquad \mathcal{T}: W^{1, p}(I) \longrightarrow W^{1, p}(I), \quad \mathcal{T}(x)(t):= \begin{cases}\alpha(t), & \text { if } x(t)<\alpha(t) ; \\
x(t), & \text { if } x(t) \in[\alpha(t), \beta(t)] ; \\
\beta(t), & \text { if } x(t)>\beta(t) ;\end{cases} \\
& \qquad \mathcal{D}: L^{p}(I) \longrightarrow L^{p}(I), \quad \mathcal{D}(z)(t):= \begin{cases}-\gamma_{0}(t), & \text { if } z(t)<-\gamma_{0}(t) ; \\
z(t), & \text { if }|z(t)| \leq \gamma_{0}(t) ; \\
\gamma_{0}(t), & \text { if } z(t)>\gamma_{0}(t) ;\end{cases} \\
& \text { (here, } \gamma_{0}(t)=L / k(t) \text { and } L>0 \text { is suitably chosen). }
\end{aligned}
$$

Idea of the proof

- Truncating operators: Let $\alpha, \beta \in W^{1, p}(I)$ be, respectively, a lower and a upper solution of the equation (\star) such that $\alpha \leq \beta$ on I. We define

(here, $\gamma_{0}(t)=L / k(t)$ and $L>0$ is suitably chosen)

Idea of the proof

- Truncating operators: Let $\alpha, \beta \in W^{1, p}(I)$ be, respectively, a lower and a upper solution of the equation (\star) such that $\alpha \leq \beta$ on I. We define

(here, $\gamma_{0}(t)=L / k(t)$ and $L>0$ is suitably chosen)

Idea of the proof

- Truncating operators: Let $\alpha, \beta \in W^{1, p}(I)$ be, respectively, a lower and a upper solution of the equation (\star) such that $\alpha \leq \beta$ on I. We define

$$
\begin{array}{cl}
\mathcal{T}: W^{1, p}(I) \longrightarrow W^{1, p}(I), & \mathcal{T}(x)(t):= \begin{cases}\alpha(t), & \text { if } x(t)<\alpha(t) ; \\
x(t), & \text { if } x(t) \in[\alpha(t), \beta(t)] ; \\
\beta(t), & \text { if } x(t)>\beta(t) ;\end{cases} \\
\mathcal{D}: L^{p}(I) \longrightarrow L^{p}(I), & \mathcal{D}(z)(t):= \begin{cases}-\gamma_{0}(t), & \text { if } z(t)<-\gamma_{0}(t) ; \\
z(t), & \text { if }|z(t)| \leq \gamma_{0}(t) ; \\
\gamma_{0}(t), & \text { if } z(t)>\gamma_{0}(t) ;\end{cases}
\end{array}
$$

(here, $\gamma_{0}(t)=L / k(t)$ and $L>0$ is suitably chosen).

Idea of the proof

We also set

$$
f^{*}(t, x, y):= \begin{cases}f\left(t, \beta(t), \beta^{\prime}(t)\right)+\arctan (x(t)-\beta(t)), & \text { if } x>\beta(t) \\ f(t, x, y), & \text { if } x \in[\alpha(t), \beta(t)] \\ f\left(t, \alpha(t), \alpha^{\prime}(t)\right)+\arctan (x(t)-\alpha(t)), & \text { if } x<\alpha(t)\end{cases}
$$

- Auxiliary problem: We consider the following functional problem

$$
\left\{\begin{array}{l}
\left(\Phi\left(\Lambda(t) x^{\prime}(t)\right)\right)^{\prime}=F_{x}(t) \quad \text { a.c. on } \text { I } \\
x(0)=\nu_{1}, x(T)=\nu_{2} .
\end{array}\right.
$$

where we have set

$$
\begin{aligned}
& A: W^{1, p}(I) \longrightarrow C(I, \mathbb{R}), \quad A_{x}(t):=a(t, \mathcal{T}(x)(t)) \\
& F: W^{1, p}(I) \longrightarrow L^{1}(I), \quad F_{x}(t):=f^{*}\left(t, x(t), \mathcal{D}\left(\mathcal{T}(x)^{\prime}(t)\right)\right)
\end{aligned}
$$

Idea of the proof

We also set

$$
f^{*}(t, x, y):= \begin{cases}f\left(t, \beta(t), \beta^{\prime}(t)\right)+\arctan (x(t)-\beta(t)), & \text { if } x>\beta(t) \\ f(t, x, y), & \text { if } x \in[\alpha(t), \beta(t)] \\ f\left(t, \alpha(t), \alpha^{\prime}(t)\right)+\arctan (x(t)-\alpha(t)), & \text { if } x<\alpha(t)\end{cases}
$$

- Auxiliary problem: We consider the following functional problem

$$
(\mathrm{DP})^{\prime} \quad\left\{\begin{array}{l}
\left(\Phi\left(A_{x}(t) x^{\prime}(t)\right)\right)^{\prime}=F_{x}(t), \quad \text { a.e. on } I \\
x(0)=\nu_{1}, x(T)=\nu_{2}
\end{array}\right.
$$

where we have set

$$
\begin{aligned}
& A: W^{1, p}(I) \longrightarrow C(I, \mathbb{R}), \quad A_{x}(t):=a(t, \mathcal{T}(x)(t)), \\
& F: W^{1, p}(I) \longrightarrow L^{1}(I), \quad F_{x}(t):=f^{*}\left(t, x(t), \mathcal{D}\left(\mathcal{T}(x)^{\prime}(t)\right)\right)
\end{aligned}
$$

Idea of the proof

- Solving the auxiliary problem: We prove that (DP)' possesses (at least) one solution $x_{0} \in W^{1, p}(I)$ by showing that the operator

$$
\mathcal{P}_{x}(t):=\nu_{1}+\int_{0}^{t} \frac{1}{A_{\times}(s)} \Phi^{-1}\left(\xi_{x}+\int_{0}^{s} F_{x}(\tau) \mathrm{d} \tau\right) \mathrm{d} s
$$

(from $W^{1, p}(I)$ into itself) has a fixed point. Here, ξ_{x} is the unique real constant (depending on $\left.x \in W^{1, P}(I)\right)$ such that $\mathcal{P}_{x}(T)=\nu_{2}$.

- Solving (DP): Finally, we prove that any solution of the auxiliary problem (DP), (i.e., any fixed point of \mathcal{P}) is actually a solution of (DP).

Idea of the proof

- Solving the auxiliary problem: We prove that (DP)' possesses (at least) one solution $x_{0} \in W^{1, p}(I)$ by showing that the operator

$$
\mathcal{P}_{x}(t):=\nu_{1}+\int_{0}^{t} \frac{1}{A_{x}(s)} \Phi^{-1}\left(\xi_{x}+\int_{0}^{s} F_{x}(\tau) \mathrm{d} \tau\right) \mathrm{d} s,
$$

(from $W^{1, p}(I)$ into itself) has a fixed point. Here, ξ_{x} is the unique real constant (depending on $x \in W^{1, p}(I)$) such that $\mathcal{P}_{x}(T)=\nu_{2}$.

- Solving (DP): Finally, we prove that any solution of the auxiliary problem (DP)' (i.e., any fixed point of \mathcal{P}) is actually a solution of (DP).

Idea of the proof

- Solving the auxiliary problem: We prove that (DP)' possesses (at least) one solution $x_{0} \in W^{1, p}(I)$ by showing that the operator

$$
\mathcal{P}_{x}(t):=\nu_{1}+\int_{0}^{t} \frac{1}{A_{x}(s)} \Phi^{-1}\left(\xi_{x}+\int_{0}^{s} F_{x}(\tau) \mathrm{d} \tau\right) \mathrm{d} s,
$$

(from $W^{1, p}(I)$ into itself) has a fixed point. Here, ξ_{x} is the unique real constant (depending on $x \in W^{1, p}(I)$) such that $\mathcal{P}_{x}(T)=\nu_{2}$.

- Solving (DP): Finally, we prove that any solution of the auxiliary problem (DP)' (i.e., any fixed point of \mathcal{P}) is actually a solution of (DP).

General nonlinear boundary conditions

General nonlinear boundary conditions

We consider the following general boundary problem for $(*)$

Here, $h: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{4} \rightarrow \mathbb{R}$ satisfy the following general assumptions:
$h \in C(\mathbb{R}, \mathbb{R})$ and is increasing on \mathbb{R}; $g \in C\left(\mathbb{R}^{4}, \mathbb{R}\right)$ and, for every fixed $u, v \in \mathbb{R}$, it holds that $g(u, v, \cdot, z)$ is increasing for every fixed $z \in \mathbb{R}$; $g(u, v, w, \cdot)$ is decreasing for every fixed $w \in \mathbb{R}$.

General nonlinear boundary conditions

We consider the following general boundary problem for (\star) :

$$
(\mathrm{G}) \quad\left\{\begin{array}{l}
\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e. on } I \\
g\left(x(0), x(T), \mathcal{A}_{x}(0), \mathcal{A}_{x}(T)\right)=0 \\
x(T)=h(x(0))
\end{array}\right.
$$

Here, $h: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{4} \rightarrow \mathbb{R}$ satisfy the following general assumptions:

$$
\begin{aligned}
& h \in C(\mathbb{R}, \mathbb{R}) \text { and is increasing on } \mathbb{R} ; \\
& g \in C\left(\mathbb{R}^{4}, \mathbb{R}\right) \text { and, for every fixed } u, v \in \mathbb{R} \text {, it holds that } \\
& G 2)_{1} g(u, v, \cdot, z) \text { is increasing for every fixed } z \in \mathbb{R} ; \\
& G 2)_{2} g(u, v, w, \cdot) \text { is decreasing for every fixed } w \in \mathbb{R} .
\end{aligned}
$$

General nonlinear boundary conditions

We consider the following general boundary problem for $(\boldsymbol{\star})$:

$$
(\mathrm{G}) \quad\left\{\begin{array}{l}
\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e. on } I \\
g\left(x(0), x(T), \mathcal{A}_{x}(0), \mathcal{A}_{x}(T)\right)=0 \\
x(T)=h(x(0))
\end{array}\right.
$$

Here, $h: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{4} \rightarrow \mathbb{R}$ satisfy the following general assumptions:
(G1) $h \in C(\mathbb{R}, \mathbb{R})$ and is increasing on \mathbb{R};
(G2) $g \in C\left(\mathbb{R}^{4}, \mathbb{R}\right)$ and, for every fixed $u, v \in \mathbb{R}$, it holds that
$(\mathrm{G} 2)_{1} g(u, v, \cdot, z)$ is increasing for every fixed $z \in \mathbb{R}$;
$(\mathrm{G} 2)_{2} g(u, v, w, \cdot)$ is decreasing for every fixed $w \in \mathbb{R}$.

Our main aim

To prove the existence of (at least) one solution of (G), i.e., the existence of a solution $x \in W^{1, p}(I)$ of the ODE (\star) satisfying

$$
g(x(0), x(T), A \times(0), A \times(T))=0 \text { and } x(T)=h(x(0))
$$

Our approach

We think of (G) as a superposition of Dirichlet problems and we use a compactness-type result for the solutions of (\star).

Our main aim

To prove the existence of (at least) one solution of (G), i.e., the existence of a solution $x \in W^{1, p}(I)$ of the ODE (\star) satisfying

$$
g\left(x(0), x(T), \mathcal{A}_{x}(0), \mathcal{A}_{x}(T)\right)=0 \text { and } x(T)=h(x(0))
$$

Our approach

We think of (G) as a superposition of Dirichlet problems and we use a compactness-type result for the solutions of (\star)

Our main aim

To prove the existence of (at least) one solution of (G), i.e., the existence of a solution $x \in W^{1, p}(I)$ of the ODE (\star) satisfying

$$
g\left(x(0), x(T), \mathcal{A}_{x}(0), \mathcal{A}_{x}(T)\right)=0 \text { and } x(T)=h(x(0))
$$

Our approach

We think of (G) as a superposition of Dirichlet problems and we use a compactness-type result for the solutions of (\star)

Our main aim

To prove the existence of (at least) one solution of (G), i.e., the existence of a solution $x \in W^{1, p}(I)$ of the ODE (\star) satisfying

$$
g\left(x(0), x(T), \mathcal{A}_{x}(0), \mathcal{A}_{x}(T)\right)=0 \text { and } x(T)=h(x(0))
$$

Our approach

We think of (G) as a superposition of Dirichlet problems and we use a compactness-type result for the solutions of (\star).

Our main result

Our main result

Theorem 2 (B., Calamai and Papalini)

Let us assume that all the hypotheses of Theorem 1 are satisfied and that g and h fulfill (G1)-(G2). Moreover, if $\alpha, \beta \in W^{1, p}(I)$ are, resp., a lower and a upper solution of (\star) such that $\alpha \leq \beta$ on I, we suppose that

$$
\left\{\begin{array} { l }
{ g (\alpha (0) , \alpha (T) , \mathcal { A } _ { \alpha } (0) , \mathcal { A } _ { \alpha } (T)) \geq 0 , } \\
{ \alpha (T) = h (\alpha (0)) }
\end{array} \quad \left\{\begin{array}{l}
g\left(\beta(0), \beta(T), \mathcal{A}_{\beta}(0), \mathcal{A}_{\beta}(T)\right) \leq 0, \\
\beta(T)=h(\beta(0)) .
\end{array}\right.\right.
$$

Finally, let us assume that the function a satisfies the following condition:

$$
a(0, x) \neq 0 \quad \text { and } \quad a(T, x) \neq 0 \quad \text { for every } x \in \mathbb{R}
$$

Our main result

Theorem 2 (B., Calamai and Papalini) - continued

Then the problem (G) possesses one solution $x \in W^{1, p}(I)$ such that

$$
\alpha(t) \leq x(t) \leq \beta(t) \quad \text { for every } t \in I
$$

Furthermore, if $M>0$ is any real number such that sup, $|\alpha|$, $\sup _{l}|\beta| \leq M$ and $L_{0}>0$ is as in Theorem 1, the following fact holds true: for every real number $L \geq L_{0}$ such that $\sup _{l}\left|\mathcal{A}_{\alpha}\right|$, $\sup _{,}\left|\mathcal{A}_{\beta}\right| \leq L$, we have

$$
\max _{t \in I}|x(t)| \leq M \quad \text { and } \quad \max _{t \in I}\left|\mathcal{A}_{x}(t)\right| \leq L
$$

A particular case

By applying Theorem 2 in the particular case when

$$
g(u, v, w, z)=w-z \quad \text { and } \quad h(r)=r
$$

we obtain the existence of one solution $x \in W^{1, p}(I)$ of the "periodic problem"

$$
\left\{\begin{array}{l}
\left(\phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e.on } / \\
\mathcal{A}_{x}(0)=\mathcal{A}_{x}(T) \\
x(0)=x(T)
\end{array}\right.
$$

A particular case

By applying Theorem 2 in the particular case when

$$
g(u, v, w, z)=w-z \quad \text { and } \quad h(r)=r
$$

we obtain the existence of one solution $x \in W^{1, p}(I)$ of the "periodic problem"

$$
\left\{\begin{array}{l}
\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e. on } I \\
\mathcal{A}_{x}(0)=\mathcal{A}_{x}(T) \\
x(0)=x(T)
\end{array}\right.
$$

Sturm-Liouville and Neumann problems

Sturm-Liouville and Neumann problems

We consider the following boundary value problem for (\star) :

Here, the functions $p, q: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ satisfy the following general assumptions: $p \in C\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and, for every $s \in \mathbb{R}$, the map $p(s$,$) is increasing on \mathbb{R}$; $q \in C\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and, for every $s \in \mathbb{R}$, the map $q(s, \cdot)$ is decreasing on \mathbb{R}.

Sturm-Liouville and Neumann problems

We consider the following boundary value problem for $(\boldsymbol{\star})$:
(SL) $\left\{\begin{array}{l}\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e. on } I, \\ p\left(x(0), \mathcal{A}_{x}(0)\right)=0, q\left(x(T), \mathcal{A}_{x}(T)\right)=0 .\end{array}\right.$
Here, the functions $p, q: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ satisfy the following general assumptions: (S1) $p \in C\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and, for every $s \in \mathbb{R}$, the map $p(s, \cdot)$ is increasing on \mathbb{R}; $q \in C\left(\mathbb{P}^{2}, \mathbb{P}\right)$ and, for every $s \in \mathbb{P}$, the map $q(s$,$) is decreasing on \mathbb{P}$.

Sturm-Liouville and Neumann problems

We consider the following boundary value problem for (\star) :
(SL) $\left\{\begin{array}{l}\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e. on } I, \\ p\left(x(0), \mathcal{A}_{x}(0)\right)=0, q\left(x(T), \mathcal{A}_{x}(T)\right)=0 .\end{array}\right.$
Here, the functions $p, q: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ satisfy the following general assumptions:
(S1) $p \in C\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and, for every $s \in \mathbb{R}$, the map $p(s, \cdot)$ is increasing on \mathbb{R};
(S2) $q \in C\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and, for every $s \in \mathbb{R}$, the map $q(s, \cdot)$ is decreasing on \mathbb{R}.

Our main aim

To prove the existence of (at least) one solution of (SL), i.e., the existence of a solution $x \in W^{1, p}(I)$ of the ODE (\star) satisfying

$$
\left.p\left(\times(0), \mathcal{A}_{x}(0)\right)=0 \text { and } q^{\prime} \times(T), \mathcal{A}^{\prime}(T)\right)=0
$$

Our approach

We think of (SL) as a superposition of general boundary problems of the type (G) and we use again a compactness-type result for the solutions of (\star).

Our main aim

To prove the existence of (at least) one solution of (SL), i.e., the existence of a solution $x \in W^{1, p}(I)$ of the ODE (\star) satisfying

$$
p\left(x(0), \mathcal{A}_{x}(0)\right)=0 \text { and } q\left(x(T), \mathcal{A}_{x}(T)\right)=0
$$

Our approach

We think of (SL) as a superposition of general boundary problems of the type (G) and we use again a compactness-type result for the solutions of (\star)

Our main aim

To prove the existence of (at least) one solution of (SL), i.e., the existence of a solution $x \in W^{1, p}(I)$ of the ODE (\star) satisfying

$$
p\left(x(0), \mathcal{A}_{x}(0)\right)=0 \text { and } q\left(x(T), \mathcal{A}_{x}(T)\right)=0
$$

Our approach

We think of (SL) as a superposition of general boundary problems of the type (G) and we use again a compactness-type result for the solutions of (\star)

Our main aim

To prove the existence of (at least) one solution of (SL), i.e., the existence of a solution $x \in W^{1, p}(I)$ of the ODE (\star) satisfying

$$
p\left(x(0), \mathcal{A}_{x}(0)\right)=0 \text { and } q\left(x(T), \mathcal{A}_{x}(T)\right)=0
$$

Our approach

We think of (SL) as a superposition of general boundary problems of the type (G) and we use again a compactness-type result for the solutions of (\star).

Our main result

Our main result

Theorem 3 (B., Calamai and Papalini)

Let us assume that all the hypotheses of Theorem 1 are satisfied and that p and q fulfill (S1)-(S2). Moreover, if $\alpha, \beta \in W^{1, p}(I)$ are, resp., a lower and a upper solution of (\star) such that $\alpha \leq \beta$ on I, we suppose that

$$
\left\{\begin{array} { l }
{ p (\alpha (0) , \mathcal { A } _ { \alpha } (0)) \geq 0 , } \\
{ q (\alpha (T) , \mathcal { A } _ { \alpha } (T)) \geq 0 ; }
\end{array} \quad \left\{\begin{array}{l}
p\left(\beta(0), \mathcal{A}_{\beta}(0)\right) \leq 0 \\
q\left(\beta(T), \mathcal{A}_{\beta}(T)\right) \leq 0
\end{array}\right.\right.
$$

Finally, let us assume that the function a satisfies the following condition:

$$
a(0, x) \neq 0 \quad \text { and } \quad a(T, x) \neq 0 \quad \text { for every } x \in \mathbb{R}
$$

Our main result

Theorem 3 (B., Calamai and Papalini) - continued

Then the problem (SL) possesses one solution $x \in W^{1, p}(I)$ such that

$$
\alpha(t) \leq x(t) \leq \beta(t) \quad \text { for every } t \in I
$$

Furthermore, if $M>0$ is any real number such that sup $|\alpha|$, $\sup _{l}|\beta| \leq M$ and $L_{0}>0$ is as in Theorem 1, the following fact holds true: for every real number $L \geq L_{0}$ such that $\sup _{l}\left|\mathcal{A}_{\alpha}\right|$, $\sup _{,}\left|\mathcal{A}_{\beta}\right| \leq L$, we have

$$
\max _{t \in I}|x(t)| \leq M \quad \text { and } \quad \max _{t \in I}\left|\mathcal{A}_{x}(t)\right| \leq L
$$

Two particular cases

By applying Theorem 3 in the particular case when

$$
p(s, t):=\ell_{1} s+m_{1} t-\nu_{1} \quad \text { and } \quad q(s, t):=\ell_{2} s-m_{2} t-v_{2}
$$

(for some $m_{1}, m_{2} \geq 0$ and $\ell_{1}, \ell_{2} \nu_{1}, \nu_{2} \in \mathbb{R}$) we obtain the existence of one solution $x \in W^{1, p}(I)$ of the "Sturm-Liouville problem"

$$
\left\{\begin{array}{l}
\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e. on } I \\
\ell_{1} \times(0)+m_{1} \mathcal{A}_{x}(0)=\nu_{1} \\
\ell_{2} \times(T)-m_{2} \mathcal{A}_{x}(T)=\nu_{2}
\end{array}\right.
$$

Two particular cases

(1) By applying Theorem 3 in the particular case when

$$
p(s, t):=\ell_{1} s+m_{1} t-\nu_{1} \quad \text { and } \quad q(s, t):=\ell_{2} s-m_{2} t-\nu_{2}
$$

(for some $m_{1}, m_{2} \geq 0$ and $\ell_{1}, \ell_{2} \nu_{1}, \nu_{2} \in \mathbb{R}$) we obtain the existence of one solution $x \in W^{1, p}(I)$ of the "Sturm-Liouville problem"

$$
\left\{\begin{array}{l}
\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e. on } I \\
\ell_{1} x(0)+m_{1} \mathcal{A}_{x}(0)=\nu_{1} \\
\ell_{2} x(T)-m_{2} \mathcal{A}_{x}(T)=\nu_{2}
\end{array}\right.
$$

Two particular cases

By applying Theorem 3 in the particular case when

$$
p(s, t):=t-\nu_{1} \quad \text { and } \quad q(s, t):=\nu_{2}-t
$$

(for some fixed constants $\nu_{1}, \nu_{2} \in \mathbb{R}$) we obtain the existence of one solution $x \in W^{1, p}(I)$ of the "Neumann problem"

$$
\left\{\begin{array}{l}
\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e. on } I, \\
\mathcal{A}_{x}(0)=\nu_{1} \\
\mathcal{A}_{x}(T)=\nu_{2}
\end{array}\right.
$$

Two particular cases

(2) By applying Theorem 3 in the particular case when

$$
p(s, t):=t-\nu_{1} \quad \text { and } \quad q(s, t):=\nu_{2}-t
$$

(for some fixed constants $\nu_{1}, \nu_{2} \in \mathbb{R}$) we obtain the existence of one solution $x \in W^{1, p}(I)$ of the "Neumann problem"

$$
\left\{\begin{array}{l}
\left(\Phi\left(a(t, x(t)) x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e. on } I \\
\mathcal{A}_{x}(0)=\nu_{1} \\
\mathcal{A}_{x}(T)=\nu_{2}
\end{array}\right.
$$

Thank you for your attention!

[^0]: ${ }^{1}$ Dipartimento di Ingegneria Civile, Edile e Architettura, Università Politecnica delle Marche
 ${ }^{2}$ Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche

