Some existence results for boundary value problems associated with singular equations

Stefano Biagi

Dipartimento di Ingegneria Industriale e Scienze Matematiche (DIISM) Università Politecnica delle Marche - Ancona

Giornate di Equazioni Differenziali Ordinarie: metodi e prospettive

September 27 - 29, 2018 - Università Politecnica delle Marche (Ancona)

The results presented in this talk were obtained in a joint work with A. Calamai¹ and F. Papalini².

¹Dipartimento di Ingegneria Civile, Edile e Architettura, Università Politecnica delle Marche

²Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche 💿

Some existence results for boundary value problems associated with singular equations

Main assumptions and notations

We are interested in strongly nonlinear differential equations of the type

$$(\bigstar) \quad \left(\Phi(a(t,x(t))x'(t))\right)' = f(t,x(t),x'(t)), \quad \text{a.e. on } I := [0,T],$$

where Φ , *a* and *f* satisfy the following *structural assumptions*:

(A1) Φ: ℝ → ℝ is a strictly increasing homeomorphism;
(A2) a ∈ C(I × ℝ, ℝ) and there exists h ∈ C(I, ℝ) such the (A2)₁ h ≥ 0 on I and 1/h ∈ L^p(I) (for some p > 1);
(A2)₂ a(t,x) ≥ h(t) for every t ∈ I and every x ∈ ℝ;
(A3) f: I × ℝ² → ℝ is a Carathéodory function.

Main assumptions and notations

We are interested in strongly nonlinear differential equations of the type

$$(\bigstar) \quad \left(\Phi(a(t,x(t))x'(t))\right)' = f(t,x(t),x'(t)), \quad \text{a.e. on } I := [0,T],$$

where Φ , *a* and *f* satisfy the following *structural assumptions*:

(A1) Φ: ℝ → ℝ is a strictly increasing homeomorphism;
(A2) a ∈ C(I × ℝ, ℝ) and there exists h ∈ C(I, ℝ) such th
(A2)₁ h ≥ 0 on I and 1/h ∈ L^p(I) (for some p > 1);
(A2)₂ a(t, x) ≥ h(t) for every t ∈ I and every x ∈ ℝ;
(A3) f: I × ℝ² → ℝ is a Carathéodory function

Main assumptions and notations

We are interested in strongly nonlinear differential equations of the type

$$(\bigstar) \quad \left(\Phi(a(t,x(t))x'(t))\right)' = f(t,x(t),x'(t)), \quad \text{a.e. on } I := [0,T],$$

where Φ , *a* and *f* satisfy the following *structural assumptions*:

(A1) Φ: ℝ → ℝ is a strictly increasing homeomorphism;
(A2) a ∈ C(I × ℝ, ℝ) and there exists h ∈ C(I, ℝ) such that
(A2)₁ h ≥ 0 on I and 1/h ∈ L^p(I) (for some p > 1);
(A2)₂ a(t,x) ≥ h(t) for every t ∈ I and every x ∈ ℝ;
(A3) f: I × ℝ² → ℝ is a Carathéodory function.

Main assumptions and notations

We are interested in strongly nonlinear differential equations of the type

$$(\bigstar) \quad \left(\Phi(a(t,x(t))x'(t))\right)' = f(t,x(t),x'(t)), \quad \text{a.e. on } I := [0,T],$$

where Φ , *a* and *f* satisfy the following *structural assumptions*:

(A3) $f: I \times \mathbb{R}^2 \to \mathbb{R}$ is a Carathéodory function,

Main assumptions and notations

We are interested in strongly nonlinear differential equations of the type

$$(\bigstar) \quad \left(\Phi(a(t,x(t))x'(t))\right)' = f(t,x(t),x'(t)), \quad \text{a.e. on } I := [0,T],$$

where Φ , *a* and *f* satisfy the following *structural assumptions*:

Ordinary differential equations of the form (\bigstar) intervene in several models:

- non-Newtonian fluid theory;
- diffusion of flows in porous media;
- nonlinear elasticity;
- theory of capillary surfaces.

Ordinary differential equations of the form (\bigstar) intervene in several models:

- non-Newtonian fluid theory;
- diffusion of flows in porous media;
- nonlinear elasticity;
- theory of capillary surfaces.

Ordinary differential equations of the form (\bigstar) intervene in several models:

- non-Newtonian fluid theory;
- diffusion of flows in porous media;
- nonlinear elasticity;

Introduction

theory of capillary surfaces.

Ordinary differential equations of the form (\bigstar) intervene in several models:

- non-Newtonian fluid theory;
- diffusion of flows in porous media;
- nonlinear elasticity;

Introduction

• theory of capillary surfaces.

Our main aim

To prove the existence of a solution for several classes of **boundary value problems** associated with ODEs of the form (\bigstar) .

what we mean by a *solution* of an ODE of the form (\bigstar) ?

Our main aim

To prove the existence of a solution for several classes of **boundary value problems** associated with ODEs of the form (\bigstar) .

But...

what we mean by a *solution* of an ODE of the form (\bigstar) ?

Solution of an ODE of the form (\bigstar)

Definition

Introduction

We say that $x \in W^{1,p}(I)$ is a solution of the ODE (\bigstar) if:

(1)
$$t \mapsto \Phi(a(t, x(t)) x'(t)) \in W^{1,1}(I);$$

(2) $(\Phi(a(t, y(t)) y'(t)))' = f(t, y(t)) y'(t))$ for element of

(2) $\left(\Phi\left(a(t,x(t))x'(t)\right)\right)' = f(t,x(t),x'(t))$ for almost every $t \in I$;

An important remark

If $x \in W^{1,p}(I)$ is any solution of the ODE (\bigstar) , we indicate by A_x the unique continuous function on I such that

$$a(t,x(t))x'(t) = \mathcal{A}_x(t)$$
 for a.e. $t \in I$.

イロト 不得 トイヨト イヨト 二日

Solution of an ODE of the form (\bigstar)

Definition

We say that $x \in W^{1,p}(I)$ is a solution of the ODE (\bigstar) if:

(1)
$$t \mapsto \Phi(a(t, x(t)) x'(t)) \in W^{1,1}(I);$$

(2)
$$\left(\Phi\left(a(t,x(t))x'(t)\right)\right)' = f(t,x(t),x'(t))$$
 for almost every $t \in I$;

An important remark

If $x \in W^{1,p}(I)$ is any solution of the ODE (\bigstar) , we indicate by A_x the unique continuous function on I such that

$$a(t,x(t))x'(t) = \mathcal{A}_x(t)$$
 for a.e. $t \in I$.

Some references

For the Φ -Laplacian operator: $\Phi(x')' = f(t, x, x')$

• Cabada and Pouso (1997, 1999); Cabada, O'Regan and Pouso (2008); El Khattabi, Frigon and Ayyadi (2013).

For singular or non-surjective operators: $(a(x) \Phi(x'))' = f(t, x, x')$

• Bereanu and Mawhin (2008); Ferracuti and Papalini (2009); Calamai (2011).

For mixed differential operators: $(a(t,x) \Phi(x'))' = f(t,x,x')$ (with a > 0)

• Cupini, Marcelli and Papalini (2011); Marcelli (2012, 2013); Marcelli and Papalini (2017).

For possibly singular equations: $(\Phi(k(t)x'(t)))' = f(t,x,x')$

• Liu (2012); Liu and Yang (2015); Calamai, Marcelli and Papalini (2018).

Some references

For the Φ -Laplacian operator: $\Phi(x')' = f(t, x, x')$

 Cabada and Pouso (1997, 1999); Cabada, O'Regan and Pouso (2008); El Khattabi, Frigon and Ayyadi (2013).

For singular or non-surjective operators: $(a(x) \Phi(x'))' = f(t, x, x')$

Bereanu and Mawhin (2008); Ferracuti and Papalini (2009); Calamai (2011).

For mixed differential operators: $(a(t,x)\Phi(x'))' = f(t,x,x')$ (with a > 0)

• Cupini, Marcelli and Papalini (2011); Marcelli (2012, 2013); Marcelli and Papalini (2017).

For possibly singular equations: $(\Phi(k(t)x'(t)))' = f(t,x,x')$

• Liu (2012); Liu and Yang (2015); Calamai, Marcelli and Papalini (2018).

The Dirichlet problem for (\bigstar)

Some existence results for boundary value problems associated with singular equations

Stefano Biagi

・ロト ・四ト ・ヨト ・ヨト

The Dirichlet problem for (\bigstar)

Let $\nu_1, \nu_2 \in \mathbb{R}$ be fixed. We consider the following Dirichlet problem for (\bigstar)

(DP)
$$\begin{cases} \left(\Phi(a(t, x(t)) x'(t)) \right)' = f(t, x(t), x'(t)), & \text{a.e. on } I, \\ x(0) = \nu_1, \ x(T) = \nu_2. \end{cases}$$

<u>Our main aim</u>

To prove the existence of (at least) one **solution of (DP)**, i.e., the existence of a solution $x \in W^{1,p}(I)$ of the ODE (\bigstar) satisfying

 $x(0) = v_1 \text{ and } x(T) = v_2.$

The Dirichlet problem for (\bigstar)

Let $\nu_1, \nu_2 \in \mathbb{R}$ be fixed. We consider the following Dirichlet problem for (\bigstar)

(DP)
$$\begin{cases} \left(\Phi(a(t, x(t)) x'(t)) \right)' = f(t, x(t), x'(t)), & \text{a.e. on } I, \\ x(0) = \nu_1, \ x(T) = \nu_2. \end{cases}$$

Our main aim

To prove the existence of (at least) one **solution of (DP)**, i.e., the existence of a solution $x \in W^{1,p}(I)$ of the ODE (\bigstar) satisfying

 $x(0) = v_1 \text{ and } x(T) = v_2.$

The Dirichlet problem for (\bigstar)

Let $\nu_1, \nu_2 \in \mathbb{R}$ be fixed. We consider the following Dirichlet problem for (\bigstar)

(DP)
$$\begin{cases} \left(\Phi(a(t, x(t)) x'(t)) \right)' = f(t, x(t), x'(t)), & \text{a.e. on } I, \\ x(0) = \nu_1, \ x(T) = \nu_2. \end{cases}$$

<u>Our main aim</u>

To prove the existence of (at least) one **solution of (DP)**, i.e., the existence of a solution $x \in W^{1,p}(I)$ of the ODE (\bigstar) satisfying

 $x(0) = v_1 \text{ and } x(T) = v_2.$

The Dirichlet problem for (\bigstar)

Let $\nu_1, \nu_2 \in \mathbb{R}$ be fixed. We consider the following Dirichlet problem for (\bigstar)

(DP)
$$\begin{cases} \left(\Phi(a(t, x(t)) x'(t)) \right)' = f(t, x(t), x'(t)), & \text{a.e. on } I, \\ x(0) = \nu_1, \ x(T) = \nu_2. \end{cases}$$

Our main aim

To prove the existence of (at least) one **solution of (DP)**, i.e., the existence of a solution $x \in W^{1,p}(I)$ of the ODE (\bigstar) satisfying

 $x(0) = v_1 \text{ and } x(T) = v_2.$

The Dirichlet problem for (\bigstar)

Let $\nu_1, \nu_2 \in \mathbb{R}$ be fixed. We consider the following Dirichlet problem for (\bigstar)

(DP)
$$\begin{cases} \left(\Phi(a(t, x(t)) x'(t)) \right)' = f(t, x(t), x'(t)), & \text{a.e. on } I, \\ x(0) = \nu_1, \ x(T) = \nu_2. \end{cases}$$

<u>Our main aim</u>

To prove the existence of (at least) one solution of (DP), i.e., the existence of a solution $x \in W^{1,p}(I)$ of the ODE (\bigstar) satisfying

$$x(0) = \nu_1 \text{ and } x(T) = \nu_2.$$

Our approach

A suitable combination of the method of lower/upper solutions with a fixed-point technique (applied to an auxiliary functional problem).

efinition: lower/upper solution

We say that $\alpha \in W^{1,p}(I)$ is a **lower** [resp. **upper**] solution of the ODE (\bigstar) if (1) $t \mapsto \Phi(a(t, \alpha(t)) \alpha'(t)) \in W^{1,1}(I)$;

(2) $\left(\Phi(a(t, \alpha(t)) \alpha'(t))\right)' \ge [\le] f(t, \alpha(t), \alpha'(t))$ for almost every $t \in I$.

Another important remark

If $\alpha \in W^{1,p}(I)$ is a lower/upper solution of the ODE (\bigstar), we indicate by \mathcal{A}_{α} the unique continuous function on I satisfying

$$a(t, lpha(t)) \, lpha'(t) = \mathcal{A}_{lpha}(t) \quad ext{for a.e. } t \in I.$$

Our approach

A suitable combination of the method of lower/upper solutions with a fixed-point technique (applied to an auxiliary functional problem).

Definition: lower/upper solution

We say that $\alpha \in W^{1,p}(I)$ is a **lower** [resp. **upper**] solution of the ODE (\bigstar) if (1) $t \mapsto \Phi(a(t, \alpha(t)) \alpha'(t)) \in W^{1,1}(I)$;

(2) $\left(\Phi\left(a(t,\alpha(t))\alpha'(t)\right)\right)' \ge [\le] f(t,\alpha(t),\alpha'(t))$ for almost every $t \in I$.

Another important remark

If $\alpha \in W^{1,p}(I)$ is a lower/upper solution of the ODE (\bigstar), we indicate by \mathcal{A}_{α} the unique continuous function on I satisfying

$$a(t, lpha(t)) \, lpha'(t) = \mathcal{A}_{lpha}(t) \quad ext{for a.e. } t \in I.$$

Our approach

A suitable combination of the method of lower/upper solutions with a fixed-point technique (applied to an auxiliary functional problem).

Definition: lower/upper solution

We say that $\alpha \in W^{1,p}(I)$ is a **lower** [resp. **upper**] solution of the ODE (\bigstar) if (1) $t \mapsto \Phi(a(t, \alpha(t)) \alpha'(t)) \in W^{1,1}(I)$; (2) $(\Phi(a(t, \alpha(t)) \alpha'(t)))' \geq [\leq] f(t, \alpha(t), \alpha'(t))$ for almost every $t \in I$.

Another important remark

If $\alpha \in W^{1,p}(I)$ is a lower/upper solution of the ODE (\bigstar) , we indicate by \mathcal{A}_{α} the unique continuous function on I satisfying

$$a(t, \alpha(t)) \, lpha'(t) = \mathcal{A}_{lpha}(t) \quad ext{for a.e. } t \in I.$$

イロン イロン イヨン イヨン

Our approach

A suitable combination of the method of lower/upper solutions with a fixed-point technique (applied to an auxiliary functional problem).

Definition: lower/upper solution

We say that $\alpha \in W^{1,p}(I)$ is a lower [resp. upper] solution of the ODE (\bigstar) if (1) $t \mapsto \Phi(a(t, \alpha(t)) \alpha'(t)) \in W^{1,1}(I)$; (2) $\left(\Phi(a(t, \alpha(t)) \alpha'(t))\right)' \geq [\leq] f(t, \alpha(t), \alpha'(t))$ for almost every $t \in I$.

Another important remark

If $\alpha \in W^{1,p}(I)$ is a lower/upper solution of the ODE (\bigstar) , we indicate by \mathcal{A}_{α} the unique continuous function on I satisfying

$$a(t, lpha(t)) \, lpha'(t) = \mathcal{A}_{lpha}(t) \quad ext{for a.e. } t \in I.$$

Our main result

neorem 1 (B., Calamai and Papalini)

We assume that, together with (A1)-to-(A3), the following hypotheses hold:

- there exists a pair of lower and upper solutions $\alpha, \beta \in W^{1,p}(I)$ of (\bigstar) such that $\alpha(t) \leq \beta(t)$ for every $t \in I$;
- for every R > 0 and every non-negative function $\gamma \in L^p(I)$ there exists a non-negative function $h = h_{R,\gamma} \in L^p(I)$ such that

$$|f(t, x, y(t))| \le h_{R,\gamma}(t) \tag{1}$$

for a.e. $t\in I$, every $|x|\leq R$ and every $y\in L^p(I)$ with $|y(t)|\leq \gamma(t)$ a.e. on I.

there exist H > 0, a non-negative function µ ∈ L^q(I) (for some 1 < q ≤ ∞), a non-negative function I ∈ L¹(I) and a non-negative measurable function ψ : (0,∞) → (0,∞) such that

$$(\star) \ 1/\psi \in L^1_{\mathrm{loc}}(0,\infty) \quad ext{and} \quad \int_1^\infty rac{1}{\psi(t)} \, \mathrm{d}t = \infty;$$

$$(\star) |f(t,x,y)| \le \psi \left(|\Phi(a(t,x)y)| \right) \cdot \left(l(t) + \mu(t) |y|^{\frac{q-1}{q}} \right);$$

for a.e. $t \in I$, every $x \in [\alpha(t), \beta(t)]$ and every $y \in \mathbb{R}$ with $|y| \ge H$.

Our main result

Theorem 1 (B., Calamai and Papalini)

We assume that, together with (A1)-to-(A3), the following hypotheses hold:

- there exists a pair of lower and upper solutions $\alpha, \beta \in W^{1,p}(I)$ of (\bigstar) such that $\alpha(t) \leq \beta(t)$ for every $t \in I$;
- for every R > 0 and every non-negative function $\gamma \in L^p(I)$ there exists a non-negative function $h = h_{R,\gamma} \in L^p(I)$ such that

$$|f(t,x,y(t))| \le h_{R,\gamma}(t) \tag{1}$$

for a.e. $t \in I$, every $|x| \leq R$ and every $y \in L^p(I)$ with $|y(t)| \leq \gamma(t)$ a.e. on I.

• there exist H > 0, a non-negative function $\mu \in L^q(I)$ (for some $1 < q \le \infty$), a non-negative function $I \in L^1(I)$ and a non-negative measurable function $\psi : (0, \infty) \to (0, \infty)$ such that

$$(\star) \; 1/\psi \in L^1_{\mathrm{loc}}(0,\infty) \quad ext{and} \quad \int_1^\infty rac{1}{\psi(t)} \, \mathrm{d}t = \infty;$$

$$(\star) |f(t,x,y)| \le \psi \left(|\Phi(a(t,x)y)| \right) \cdot \left(l(t) + \mu(t) |y|^{\frac{q-1}{q}} \right); \tag{2}$$

for a.e. $t \in I$, every $x \in [\alpha(t), \beta(t)]$ and every $y \in \mathbb{R}$ with $|y| \ge H$.

Our main result

Theorem 1 (B., Calamai and Papalini) - continued

Then, for every $\nu_1 \in [\alpha(0), \beta(0)]$ and every $\nu_2 \in [\alpha(T), \beta(T)]$, the Dirichlet problem (DP) possesses at least one solution $x \in W^{1,p}(I)$ satisfying

 $\alpha(t) \leq x(t) \leq \beta(t)$ for every $t \in I$.

Furthermore, if M > 0 is any real number such that $\sup_{I} |\alpha|$, $\sup_{I} |\beta| \le M$, it is possible to find a real $L_0 > 0$, only depending on M, with the following property: if $L \ge L_0$ is any real number such that $\sup_{I} |\mathcal{A}_{\alpha}|$, $\sup_{I} |\mathcal{A}_{\beta}| \le L$, then

 $\max_{t \in I} |x(t)| \le M \quad and \quad \max_{t \in I} |\mathcal{A}_x(t)| \le L.$

Our main result

Theorem 1 (B., Calamai and Papalini) - continued

Then, for every $\nu_1 \in [\alpha(0), \beta(0)]$ and every $\nu_2 \in [\alpha(T), \beta(T)]$, the Dirichlet problem (DP) possesses at least one solution $x \in W^{1,p}(I)$ satisfying

 $\alpha(t) \leq x(t) \leq \beta(t)$ for every $t \in I$.

Furthermore, if M > 0 is any real number such that $\sup_{I} |\alpha|$, $\sup_{I} |\beta| \le M$, it is possible to find a real $L_0 > 0$, only depending on M, with the following property: if $L \ge L_0$ is any real number such that $\sup_{I} |\mathcal{A}_{\alpha}|$, $\sup_{I} |\mathcal{A}_{\beta}| \le L$, then

$$\max_{t\in I} |x(t)| \leq M \quad and \quad \max_{t\in I} |\mathcal{A}_x(t)| \leq L.$$

A couple of examples

(1) Let us consider the Dirichlet problem

$$\begin{cases} \left(\Phi(a(t, x(t)) \, x'(t)) \right)' = \sigma(t)(x(t) + \rho(t)) + g(x(t)) \, x'(t) \\ x(0) = \nu_1, \ x(T) = \nu_2, \end{cases}$$

where Φ , a, σ , ρ and g satisfy the following assumptions:

$$(\star) \ \Phi : \mathbb{R} o \mathbb{R}$$
 is a generic strictly increasing homeomorphism;

$$(\star)$$
 $a \in C(I imes \mathbb{R}, \mathbb{R})$ satisfies assumption (A2);

$$(\star) \ \sigma \in L^1(I)$$
 and $\sigma \ge 0$ a.e. on I ;

$$(\star) \
ho \in C(I)$$
 and $g \in C(\mathbb{R},\mathbb{R})$ are generic.

A couple of examples

(1) Let us consider the Dirichlet problem

$$\begin{cases} \left(\Phi(a(t, x(t)) x'(t)) \right)' = \sigma(t)(x(t) + \rho(t)) + g(x(t)) x'(t) \\ x(0) = \nu_1, \ x(T) = \nu_2, \end{cases}$$

where Φ , a, σ , ρ and g satisfy the following assumptions:

(*) $\Phi : \mathbb{R} \to \mathbb{R}$ is a generic strictly increasing homeomorphism;

(*)
$$a \in C(I \times \mathbb{R}, \mathbb{R})$$
 satisfies assumption (A2);

$$(\star) \; \sigma \in \mathsf{L}^1(I)$$
 and $\sigma \geq \mathsf{0}$ a.e. on I ;

$$(\star) \
ho \in C(I)$$
 and $g \in C(\mathbb{R},\mathbb{R})$ are generic.

A couple of examples

It is not difficult to recognize that:

(a) Setting $N := \max_{I} |\rho|$, the constant functions

$$lpha(t):=-N \qquad eta(t):=N \qquad ig(ext{for } t\in Iig)$$

are, respectively, a lower and a upper solution of (\bigstar) s.t. $\alpha \leq \beta$ on I.

(b) Setting $f(t, x, y) := \sigma(t)(x + \rho(t)) + g(x)y$, we have

- f is a Carathéodory function on I × ℝ²;
- f fulfills (1) with the choice

$$h_{R,\gamma}(t) := \sigma(t) \left(R + |
ho(t)|
ight) + \left(\max_{[-R,R]} |g|
ight) \cdot \gamma(t);$$

• f fulfills (2) with the choice

$$H:=1, \hspace{0.2cm} \psi\equiv 1, \hspace{0.2cm} I(t):=2N\,\sigma(t), \hspace{0.2cm} \mu(t):=\max_{[-N,N]}|g| \hspace{0.2cm} ext{and} \hspace{0.2cm} q=\infty.$$

A couple of examples

It is not difficult to recognize that:

(a) Setting $N := \max_{I} |\rho|$, the constant functions

$$\alpha(t) := -N \qquad \beta(t) := N \qquad (\text{for } t \in I)$$

are, respectively, a lower and a upper solution of (\bigstar) s.t. $\alpha \leq \beta$ on *I*.

(b) Setting $f(t, x, y) := \sigma(t)(x + \rho(t)) + g(x)y$, we have

- f is a Carathéodory function on I × ℝ²;
- f fulfills (1) with the choice

$$h_{R,\gamma}(t) := \sigma(t) \left(R + |
ho(t)|
ight) + \left(\max_{[-R,R]} |g|
ight) \cdot \gamma(t);$$

• f fulfills (2) with the choice

$$H:=1, \hspace{0.2cm} \psi\equiv 1, \hspace{0.2cm} I(t):=2N\,\sigma(t), \hspace{0.2cm} \mu(t):=\max_{[-N,N]}|g| \hspace{0.2cm} ext{and} \hspace{0.2cm} q=\infty.$$

A couple of examples

It is not difficult to recognize that:

(a) Setting $N := \max_{I} |\rho|$, the constant functions

$$\alpha(t) := -N \qquad \beta(t) := N \qquad (\text{for } t \in I)$$

are, respectively, a lower and a upper solution of (\bigstar) s.t. $\alpha \leq \beta$ on *I*.

(b) Setting
$$f(t, x, y) := \sigma(t)(x + \rho(t)) + g(x)y$$
, we have

- f is a Carathéodory function on $I \times \mathbb{R}^2$;
- f fulfills (1) with the choice

$$h_{R,\gamma}(t) := \sigma(t) \left(R + |
ho(t)|
ight) + ig(\max_{[-R,R]} |g| ig) \cdot \gamma(t);$$

• f fulfills (2) with the choice

$$H:=1, \hspace{1em} \psi\equiv 1, \hspace{1em} I(t):=2N\,\sigma(t), \hspace{1em} \mu(t):=\max_{[-N,N]}|g| \hspace{1em} ext{and} \hspace{1em} q=\infty.$$

A couple of examples

2) Let us consider the Dirichlet problem

$$\begin{cases} \left(\Phi_r(a(t, x(t)) x'(t))\right)' = \sigma(t) \cdot g(x(t)) \cdot |x'(t)|^{\delta} \\ u(0) = \nu_1, \ u(T) = \nu_2, \end{cases}$$

where Φ_r, a, σ, g and the exponent δ satisfy the following assumptions:

$$(\star) \ \Phi_r : \mathbb{R} o \mathbb{R}, \ \Phi_r(\xi) := |\xi|^{r-2} \cdot \xi \quad ext{ (for a suitable } r > 1).$$

(*) $a \in C(I \times \mathbb{R}, \mathbb{R})$ satisfies assumption (A2);

 $(\star) \ \sigma \in L^{ au}(I)$ for a suitable au > 1 satisfying the relation

$$\frac{1}{\tau} + \frac{r-1}{p} < 1$$

 $(\star) \ g \in C(\mathbb{R},\mathbb{R})$ is a generic function;

(*) δ is a positive real constant satisfying the relation

$$\delta \le 1 - \frac{1}{\tau} + (r - 1) \left(1 - \frac{1}{p} \right).$$

・ロト ・四ト ・ヨト ・ヨト

A couple of examples

(2) Let us consider the Dirichlet problem

$$\begin{cases} \left(\Phi_r(a(t,x(t))x'(t))\right)' = \sigma(t) \cdot g(x(t)) \cdot |x'(t)|^{\delta} \\ u(0) = \nu_1, \ u(T) = \nu_2, \end{cases}$$

where Φ_r , a, σ , g and the exponent δ satisfy the following assumptions:

$$(\star) \; \Phi_r : \mathbb{R} o \mathbb{R}, \; \Phi_r(\xi) := |\xi|^{r-2} \cdot \xi \quad ext{ (for a suitable } r > 1).$$

(*) $a \in C(I \times \mathbb{R}, \mathbb{R})$ satisfies assumption (A2);

(*) $\sigma \in L^{\tau}(I)$ for a suitable $\tau > 1$ satisfying the relation

$$\frac{1}{\tau} + \frac{r-1}{p} < 1$$

(*) $g \in C(\mathbb{R}, \mathbb{R})$ is a generic function;

(*) δ is a positive real constant satisfying the relation

$$\delta \leq 1 - \frac{1}{\tau} + (r-1)\left(1 - \frac{1}{p}\right).$$

A couple of examples

It is not difficult to recognize that:

(a) For every fixed $N \in \mathbb{R}$, the constant functions

$$\alpha(t) := -N \qquad \beta(t) := N \qquad (\text{for } t \in I)$$

are, respectively, a lower and a upper solution of (\bigstar) s.t. $\alpha \leq \beta$ on *I*.

(b) Setting $f(t, x, y) := \sigma(t) \cdot g(x) \cdot |y|^{\delta}$, we have

- f is a Carathéodory function on $I imes \mathbb{R}^2$;
- f fulfills (1) with the choice

$$h_{R,\gamma}(t) := ig(\max_{[-R,R]} |g|ig) \cdot |\sigma(t)| \cdot (\gamma(t))^{\delta};$$

• f fulfills (2) with the choice

$$H := 1, \quad \psi(s) := s, \quad l(t) := 0, \quad \mu(t) := \frac{\left(\max_{[-N,N]} |g|\right) \cdot |\sigma(t)|}{(h(t))^{r-1}}$$

A couple of examples

It is not difficult to recognize that:

(a) For every fixed $N \in \mathbb{R}$, the constant functions

$$\alpha(t) := -N \qquad \beta(t) := N \qquad (\text{for } t \in I)$$

are, respectively, a lower and a upper solution of (\bigstar) s.t. $\alpha \leq \beta$ on *I*.

(b) Setting $f(t, x, y) := \sigma(t) \cdot g(x) \cdot |y|^{\delta}$, we have

- f is a Carathéodory function on $I imes \mathbb{R}^2$;
- f fulfills (1) with the choice

$$h_{R,\gamma}(t) := \left(\max_{[-R,R]} |g|\right) \cdot |\sigma(t)| \cdot (\gamma(t))^{\delta};$$

• f fulfills (2) with the choice

$$H := 1, \quad \psi(s) := s, \quad l(t) := 0, \quad \mu(t) := \frac{\left(\max_{[-N,N]} |g|\right) \cdot |\sigma(t)|}{(h(t))^{r-1}}$$

A couple of examples

It is not difficult to recognize that:

(a) For every fixed $N \in \mathbb{R}$, the constant functions

$$\alpha(t) := -N \qquad \beta(t) := N \qquad (\text{for } t \in I)$$

are, respectively, a lower and a upper solution of (\bigstar) s.t. $\alpha \leq \beta$ on *I*.

(b) Setting
$$f(t, x, y) := \sigma(t) \cdot g(x) \cdot |y|^{\delta}$$
, we have

- *f* is a Carathéodory function on *I* × ℝ²;
- f fulfills (1) with the choice

$$h_{R,\gamma}(t) := ig(\max_{[-R,R]} |\mathsf{g}|ig) \cdot |\sigma(t)| \cdot (\gamma(t))^{\delta};$$

• f fulfills (2) with the choice

$$H := 1, \quad \psi(s) := s, \quad l(t) := 0, \quad \mu(t) := rac{\left(\max_{[-N,N]} |g|\right) \cdot |\sigma(t)|}{(h(t))^{r-1}}$$

Idea of the proof

Truncating operators: Let α, β ∈ W^{1,p}(I) be, respectively, a lower and a upper solution of the equation (★) such that α ≤ β on I. We define

$$\mathcal{T}: W^{1,p}(I) \longrightarrow W^{1,p}(I), \qquad \mathcal{T}(x)(t) := \begin{cases} \alpha(t), & \text{if } x(t) < \alpha(t); \\ x(t), & \text{if } x(t) \in [\alpha(t), \beta(t)]; \\ \beta(t), & \text{if } x(t) > \beta(t); \end{cases}$$

$$\mathcal{D}: L^p(I) \longrightarrow L^p(I), \qquad \qquad \mathcal{D}(z)(t) := egin{cases} -\gamma_0(t), & ext{if } z(t) < -\gamma_0(t); \ z(t), & ext{if } |z(t)| \leq \gamma_0(t); \ \gamma_0(t), & ext{if } z(t) > \gamma_0(t); \end{cases}$$

(here, $\gamma_0(t) = L/k(t)$ and L > 0 is suitably chosen).

イロン イヨン イヨン イヨン

Idea of the proof

• Truncating operators: Let α , $\beta \in W^{1,p}(I)$ be, respectively, a lower and a upper solution of the equation (\bigstar) such that $\alpha \leq \beta$ on *I*. We define

$$\mathcal{T}: W^{1,p}(I) \longrightarrow W^{1,p}(I), \qquad \mathcal{T}(x)(t) := \begin{cases} \alpha(t), & \text{if } x(t) < \alpha(t); \\ x(t), & \text{if } x(t) \in [\alpha(t), \beta(t)]; \\ \beta(t), & \text{if } x(t) > \beta(t); \end{cases}$$

$$\mathcal{D}: L^p(I) \longrightarrow L^p(I), \qquad \qquad \mathcal{D}(z)(t) := egin{cases} -\gamma_0(t), & ext{if } z(t) < -\gamma_0(t); \\ z(t), & ext{if } |z(t)| \leq \gamma_0(t); \\ \gamma_0(t), & ext{if } z(t) > \gamma_0(t); \end{cases}$$

(here, $\gamma_0(t) = L/k(t)$ and L > 0 is suitably chosen).

Idea of the proof

• Truncating operators: Let α , $\beta \in W^{1,p}(I)$ be, respectively, a lower and a upper solution of the equation (\bigstar) such that $\alpha \leq \beta$ on *I*. We define

$$\mathcal{T}: W^{1,p}(I) \longrightarrow W^{1,p}(I), \qquad \mathcal{T}(x)(t) := \begin{cases} \alpha(t), & \text{if } x(t) < \alpha(t); \\ x(t), & \text{if } x(t) \in [\alpha(t), \beta(t)]; \\ \beta(t), & \text{if } x(t) > \beta(t); \end{cases}$$

$$\mathcal{D}: L^p(I) \longrightarrow L^p(I), \qquad \qquad \mathcal{D}(z)(t) := egin{cases} -\gamma_0(t), & ext{if } z(t) < -\gamma_0(t); \\ z(t), & ext{if } |z(t)| \leq \gamma_0(t); \\ \gamma_0(t), & ext{if } z(t) > \gamma_0(t); \end{cases}$$

(here, $\gamma_0(t) = L/k(t)$ and L > 0 is suitably chosen).

Idea of the proof

• Truncating operators: Let α , $\beta \in W^{1,p}(I)$ be, respectively, a lower and a upper solution of the equation (\bigstar) such that $\alpha \leq \beta$ on *I*. We define

$$\mathcal{T}: W^{1,p}(I) \longrightarrow W^{1,p}(I), \qquad \mathcal{T}(x)(t) := egin{cases} lpha(t), & ext{if } x(t) < lpha(t); \\ x(t), & ext{if } x(t) \in [lpha(t), eta(t)]; \\ eta(t), & ext{if } x(t) > eta(t); \end{cases}$$

$$\mathcal{D}: L^p(I) \longrightarrow L^p(I), \qquad \qquad \mathcal{D}(z)(t) := egin{cases} -\gamma_0(t), & ext{if } z(t) < -\gamma_0(t); \ z(t), & ext{if } |z(t)| \leq \gamma_0(t); \ \gamma_0(t), & ext{if } z(t) > \gamma_0(t); \end{cases}$$

(here, $\gamma_0(t) = L/k(t)$ and L > 0 is suitably chosen).

・ロト ・四ト ・ヨト ・ヨト

Idea of the proof

We also set

$$f^*(t, x, y) := \begin{cases} f(t, \beta(t), \beta'(t)) + \arctan\left(x(t) - \beta(t)\right), & \text{if } x > \beta(t); \\ f(t, x, y), & \text{if } x \in [\alpha(t), \beta(t)]; \\ f(t, \alpha(t), \alpha'(t)) + \arctan\left(x(t) - \alpha(t)\right), & \text{if } x < \alpha(t). \end{cases}$$

• Auxiliary problem: We consider the following functional problem

(DP)'
$$\begin{cases} \left(\Phi(A_x(t) \, x'(t)) \right)' = F_x(t), & \text{a.e. on } I, \\ x(0) = \nu_1, \, x(T) = \nu_2. \end{cases}$$

where we have set

$$\begin{split} &A: W^{1,p}(I) \longrightarrow C(I,\mathbb{R}), \qquad A_x(t) := \mathsf{a}\big(t,\mathcal{T}(x)(t)\big), \\ &F: W^{1,p}(I) \longrightarrow L^1(I), \qquad F_x(t) := f^*\big(t,x(t),\mathcal{D}\big(\mathcal{T}(x)'(t)\big)\big) \end{split}$$

・ロト ・四ト ・ヨト ・ヨト

Idea of the proof

We also set

$$f^*(t, x, y) := \begin{cases} f(t, \beta(t), \beta'(t)) + \arctan\left(x(t) - \beta(t)\right), & \text{if } x > \beta(t); \\ f(t, x, y), & \text{if } x \in [\alpha(t), \beta(t)]; \\ f(t, \alpha(t), \alpha'(t)) + \arctan\left(x(t) - \alpha(t)\right), & \text{if } x < \alpha(t). \end{cases}$$

• Auxiliary problem: We consider the following functional problem

(DP)'
$$\begin{cases} \left(\Phi(A_x(t)x'(t)) \right)' = F_x(t), & \text{a.e. on } I, \\ x(0) = \nu_1, & x(T) = \nu_2. \end{cases}$$

where we have set

$$\begin{aligned} A: W^{1,p}(I) &\longrightarrow \mathcal{C}(I,\mathbb{R}), \qquad A_x(t) := a\big(t,\mathcal{T}(x)(t)\big), \\ F: W^{1,p}(I) &\longrightarrow L^1(I), \qquad F_x(t) := f^*\big(t,x(t),\mathcal{D}(\mathcal{T}(x)'(t))\big). \end{aligned}$$

Idea of the proof

Solving the auxiliary problem: We prove that (DP)' possesses (at least) one solution x₀ ∈ W^{1,p}(I) by showing that the operator

$$\mathcal{P}_x(t) := \nu_1 + \int_0^t \frac{1}{A_x(s)} \, \Phi^{-1}\left(\xi_x + \int_0^s F_x(\tau) \, \mathrm{d}\tau\right) \, \mathrm{d}s,$$

(from $W^{1,p}(I)$ into itself) has a fixed point. Here, ξ_x is the unique real constant (depending on $x \in W^{1,p}(I)$) such that $\mathcal{P}_x(T) = \nu_2$.

 Solving (DP): Finally, we prove that any solution of the auxiliary problem (DP)' (i.e., any fixed point of P) is actually a solution of (DP).

Idea of the proof

Solving the auxiliary problem: We prove that (DP)' possesses (at least) one solution x₀ ∈ W^{1,p}(I) by showing that the operator

$$\mathcal{P}_x(t) := \nu_1 + \int_0^t \frac{1}{A_x(s)} \, \Phi^{-1}\left(\xi_x + \int_0^s F_x(\tau) \, \mathrm{d}\tau\right) \, \mathrm{d}s,$$

(from $W^{1,p}(I)$ into itself) has a fixed point. Here, ξ_x is the unique real constant (depending on $x \in W^{1,p}(I)$) such that $\mathcal{P}_x(T) = \nu_2$.

 Solving (DP): Finally, we prove that any solution of the auxiliary problem (DP)' (i.e., any fixed point of P) is actually a solution of (DP).

Idea of the proof

Solving the auxiliary problem: We prove that (DP)' possesses (at least) one solution x₀ ∈ W^{1,p}(I) by showing that the operator

$$\mathcal{P}_x(t) := \nu_1 + \int_0^t \frac{1}{A_x(s)} \, \Phi^{-1}\left(\xi_x + \int_0^s F_x(\tau) \, \mathrm{d}\tau\right) \, \mathrm{d}s,$$

(from $W^{1,p}(I)$ into itself) has a fixed point. Here, ξ_x is the unique real constant (depending on $x \in W^{1,p}(I)$) such that $\mathcal{P}_x(T) = \nu_2$.

 Solving (DP): Finally, we prove that any solution of the auxiliary problem (DP)' (i.e., any fixed point of P) is actually a solution of (DP).

General nonlinear boundary conditions

We consider the following general boundary problem for (\bigstar) :

(G)
$$\begin{cases} \left(\Phi(a(t, x(t)) x'(t)) \right)' = f(t, x(t), x'(t)), & \text{ a.e. on } l, \\ g(x(0), x(T), \mathcal{A}_x(0), \mathcal{A}_x(T)) = 0, \\ x(T) = h(x(0)). \end{cases}$$

Here, $h: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R}^4 \to \mathbb{R}$ satisfy the following general assumptions:

(G1) h ∈ C(ℝ, ℝ) and is increasing on ℝ;
(G2) g ∈ C(ℝ⁴, ℝ) and, for every fixed u, v ∈ ℝ, it holds that (G2)₁ g(u, v, ·, z) is increasing for every fixed z ∈ ℝ;
(G2) g(u, v, w, ·) is decreasing for every fixed w ∈ ℝ

General nonlinear boundary conditions

We consider the following general boundary problem for (\bigstar) :

(G)
$$\begin{cases} \left(\Phi(a(t, x(t)) x'(t)) \right)' = f(t, x(t), x'(t)), & \text{a.e. on } I, \\ g(x(0), x(T), \mathcal{A}_x(0), \mathcal{A}_x(T)) = 0, \\ x(T) = h(x(0)). \end{cases}$$

Here, $h: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R}^4 \to \mathbb{R}$ satisfy the following general assumptions:

(G1) h ∈ C(ℝ,ℝ) and is increasing on ℝ;
(G2) g ∈ C(ℝ⁴, ℝ) and, for every fixed u, v ∈ ℝ, it holds tha
(G2)₁ g(u, v, ·, z) is increasing for every fixed z ∈ ℝ;

(G2)₂ $g(u, v, w, \cdot)$ is decreasing for every fixed $w \in \mathbb{R}$.

イロン イヨン イヨン ・

General nonlinear boundary conditions

We consider the following general boundary problem for (\bigstar) :

(G)
$$\begin{cases} \left(\Phi(a(t, x(t)) x'(t)) \right)' = f(t, x(t), x'(t)), & \text{a.e. on } I, \\ g(x(0), x(T), \mathcal{A}_x(0), \mathcal{A}_x(T)) = 0, \\ x(T) = h(x(0)). \end{cases}$$

Here, $h:\mathbb{R}\to\mathbb{R}$ and $g:\mathbb{R}^4\to\mathbb{R}$ satisfy the following general assumptions:

Our main aim

To prove the existence of (at least) one **solution of (G)**, i.e., the existence of a solution $x \in W^{1,p}(I)$ of the ODE (\bigstar) satisfying

 $g(x(0), x(T), \mathcal{A}_x(0), \mathcal{A}_x(T)) = 0$ and x(T) = h(x(0)).

Our approach

We think of (G) as a superposition of Dirichlet problems and we use a compactness-type result for the solutions of (\bigstar) .

Our main aim

To prove the existence of (at least) one solution of (G), i.e., the existence of a solution $x \in W^{1,p}(I)$ of the ODE (\bigstar) satisfying

 $g(x(0), x(T), A_x(0), A_x(T)) = 0$ and x(T) = h(x(0)).

Our approach

We think of (G) as a superposition of Dirichlet problems and we use a compactness-type result for the solutions of (\bigstar) .

Our main aim

To prove the existence of (at least) one solution of (G), i.e., the existence of a solution $x \in W^{1,p}(I)$ of the ODE (\bigstar) satisfying

 $g(x(0), x(T), A_x(0), A_x(T)) = 0$ and x(T) = h(x(0)).

Our approach

We think of (G) as a superposition of Dirichlet problems and we use a compactness-type result for the solutions of (\bigstar) .

Our main aim

To prove the existence of (at least) one **solution of (G)**, i.e., the existence of a solution $x \in W^{1,p}(I)$ of the ODE (\bigstar) satisfying

 $g(x(0), x(T), A_x(0), A_x(T)) = 0$ and x(T) = h(x(0)).

Our approach

We think of (G) as a superposition of Dirichlet problems and we use a compactness-type result for the solutions of (\bigstar) .

Our main result

heorem 2 (B., Calamai and Papalini)

Let us assume that all the hypotheses of Theorem 1 are satisfied and that g and h fulfill (G1)-(G2). Moreover, if $\alpha, \beta \in W^{1,p}(I)$ are, resp., a lower and a upper solution of (\bigstar) such that $\alpha \leq \beta$ on I, we suppose that

$$\begin{cases} g(\alpha(0), \alpha(T), \mathcal{A}_{\alpha}(0), \mathcal{A}_{\alpha}(T)) \geq 0, \\ \alpha(T) = h(\alpha(0)) \end{cases} \begin{cases} g(\beta(0), \beta(T), \mathcal{A}_{\beta}(0), \mathcal{A}_{\beta}(T)) \leq 0, \\ \beta(T) = h(\beta(0)). \end{cases}$$

Finally, let us assume that the function *a* satisfies the following condition:

 $a(0,x) \neq 0$ and $a(T,x) \neq 0$ for every $x \in \mathbb{R}$.

Our main result

Theorem 2 (B., Calamai and Papalini)

Let us assume that *all* the hypotheses of Theorem 1 are satisfied and that g and h fulfill (G1)-(G2). Moreover, if $\alpha, \beta \in W^{1,p}(I)$ are, resp., a lower and a upper solution of (\bigstar) such that $\alpha \leq \beta$ on I, we suppose that

$$egin{aligned} &f(lpha(0),lpha(T),\mathcal{A}_lpha(0),\mathcal{A}_lpha(T))\geq 0, \ &a(T)=h(lpha(0)) \end{aligned} egin{aligned} &g(eta(0),eta(T),\mathcal{A}_eta(0),\mathcal{A}_eta(T))\leq 0, \ &b(T)=h(eta(0)). \end{aligned}$$

Finally, let us assume that the function a satisfies the following condition:

 $a(0,x) \neq 0$ and $a(T,x) \neq 0$ for every $x \in \mathbb{R}$.

Our main result

Theorem 2 (B., Calamai and Papalini) - continued

Then the problem (G) possesses one solution $x \in W^{1,p}(I)$ such that

$$\alpha(t) \leq x(t) \leq \beta(t)$$
 for every $t \in I$.

Furthermore, if M > 0 is any real number such that $\sup_{I} |\alpha|$, $\sup_{I} |\beta| \le M$ and $L_0 > 0$ is as in Theorem 1, the following fact holds true: for every real number $L \ge L_0$ such that $\sup_{I} |\mathcal{A}_{\alpha}|$, $\sup_{I} |\mathcal{A}_{\beta}| \le L$, we have

$$\max_{t\in I} |x(t)| \leq M \quad and \quad \max_{t\in I} |\mathcal{A}_x(t)| \leq L.$$

A particular case

By applying Theorem 2 in the particular case when

$$g(u, v, w, z) = w - z$$
 and $h(r) = r$,

we obtain the existence of one solution $x \in W^{1,p}(I)$ of the "periodic problem"

$$\begin{cases} \left(\Phi\left(a(t,x(t))x'(t)\right)\right)' = f(t,x(t),x'(t)), & \text{a.e. on } I, \\ \mathcal{A}_x(0) = \mathcal{A}_x(T), \\ x(0) = x(T). \end{cases}$$

A particular case

By applying Theorem 2 in the particular case when

$$g(u,v,w,z) = w - z$$
 and $h(r) = r$,

we obtain the existence of one solution $x \in W^{1,p}(I)$ of the "periodic problem"

$$\begin{cases} \left(\Phi(a(t,x(t))x'(t))\right)' = f(t,x(t),x'(t)), & \text{a.e. on } I, \\ \mathcal{A}_x(0) = \mathcal{A}_x(T), \\ x(0) = x(T). \end{cases}$$

Sturm-Liouville and Neumann problems

Some existence results for boundary value problems associated with singular equations

Stefano Biagi

Sturm-Liouville and Neumann problems

We consider the following boundary value problem for (\bigstar) :

(SL)
$$\begin{cases} \left(\Phi(a(t, x(t)) x'(t)) \right)' = f(t, x(t), x'(t)), & \text{a.e. on } I, \\ p(x(0), \mathcal{A}_x(0)) = 0, \ q(x(T), \mathcal{A}_x(T)) = 0. \end{cases}$$

Here, the functions $p, q : \mathbb{R}^2 \longrightarrow \mathbb{R}$ satisfy the following general assumptions: (S1) $p \in C(\mathbb{R}^2, \mathbb{R})$ and, for every $s \in \mathbb{R}$, the map $p(s, \cdot)$ is increasing on \mathbb{R} ; (S2) $q \in C(\mathbb{R}^2, \mathbb{R})$ and, for every $s \in \mathbb{R}$, the map $q(s, \cdot)$ is decreasing on \mathbb{R} .

Sturm-Liouville and Neumann problems

We consider the following boundary value problem for (\bigstar) :

(SL)
$$\begin{cases} \left(\Phi(a(t,x(t))x'(t)) \right)' = f(t,x(t),x'(t)), & \text{a.e. on } I, \\ p(x(0),\mathcal{A}_x(0)) = 0, \ q(x(T),\mathcal{A}_x(T)) = 0. \end{cases}$$

Here, the functions $p, q : \mathbb{R}^2 \longrightarrow \mathbb{R}$ satisfy the following general assumptions: (S1) $p \in C(\mathbb{R}^2, \mathbb{R})$ and, for every $s \in \mathbb{R}$, the map $p(s, \cdot)$ is increasing on \mathbb{R} ; (S2) $q \in C(\mathbb{R}^2, \mathbb{R})$ and, for every $s \in \mathbb{R}$, the map $q(s, \cdot)$ is decreasing on \mathbb{R} .

Sturm-Liouville and Neumann problems

We consider the following boundary value problem for (\bigstar) :

(SL)
$$\begin{cases} \left(\Phi(a(t, x(t)) x'(t)) \right)' = f(t, x(t), x'(t)), & \text{a.e. on } I, \\ p(x(0), \mathcal{A}_x(0)) = 0, \ q(x(T), \mathcal{A}_x(T)) = 0. \end{cases}$$

Here, the functions $p, q : \mathbb{R}^2 \longrightarrow \mathbb{R}$ satisfy the following general assumptions: (S1) $p \in C(\mathbb{R}^2, \mathbb{R})$ and, for every $s \in \mathbb{R}$, the map $p(s, \cdot)$ is increasing on \mathbb{R} ; (S2) $q \in C(\mathbb{R}^2, \mathbb{R})$ and, for every $s \in \mathbb{R}$, the map $q(s, \cdot)$ is decreasing on \mathbb{R} .

Our main aim

To prove the existence of (at least) one **solution of (SL)**, i.e., the existence of a solution $x \in W^{1,p}(I)$ of the ODE (\bigstar) satisfying

 $p(x(0), \mathcal{A}_x(0)) = 0$ and $q(x(T), \mathcal{A}_x(T)) = 0$.

Our approach

We think of (SL) as a superposition of general boundary problems of the type (G) and we use again a compactness-type result for the solutions of (\bigstar) .

Our main aim

To prove the existence of (at least) one solution of (SL), i.e., the existence of a solution $x \in W^{1,p}(I)$ of the ODE (\bigstar) satisfying

 $p(x(0), A_x(0)) = 0$ and $q(x(T), A_x(T)) = 0$.

Our approach

We think of (SL) as a superposition of general boundary problems of the type (G) and we use again a compactness-type result for the solutions of (\bigstar) .

Our main aim

To prove the existence of (at least) one solution of (SL), i.e., the existence of a solution $x \in W^{1,p}(I)$ of the ODE (\bigstar) satisfying

 $p(x(0), A_x(0)) = 0$ and $q(x(T), A_x(T)) = 0$.

Our approach

We think of (SL) as a superposition of general boundary problems of the type (G) and we use again a compactness-type result for the solutions of (\bigstar) .

Our main aim

To prove the existence of (at least) one solution of (SL), i.e., the existence of a solution $x \in W^{1,p}(I)$ of the ODE (\bigstar) satisfying

 $p(x(0), A_x(0)) = 0$ and $q(x(T), A_x(T)) = 0$.

Our approach

We think of (SL) as a superposition of general boundary problems of the type (G) and we use again a compactness-type result for the solutions of (\bigstar) .

イロト イヨト イヨト イヨト

Our main result

Theorem 3 (B., Calamai and Papalini)

Let us assume that all the hypotheses of Theorem 1 are satisfied and that p and q fulfill (S1)-(S2). Moreover, if $\alpha, \beta \in W^{1,p}(I)$ are, resp., a lower and a upper solution of (\bigstar) such that $\alpha \leq \beta$ on I, we suppose that

$$\begin{cases} p(\alpha(0), \mathcal{A}_{\alpha}(0)) \geq 0, \\ q(\alpha(T), \mathcal{A}_{\alpha}(T)) \geq 0; \end{cases} \qquad \begin{cases} p(\beta(0), \mathcal{A}_{\beta}(0)) \leq 0, \\ q(\beta(T), \mathcal{A}_{\beta}(T)) \leq 0. \end{cases}$$

Finally, let us assume that the function *a* satisfies the following condition:

a(0,x)
eq 0 and a(T,x)
eq 0 for every $x\in\mathbb{R}.$

Our main result

Theorem 3 (B., Calamai and Papalini)

Let us assume that *all* the hypotheses of Theorem 1 are satisfied and that p and q fulfill (S1)-(S2). Moreover, if $\alpha, \beta \in W^{1,p}(I)$ are, resp., a lower and a upper solution of (\bigstar) such that $\alpha \leq \beta$ on I, we suppose that

Finally, let us assume that the function a satisfies the following condition:

 $a(0,x) \neq 0$ and $a(T,x) \neq 0$ for every $x \in \mathbb{R}$.

Our main result

Theorem 3 (B., Calamai and Papalini) - continued

Then the problem (SL) possesses one solution $x \in W^{1,p}(I)$ such that

$$\alpha(t) \leq x(t) \leq \beta(t)$$
 for every $t \in I$.

Furthermore, if M > 0 is any real number such that $\sup_{I} |\alpha|$, $\sup_{I} |\beta| \le M$ and $L_0 > 0$ is as in Theorem 1, the following fact holds true: for every real number $L \ge L_0$ such that $\sup_{I} |\mathcal{A}_{\alpha}|$, $\sup_{I} |\mathcal{A}_{\beta}| \le L$, we have

$$\max_{t\in I} |x(t)| \leq M$$
 and $\max_{t\in I} |\mathcal{A}_x(t)| \leq L.$

Two particular cases

(1) By applying Theorem 3 in the particular case when

 $p(s,t) := \ell_1 s + m_1 t - \nu_1$ and $q(s,t) := \ell_2 s - m_2 t - \nu_2$

(for some $m_1, m_2 \ge 0$ and $\ell_1, \ell_2 \nu_1, \nu_2 \in \mathbb{R}$) we obtain the existence of one solution $x \in W^{1,p}(I)$ of the "Sturm-Liouville problem"

$$\begin{cases} \left(\Phi(a(t, x(t)) x'(t)) \right)' = f(t, x(t), x'(t)), & \text{a.e. on } I, \\ \ell_1 x(0) + m_1 \mathcal{A}_x(0) = \nu_1, \\ \ell_2 x(T) - m_2 \mathcal{A}_x(T) = \nu_2. \end{cases}$$

イロン イロン イヨン イヨン

Two particular cases

(1) By applying Theorem 3 in the particular case when

$$p(s,t) := \ell_1 s + m_1 t - \nu_1$$
 and $q(s,t) := \ell_2 s - m_2 t - \nu_2$

(for some $m_1, m_2 \ge 0$ and $\ell_1, \ell_2 \nu_1, \nu_2 \in \mathbb{R}$) we obtain the existence of one solution $x \in W^{1,p}(I)$ of the "Sturm-Liouville problem"

$$\begin{cases} \left(\Phi(a(t, x(t)) x'(t)) \right)' = f(t, x(t), x'(t)), & \text{a.e. on } I, \\ \ell_1 x(0) + m_1 \mathcal{A}_x(0) = \nu_1, \\ \ell_2 x(T) - m_2 \mathcal{A}_x(T) = \nu_2. \end{cases}$$

Two particular cases

(2) By applying Theorem 3 in the particular case when

$$p(s,t) := t - \nu_1$$
 and $q(s,t) := \nu_2 - t$

(for some fixed constants $\nu_1, \nu_2 \in \mathbb{R}$) we obtain the existence of one solution $x \in W^{1,p}(I)$ of the "Neumann problem"

$$\begin{cases} \left(\Phi\left(a(t,x(t))x'(t)\right)\right)' = f(t,x(t),x'(t)), & \text{ a.e. on } I, \\ \mathcal{A}_x(0) = \nu_1, \\ \mathcal{A}_x(\mathcal{T}) = \nu_2. \end{cases}$$

Two particular cases

(2) By applying Theorem 3 in the particular case when

$$p(s,t) := t - \nu_1$$
 and $q(s,t) := \nu_2 - t$

(for some fixed constants $\nu_1, \nu_2 \in \mathbb{R}$) we obtain the existence of one solution $x \in W^{1,p}(I)$ of the "Neumann problem"

$$\begin{cases} \left(\Phi(a(t, x(t)) x'(t))\right)' = f(t, x(t), x'(t)), & \text{a.e. on } I, \\ \mathcal{A}_x(0) = \nu_1, \\ \mathcal{A}_x(T) = \nu_2. \end{cases}$$

Thank you for your attention!

Some existence results for boundary value problems associated with singular equations

Stefano Biagi

イロト イヨト イヨト イヨト