Cognome:	Nome:	Matricola:	Immatricolato nel
ciconsegnare anche qui, ma su fogli pre ciascun esercizio; s Le prime tre d considerato insuffic cisposte devono ese	e il testo dell'esame (cioè otocollo a quadretti. Dev e possibile, evita di conse omande qui di seguito so	è questo foglio). Le solu e essere ben chiaro dove egnare la brutta copia. ono un filtro: se più di re giuste contano quanto asta rispondere "Si" o "N	
1. Esiste una 2. Determina ed s di equazioni p 3. Se $\mathcal{B} = \{v_1,$	matrice $A \in M_{2,2}(\mathbb{R})$ di r la posizione reciproca de parametriche $x = -2t + a$	ango 2 con tr $A = 0$? elle rette r di equazioni e $x - 7$, $y = t + 2$, $z = 3(a)$	cartesiane $2x + y - z = 0$, $x + 2z = 0$
			gi attentamente i testi, e poi risolvil ente possibile. Buon lavoro!
A. Al variare	di $k \in \mathbb{R}$ considera la ma	trice $A_k = \begin{vmatrix} 1 & 0 & k \\ 3k & 2k & 1 \\ k & 1 & 0 \end{vmatrix}$	$\in M_{3,3}(\mathbb{R}).$
	nomio caratteristico di A_k colonna di $A_k - \lambda I_3$ un'		mplificare i calcoli, sostituisci al poste e lineare delle colonne.)
(ii) Trova gli aut	ovalori di A_k .		
(iii) Determina p	er quali $k \in \mathbb{R}$ la matrice	A_k è diagonalizzabile.	
(iv) Nei casi $k =$	0 e k = -2 trova gli auto	ovettori di A_k e discuti l'	esistenza di una base di autovettori.
(v) Determina p	er quali $k \in \mathbb{R}$ il determin	nante di A_k vale -1 .	
B. Al variare de soluzioni:	lei parametri $h, k \in \mathbb{R}$ stu	dia il seguente sistema lin	neare e, quando possibile, determinan
	$\begin{cases} kx_1 + 6 \\ (k^2 - 8) \\ x_1 + kx_2 \end{cases}$	$(a-4)kx_2 + (3-k)x_3 = 8k)x_3 + (8- k)x_4 = -3$ $x_2 + x_4 = h.$	= 1,
C. Considera	il polinomio $P(x) = x_1^2 +$	$4x_1x_2 + (7-a)x_2^2 - 2x_1$	$x_3 + 2x_3^2 + 8x_2 - 2x_3 + a - 6.$
(i) Trova la form		onica ${\cal C}$ ottenuta intersec	ando la quadrica associata a $P(x)$ cor
(ii) trova la form		iadrica associata a $P(x)$	

Scelta turno orale:_____