Appunti su coniche e quadriche

Coniche

• Equazione di una conica in \mathbb{R}^2 :

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}x + 2a_{23}y + a_{33} = 0.$$

Equazione matriciale della conica:

$$(x \quad y \quad 1)A \left(\begin{array}{c} x \\ y \\ 1 \end{array}\right) = 0$$

dove la matrice A è la matrice dei coefficienti della conica:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}.$$

Una conica si dice non degenere se $det(A) \neq 0$, degenere se det(A) = 0.

• Una conica si dice a centro se $\det(A_{33}) \neq 0$, dove A_{33} è la sottomatrice della parte di secondo grado:

$$A_{33} = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{12} & a_{22} \end{array}\right).$$

Il centro C di una conica a centro ha coordinate:

$$x_C = \frac{\det(A_{13})}{\det(A_{33})}$$
 $y_C = -\frac{\det(A_{23})}{\det(A_{33})}$

• La retta tangente alla conica nel punto $P_0 = (x_0, y_0)$ ha equazione:

$$(x_0 \quad y_0 \quad 1)A \left(\begin{array}{c} x \\ y \\ 1 \end{array}\right) = 0$$

 $^{^0\}mathrm{Universit\grave{a}}$ Politecnica delle Marche, Corso di Geometria, docente Chiara Brambilla

Forme canoniche metriche delle coniche:

1.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$$
 ellisse reale

2.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + 1 = 0 \;$$
ellisse immaginaria (∅)

3.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$
 coppia di rette complesse incidenti (punto)

4.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - 1 = 0$$
 iperbole

5.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$
 coppia di rette incidenti

6.
$$x^2 - ay = 0$$
 parabola

7.
$$\frac{x^2}{a^2} - 1 = 0$$
 coppia di rette parallele

8.
$$\frac{x^2}{a^2}+1=0~$$
 coppia di rette complesse parallele (\emptyset)

9.
$$x^2 = 0$$
 coppia di rette coincidenti

Forme canoniche affini delle coniche:

si pone a = b = 1 nella tabella sopra.

Classificazione delle coniche:

		$\det(A) \neq 0$	rg(A) = 2	rg(A) = 1
$\det(A_{33}$	(3) > 0	Ellisse reale (1)	Rette complesse incidenti (3)	
		o immaginaria (2)		
$\det(A_{33}$	(3) = 0	Parabola (6)	Rette parallele reali (7)	Rette coincidenti (9)
			o complesse (8)	
$\det(A_{33}$	(3) < 0	Iperbole (4)	Rette incidenti (5)	

Algoritmo per ridurre una conica alla sua forma canonica metrica

Considero la conica di equazione:

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}x + 2a_{23}y + a_{33} = 0.$$

Primo passo:

Per il teorema spettrale posso diagonalizzare la matrice A_{33} trovando gli autovalori λ_1 e λ_2 e una base ortonormale di autovettori $\mathcal{B} = \{v_1, v_2\}.$

Sia

$$B = (v_1 v_2) = \left(\begin{array}{cc} a_1 & a_2 \\ b_1 & b_2 \end{array}\right)$$

la matrice di cambiamento di base dalla base canonica alla base \mathcal{B} . Applico il cambiamento di coordinate $\begin{pmatrix} x \\ y \end{pmatrix} = B \begin{pmatrix} x' \\ y' \end{pmatrix}$ cioè

$$\begin{cases} x = a_1 x' + a_2 y' \\ y = b_1 x' + b_2 y' \end{cases}$$

e ottengo un'equazione della forma:

$$\lambda_1(x')^2 + \lambda_2(y')^2 + 2ax' + 2by' + a_{33} = 0.$$

Secondo passo:

Primo caso: se entrambi gli autovalori sono diversi da 0.

Applico la traslazione:

$$\begin{cases} x' = x'' - \frac{a}{\lambda_1} \\ y' = y'' - \frac{b}{\lambda_2} \end{cases}$$

e ottengo l'equazione:

$$\lambda_1(x')^2 + \lambda_2(y')^2 + c = 0.$$

A seconda del valore dei coefficienti trovo le forme canoniche (1), (2), (3), (4) o (5). Secondo caso: se uno degli autovalori è 0 (suppongo che sia $\lambda_2 = 0$, altrimenti scambio la x con la y).

Applico la traslazione:

$$\begin{cases} x' = x'' - \frac{a}{\lambda_1} \\ y' = y'' \end{cases}$$

e ottengo

$$\lambda_1(x'')^2 + 2by'' + c = 0.$$

Se b=0 si ottiene una delle forme (7), (8), (9) a seconda del segno di c.

Se $b \neq 0$ applico un'altra traslazione:

$$\begin{cases} x'' = x''' \\ y'' = y'' - \frac{c}{2b} \end{cases}$$

e ottengo

$$\lambda_1(x''')^2 + 2by''' = 0,$$

e quindi la forma canonica della parabola (6).

Osservazione: Per ottenere esattamente una delle forme canoniche in tabella è possibile che alla fine sia necessario moltiplicare l'equazione ottenuta per -1 oppure scambiare la x con la y.

Quadriche

• Equazione di una (superficie) quadrica in \mathbb{R}^3 :

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{14}x + 2a_{23}yz + 2a_{24}y + 2a_{34}z + a_{44} = 0.$$

Equazione matriciale della quadrica:

$$(x \quad y \quad z \quad 1)A \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = 0$$

dove la matrice A è la matrice dei coefficienti della quadrica

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{12} & a_{22} & a_{23} & a_{24} \\ a_{13} & a_{23} & a_{33} & a_{34} \\ a_{14} & a_{24} & a_{34} & a_{44} \end{pmatrix}.$$

Una quadrica si dice non degenere se $det(A) \neq 0$, degenere se det(A) = 0.

• Una quadrica si dice a centro se $det(A_{44}) \neq 0$, dove A_{44} è la sottomatrice della parte di secondo grado:

$$A_{44} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}.$$

• Il piano tangente alla quadrica nel punto $P_0 = (x_0, y_0, z_0)$ ha equazione:

$$(x_0 \quad y_0 \quad z_0 \quad 1)A \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = 0$$

Forme canoniche metriche delle quadriche:

1.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0$$
 ellissoide reale

2.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} + 1 = 0$$
 ellissoide immaginario (\emptyset)

3.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} + 1 = 0$$
 iperboloide ellittico (a 2 falde)

4.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} - 1 = 0$$
 iperboloide iperbolico (a 1 falda)

5.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - z = 0$$
 paraboloide ellittico

6.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - z = 0$$
 paraboloide iperbolico (a sella)

7.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$
 cono reale

8.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$$
 cono complesso (punto)

9.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$$
 cilindro ellittico

10.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - 1 = 0$$
 cilindro iperbolico

11.
$$\frac{x^2}{a^2} - y = 0$$
 cilindro parabolico

12.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + 1 = 0$$
 cilindro complesso (\emptyset)

13.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$
 piani incidenti

14.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$
 piani complessi incidenti (retta)

15.
$$\frac{x^2}{a^2} - 1 = 0$$
 piani paralleli

16.
$$\frac{x^2}{a^2}+1=0~$$
piani complessi paralleli (\emptyset)

17.
$$x^2 = 0$$
 piani coincidenti

Forme canoniche affini delle quadriche:

si pone a = b = c = 1 nella tabella sopra.

Classificazione delle quadriche:

1. $\det A \neq 0$: quadriche non degeneri.

	$\det(A_{44}) \neq 0$	$\det(A_{44}) \neq 0$	$\det(A_{44}) = 0$
	autoval. A_{44} concordi	autoval. A_{44} discordi	
$\det(A) < 0$	Ellissoide reale (1)	Iperboloide ell. (3)	Paraboloide ell. (5)
$\det(A) > 0$	Ellissoide imm. (2)	Iperboloide ip. (4)	Paraboloide ip. (6)

- 2. rg A = 3
 - $\det A_{44} \neq 0 \longrightarrow \text{Cono } (7),(8)$
 - $\det A_{44} = 0 \longrightarrow \text{Cilindro (9)-(12)}$
- 3. rg A=2 Piani distinti (13)-(16)
- 4. rgA=1 Piani coincidenti (17)