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September 27 - 29, 2018 - Università Politecnica delle Marche (Ancona)

Some existence results for boundary value problems associated with singular equations Stefano Biagi



Some existence results for boundary value problems , associated with singular equations

The results presented in this talk were obtained in a joint work
with A. Calamai1 and F. Papalini2.

1Dipartimento di Ingegneria Civile, Edile e Architettura, Università Politecnica delle Marche
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Introduction

Main assumptions and notations

We are interested in strongly nonlinear differential equations of the type(
F
) (

Φ
(
a(t, x(t)) x ′(t)

))′
= f (t, x(t), x ′(t)), a.e. on I := [0,T ],

where Φ, a and f satisfy the following structural assumptions:

(A1) Φ : R→ R is a strictly increasing homeomorphism;

(A2) a ∈ C(I × R,R) and there exists h ∈ C(I ,R) such that

(A2)1 h ≥ 0 on I and 1/h ∈ Lp(I ) (for some p > 1);

(A2)2 a(t, x) ≥ h(t) for every t ∈ I and every x ∈ R;

(A3) f : I × R2 → R is a Carathéodory function,
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Introduction

The reasons of our interest

Ordinary differential equations of the form
(
F
)

intervene in several models:

non-Newtonian fluid theory;

diffusion of flows in porous media;

nonlinear elasticity;

theory of capillary surfaces.
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Introduction

Our main aim

To prove the existence of a solution for several classes of boundary value
problems associated with ODEs of the form

(
F
)
.

But...

what we mean by a solution of an ODE of the form
(
F
)
?
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Introduction

Solution of an ODE of the form
(
F
)

Definition

We say that x ∈W 1,p(I ) is a solution of the ODE
(
F
)

if:

(1) t 7→ Φ
(
a(t, x(t)) x ′(t)

)
∈W 1,1(I );

(2)
(
Φ
(
a(t, x(t)) x ′(t)

))′
= f (t, x(t), x ′(t)) for almost every t ∈ I ;

An important remark

If x ∈W 1,p(I ) is any solution of the ODE
(
F
)
, we indicate by Ax the unique

continuous function on I such that

a(t, x(t)) x ′(t) = Ax(t) for a.e. t ∈ I .
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Introduction

Some references

For the Φ-Laplacian operator: Φ(x ′)′ = f (t, x , x ′)

Cabada and Pouso (1997, 1999); Cabada, O’Regan and Pouso (2008); El
Khattabi, Frigon and Ayyadi (2013).

For singular or non-surjective operators:
(
a(x) Φ(x ′)

)′
= f (t, x , x ′)

Bereanu and Mawhin (2008); Ferracuti and Papalini (2009); Calamai
(2011).

For mixed differential operators:
(
a(t, x) Φ(x ′)

)′
= f (t, x , x ′) (with a > 0)

Cupini, Marcelli and Papalini (2011); Marcelli (2012, 2013); Marcelli and
Papalini (2017).

For possibly singular equations:
(
Φ
(
k(t) x ′(t)

))′
= f (t, x , x ′)

Liu (2012); Liu and Yang (2015); Calamai, Marcelli and Papalini (2018).
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The Dirichlet problem

The Dirichlet problem for
(
F
)

Let ν1, ν2 ∈ R be fixed. We consider the following Dirichlet problem for
(
F
)

(DP)


(

Φ
(
a(t, x(t)) x ′(t)

))′
= f (t, x(t), x ′(t)), a.e. on I ,

x(0) = ν1, x(T ) = ν2.

Our main aim

To prove the existence of (at least) one solution of (DP), i.e., the existence of
a solution x ∈W 1,p(I ) of the ODE

(
F
)

satisfying

x(0) = ν1 and x(T ) = ν2.
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The Dirichlet problem

Our approach

A suitable combination of the method of lower/upper solutions with a
fixed-point technique (applied to an auxiliary functional problem).

Definition: lower/upper solution

We say that α ∈W 1,p(I ) is a lower [resp. upper] solution of the ODE
(
F
)

if

(1) t 7→ Φ
(
a(t, α(t))α′(t)

)
∈W 1,1(I );

(2)
(

Φ
(
a(t, α(t))α′(t)

))′
≥ [≤] f (t, α(t), α′(t)) for almost every t ∈ I .

Another important remark

If α ∈W 1,p(I ) is a lower/upper solution of the ODE
(
F
)
, we indicate by Aα

the unique continuous function on I satisfying

a(t, α(t))α′(t) = Aα(t) for a.e. t ∈ I .
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The Dirichlet problem

Our main result

Theorem 1 (B., Calamai and Papalini)

We assume that, together with (A1)-to-(A3), the following hypotheses hold:

there exists a pair of lower and upper solutions α, β ∈W 1,p(I ) of
(
F
)

such that
α(t) ≤ β(t) for every t ∈ I ;

for every R > 0 and every non-negative function γ ∈ Lp(I ) there exists a
non-negative function h = hR,γ ∈ Lp(I ) such that

|f (t, x , y(t))| ≤ hR,γ(t) (1)

for a.e. t ∈ I , every |x | ≤ R and every y ∈ Lp(I ) with |y(t)| ≤ γ(t) a.e. on I .

there exist H > 0, a non-negative function µ ∈ Lq(I ) (for some 1 < q ≤ ∞), a
non-negative function l ∈ L1(I ) and a non-negative measurable function
ψ : (0,∞)→ (0,∞) such that

(?) 1/ψ ∈ L1
loc(0,∞) and

∫ ∞
1

1

ψ(t)
dt =∞;

(?) |f (t, x , y)| ≤ ψ
(
|Φ(a(t, x) y)|

)
·
(
l(t) + µ(t) |y |

q−1
q

)
; (2)

for a.e. t ∈ I , every x ∈ [α(t), β(t)] and every y ∈ R with |y | ≥ H.
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The Dirichlet problem

Our main result

Theorem 1 (B., Calamai and Papalini) - continued

Then, for every ν1 ∈ [α(0), β(0)] and every ν2 ∈ [α(T ), β(T )], the Dirichlet problem
(DP) possesses at least one solution x ∈W 1,p(I ) satisfying

α(t) ≤ x(t) ≤ β(t) for every t ∈ I .

Furthermore, if M > 0 is any real number such that supI |α|, supI |β| ≤ M, it is
possible to find a real L0 > 0, only depending on M, with the following property: if
L ≥ L0 is any real number such that supI |Aα|, supI |Aβ | ≤ L, then

max
t∈I

∣∣x(t)
∣∣ ≤ M and max

t∈I

∣∣Ax (t)
∣∣ ≤ L.
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The Dirichlet problem

A couple of examples

(1) Let us consider the Dirichlet problem
(

Φ
(
a(t, x(t)) x ′(t)

))′
= σ(t)(x(t) + ρ(t)) + g(x(t)) x ′(t)

x(0) = ν1, x(T ) = ν2,

where Φ, a, σ, ρ and g satisfy the following assumptions:

(?) Φ : R→ R is a generic strictly increasing homeomorphism;

(?) a ∈ C(I × R,R) satisfies assumption (A2);

(?) σ ∈ L1(I ) and σ ≥ 0 a.e. on I ;

(?) ρ ∈ C(I ) and g ∈ C(R,R) are generic.
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The Dirichlet problem

A couple of examples

It is not difficult to recognize that:

(a) Setting N := maxI |ρ|, the constant functions

α(t) := −N β(t) := N
(
for t ∈ I

)
are, respectively, a lower and a upper solution of

(
F
)

s.t.α ≤ β on I .

(b) Setting f (t, x , y) := σ(t)(x + ρ(t)) + g(x)y , we have

f is a Carathéodory function on I × R2;

f fulfills (1) with the choice

hR,γ(t) := σ(t)
(
R + |ρ(t)|

)
+
(

max
[−R,R]

|g |
)
· γ(t);

f fulfills (2) with the choice

H := 1, ψ ≡ 1, l(t) := 2N σ(t), µ(t) := max
[−N,N]

|g | and q =∞.
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(
F
)

s.t.α ≤ β on I .

(b) Setting f (t, x , y) := σ(t)(x + ρ(t)) + g(x)y , we have

f is a Carathéodory function on I × R2;

f fulfills (1) with the choice

hR,γ(t) := σ(t)
(
R + |ρ(t)|

)
+
(

max
[−R,R]

|g |
)
· γ(t);

f fulfills (2) with the choice

H := 1, ψ ≡ 1, l(t) := 2N σ(t), µ(t) := max
[−N,N]

|g | and q =∞.
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The Dirichlet problem

A couple of examples

(2) Let us consider the Dirichlet problem
(

Φr
(
a(t, x(t)) x ′(t)

))′
= σ(t) · g(x(t)) · |x ′(t)|δ

u(0) = ν1, u(T ) = ν2,

where Φr , a, σ, g and the exponent δ satisfy the following assumptions:

(?) Φr : R→ R, Φr (ξ) := |ξ|r−2 · ξ (for a suitable r > 1).

(?) a ∈ C(I × R,R) satisfies assumption (A2);

(?) σ ∈ Lτ (I ) for a suitable τ > 1 satisfying the relation

1

τ
+

r − 1

p
< 1;

(?) g ∈ C(R,R) is a generic function;

(?) δ is a positive real constant satisfying the relation

δ ≤ 1−
1

τ
+ (r − 1)

(
1−

1

p

)
.
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f is a Carathéodory function on I × R2;

f fulfills (1) with the choice

hR,γ(t) :=
(

max
[−R,R]

|g |
)
· |σ(t)| · (γ(t))δ;

f fulfills (2) with the choice

H := 1, ψ(s) := s, l(t) := 0, µ(t) :=

(
max[−N,N] |g |

)
· |σ(t)|

(h(t))r−1
.

Some existence results for boundary value problems associated with singular equations Stefano Biagi



Some existence results for boundary value problems , associated with singular equations

The Dirichlet problem

Idea of the proof

Truncating operators: Let α, β ∈W 1,p(I ) be, respectively, a lower and a upper
solution of the equation

(
F
)

such that α ≤ β on I . We define

T : W 1,p(I ) −→W 1,p(I ), T (x)(t) :=


α(t), if x(t) < α(t);

x(t), if x(t) ∈ [α(t), β(t)];

β(t), if x(t) > β(t);

D : Lp(I ) −→ Lp(I ), D(z)(t) :=


−γ0(t), if z(t) < −γ0(t);

z(t), if |z(t)| ≤ γ0(t);

γ0(t), if z(t) > γ0(t);

(here, γ0(t) = L/k(t) and L > 0 is suitably chosen).
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Some existence results for boundary value problems , associated with singular equations

The Dirichlet problem

Idea of the proof

We also set

f ∗(t, x , y) :=


f
(
t, β(t), β′(t)

)
+ arctan

(
x(t)− β(t)

)
, if x > β(t);

f (t, x , y), if x ∈ [α(t), β(t)];

f
(
t, α(t), α′(t)

)
+ arctan

(
x(t)− α(t)

)
, if x < α(t).

Auxiliary problem: We consider the following functional problem

(DP)′


(

Φ
(
Ax (t) x ′(t)

))′
= Fx (t), a.e. on I ,

x(0) = ν1, x(T ) = ν2.

where we have set

A : W 1,p(I ) −→ C(I ,R), Ax (t) := a
(
t, T (x)(t)

)
,

F : W 1,p(I ) −→ L1(I ), Fx (t) := f ∗
(
t, x(t),D

(
T (x)′(t)

))
.
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Some existence results for boundary value problems , associated with singular equations

The Dirichlet problem

Idea of the proof

Solving the auxiliary problem: We prove that (DP)’ possesses (at least) one
solution x0 ∈W 1,p(I ) by showing that the operator

Px (t) := ν1 +

∫ t

0

1

Ax (s)
Φ−1

(
ξx +

∫ s

0
Fx (τ) dτ

)
ds,

(from W 1,p(I ) into itself) has a fixed point. Here, ξx is the unique real constant
(depending on x ∈W 1,p(I )) such that Px (T ) = ν2.

Solving (DP): Finally, we prove that any solution of the auxiliary problem (DP)’
(i.e., any fixed point of P) is actually a solution of (DP).
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General nonlinear boundary conditions

General nonlinear boundary conditions

Some existence results for boundary value problems associated with singular equations Stefano Biagi



Some existence results for boundary value problems , associated with singular equations

General nonlinear boundary conditions

General nonlinear boundary conditions

We consider the following general boundary problem for
(
F
)
:

(G)


(

Φ
(
a(t, x(t)) x ′(t)

))′
= f (t, x(t), x ′(t)), a.e. on I ,

g(x(0), x(T ),Ax(0),Ax(T )) = 0,

x(T ) = h(x(0)).

Here, h : R→ R and g : R4 → R satisfy the following general assumptions:

(G1) h ∈ C(R,R) and is increasing on R;

(G2) g ∈ C(R4,R) and, for every fixed u, v ∈ R, it holds that

(G2)1 g(u, v , ·, z) is increasing for every fixed z ∈ R;

(G2)2 g(u, v ,w , ·) is decreasing for every fixed w ∈ R.
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Some existence results for boundary value problems , associated with singular equations

General nonlinear boundary conditions

Our main aim

To prove the existence of (at least) one solution of (G), i.e., the existence of a
solution x ∈W 1,p(I ) of the ODE

(
F
)

satisfying

g(x(0), x(T ),Ax(0),Ax(T )) = 0 and x(T ) = h(x(0)).

Our approach

We think of (G) as a superposition of Dirichlet problems and we use a
compactness-type result for the solutions of

(
F
)
.
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Some existence results for boundary value problems , associated with singular equations

General nonlinear boundary conditions

Our main result

Theorem 2 (B., Calamai and Papalini)

Let us assume that all the hypotheses of Theorem 1 are satisfied and that g and h
fulfill (G1)-(G2). Moreover, if α, β ∈W 1,p(I ) are, resp., a lower and a upper solution
of
(
F
)

such that α ≤ β on I , we suppose thatg(α(0), α(T ),Aα(0),Aα(T )) ≥ 0,

α(T ) = h(α(0))

g(β(0), β(T ),Aβ(0),Aβ(T )) ≤ 0,

β(T ) = h(β(0)).

Finally, let us assume that the function a satisfies the following condition:

a(0, x) 6= 0 and a(T , x) 6= 0 for every x ∈ R.
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General nonlinear boundary conditions

Our main result

Theorem 2 (B., Calamai and Papalini) - continued

Then the problem (G) possesses one solution x ∈W 1,p(I ) such that

α(t) ≤ x(t) ≤ β(t) for every t ∈ I .

Furthermore, if M > 0 is any real number such that supI |α|, supI |β| ≤ M and
L0 > 0 is as in Theorem 1, the following fact holds true: for every real number
L ≥ L0 such that supI |Aα|, supI |Aβ | ≤ L, we have

max
t∈I

∣∣x(t)
∣∣ ≤ M and max

t∈I

∣∣Ax(t)
∣∣ ≤ L.
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Some existence results for boundary value problems , associated with singular equations

General nonlinear boundary conditions

A particular case

By applying Theorem 2 in the particular case when

g(u, v ,w , z) = w − z and h(r) = r ,

we obtain the existence of one solution x ∈W 1,p(I ) of the “periodic problem”
(

Φ
(
a(t, x(t)) x ′(t)

))′
= f (t, x(t), x ′(t)), a.e. on I ,

Ax(0) = Ax(T ),

x(0) = x(T ).
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Sturm-Liouville and Neumann problems

Sturm-Liouville and Neumann
problems
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Sturm-Liouville and Neumann problems

Sturm-Liouville and Neumann problems

We consider the following boundary value problem for
(
F
)
:

(SL)


(

Φ
(
a(t, x(t)) x ′(t)

))′
= f (t, x(t), x ′(t)), a.e. on I ,

p(x(0),Ax(0)) = 0, q(x(T ),Ax(T )) = 0.

Here, the functions p, q : R2 −→ R satisfy the following general assumptions:

(S1) p ∈ C(R2,R) and, for every s ∈ R, the map p(s, ·) is increasing on R;

(S2) q ∈ C(R2,R) and, for every s ∈ R, the map q(s, ·) is decreasing on R.
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(S1) p ∈ C(R2,R) and, for every s ∈ R, the map p(s, ·) is increasing on R;

(S2) q ∈ C(R2,R) and, for every s ∈ R, the map q(s, ·) is decreasing on R.
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Sturm-Liouville and Neumann problems

Our main aim

To prove the existence of (at least) one solution of (SL), i.e., the existence of
a solution x ∈W 1,p(I ) of the ODE

(
F
)

satisfying

p(x(0),Ax(0)) = 0 and q(x(T ),Ax(T )) = 0.

Our approach

We think of (SL) as a superposition of general boundary problems of the type
(G) and we use again a compactness-type result for the solutions of

(
F
)
.
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Our main result

Theorem 3 (B., Calamai and Papalini)

Let us assume that all the hypotheses of Theorem 1 are satisfied and that p and q
fulfill (S1)-(S2). Moreover, if α, β ∈W 1,p(I ) are, resp., a lower and a upper solution
of
(
F
)

such that α ≤ β on I , we suppose thatp(α(0),Aα(0)) ≥ 0,

q(α(T ),Aα(T )) ≥ 0;

p(β(0),Aβ(0)) ≤ 0,

q(β(T ),Aβ(T )) ≤ 0.

Finally, let us assume that the function a satisfies the following condition:

a(0, x) 6= 0 and a(T , x) 6= 0 for every x ∈ R.
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Our main result

Theorem 3 (B., Calamai and Papalini) - continued

Then the problem (SL) possesses one solution x ∈W 1,p(I ) such that

α(t) ≤ x(t) ≤ β(t) for every t ∈ I .

Furthermore, if M > 0 is any real number such that supI |α|, supI |β| ≤ M and
L0 > 0 is as in Theorem 1, the following fact holds true: for every real number
L ≥ L0 such that supI |Aα|, supI |Aβ | ≤ L, we have

max
t∈I

∣∣x(t)
∣∣ ≤ M and max

t∈I

∣∣Ax(t)
∣∣ ≤ L.
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Two particular cases

(1) By applying Theorem 3 in the particular case when

p(s, t) := `1 s + m1 t − ν1 and q(s, t) := `2 s −m2 t − ν2

(for some m1, m2 ≥ 0 and `1, `2 ν1, ν2 ∈ R) we obtain the existence of one
solution x ∈W 1,p(I ) of the “Sturm-Liouville problem”

(
Φ
(
a(t, x(t)) x ′(t)

))′
= f (t, x(t), x ′(t)), a.e. on I ,

`1 x(0) + m1Ax(0) = ν1,

`2 x(T )−m2Ax(T ) = ν2.
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Thank you for your attention!
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