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SUMMARY. Some lower semicontinuity results are given in the space of special fields of bounded deformation for
fracture energetic models of the types∫

Ju
Ψ([u], νu)dHN−1, and

∫
Ju

Θ(u+, u−, νu)dHN−1

under the noninterpenetration constraint [u] · νu ≥ 0 HN−1− a. e. on Ju.

1 INTRODUCTION
Geometric Measure Theory, the direct methods of the Calculus of Variations, the mathematical approach of Free

Discontinuity Problems, and, in particular, the structure of the Fields of Bounded Deformations have been used here
in order to study the equilibrium configurations of some fracture models.

This study is motivated by the results contained in [1, 2] where it has been studied, both from the mechanical and
computational view point, in the regime of linearized elasticity, the propagation of the fracture in a cracked body with
a dissipative energy a la Barenblatt, i.e. of the type

∫
K
φ([u] ·νu, [u] ·τu)dHN−1, whereK denotes the unknown crack

site, [u] · νu, [u] · τu represent the detachment and the sliding components respectively, of the opening of the fracture

[u], and the energy density φ has the form φ([u] · νu, [u] · τu) =

 0 if [u] · νu = [u] · τu = 0,
constant if [u] · νu ≥ 0,
+∞ if [u] · νu < 0

It has to be emphasized that the form of the energy density φ also takes into account an infinitesimal noninterpen-
etration constraint, i.e. all the deformations u pertainining to the effective description of the energy must satisfy
[u] · νu ≥ 0 HN−1 a.e. on K.

In order to derive, from the mathematical view point, the properties of the energy φ above which guarantee lower
semicontinuity with respect to the natural convergences (2.13) ÷ (2.15) below, in order to generalize the models
contained in [1, 2] and to extend the lower semicontinuity results for surface integrals contained in [3], the following
results has been proved in [4]:

Theorem 1.1. Let Ω be a bounded open subset of RN , Let

Φ := {ϕ : [0,+∞[→ [0,+∞[, ϕ convex, subadditive and nondecreasing} (1.1)

and let ϕ ∈ Φ. Let {uh} be a sequence in SBD(Ω), such that [uh] · νuh ≥ 0 HN−1-a.e. on Juh for every h,
converging to u in L1(Ω; RN ) satisfying (2.12) below, with a function γ : [0,+∞[→ [0,∞[ nondecreasing and
verifying the superlinearity condition (2.11) below. Then

[u] · νu ≥ 0 HN−1 − a.e. on Ju, (1.2)

and ∫
Ju

ϕ([u] · νu)dHN−1 ≤ lim inf
h→+∞

∫
Juh

ϕ([uh] · νuh)dHN−1. (1.3)

Clearly the class Φ in (1.1) includes functions of the type φ above, but it has also to be observed that, in general, the
functions in Φ can be truly convex. In fact, typical examples of functions in Φ are given by ϕ : s ∈ R+ 7→ (1 + sp)

1
p ,

p ≥ 1, but in practice this class of functions does not perfectly fit the mechanical framework, where actually a
‘concave-type’ behavior is expected.
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With the aim of finding a wider class of functions containing the function φ in [1, 2], and also including energy
densities with a more general dependence on the opening of the fracture [u] and from the normal of the crack site
νu, rather than just from their scalar product [u] · νu, we introduced in [5] the following type of functions. Let
Ψ : (a, b) ∈ RN × SN−1 → [0,+∞[ be defined as follows

Ψ : (a, b) ∈ RN × SN−1 7→ sup
ξ∈SN−1

|b · ξ|ψ(|a · ξ|), (1.4)

where ψ : [0,+∞[→ [0,+∞[ is a lower semicontinuous, nondecreasing subadditive function (more generally a lower
semicontinuos function such that ψ(| · |) is subadditive). Thus the following lower semicontinuity result with respect
to convergences (2.13) ÷ (2.15) below has been established:

Theorem 1.2. Let Ω be a bounded open subset of RN , let γ : [0,+∞[→ [0,+∞[ be a non-decreasing function
verifying the superlinearity condition (2.11), and let Ψ be as in (1.4) where ψ : [0,+∞[→ [0,+∞[ is a lower
semicontinuous function such that t ∈] − ∞,+∞[→ ψ(|t|) is subadditive. Let {uh} be a sequence in SBD(Ω)
satisfying the bound (2.12), such that [uh] ·νuh ≥ 0HN−1-a.e. on Juh for every h and converging to u in L1(Ω; RN ).
Then (1.2) holds and ∫

Ju

Ψ([u], νu)dHN−1 ≤ lim inf
h→+∞

∫
Juh

Ψ([uh], νuh)dHN−1 (1.5)

We observe that the energy
∫
Ju
φ([u] · νu, [u] · τu)dHN−1 in [1, 2] with φ as above can be recasted in the terms of

a suitable Ψ as in (1.4) requiring that the noninterpenetration constraint (1.2) is verified, in fact it suffices to consider
ψconst : t ∈ [0,+∞[→ K,K > 0, from which we deduce that Ψ = Ψconst : (a, b) ∈ RN × SN−1 → K.

Moreover, as observed in [5] (see Remark 4.8 therein, that we summarize here for the reader’s convenience), the
intersection between the classes Ψ in (1.4) and Φ in (1.1) is reduced to φ. In fact we recall that the function ϕ of
Theorem 1.1, admits the representation

ϕ(t) = sup
α∈A
{cαt+ dα} (1.6)

with cα, dα ≥ 0. On the other hand by (1.4) one can deduce (see Theorem 4.5 in [5]) that

Ψ(a, b) = sup
ξ∈SN−1

|b · ξ|Ψ(|a · ξ|e, e)

for any e ∈ SN−1, thus in order to find a ψ such that

sup
ξ∈SN−1

|b · ξ|ψ(|a · ξ|) = ϕ(a · b)

for every a ∈ RN and b ∈ SN−1, with a · b ≥ 0 we can assume

ψ(t) = ϕ(t), for every t ∈ [0,+∞[,

so that
ϕ(a · b) = sup

ξ∈SN−1
|b · ξ|ϕ(|a · ξ|) for every (a, b) ∈ RN × SN−1

which implies
ϕ(a · b) ≥ ϕ(|a · ξ|)|b · ξ| for every a ∈ RN , b, ξ ∈ SN−1, a · b ≥ 0. (1.7)

Thus, taking 0 ≤ x, y ≤ r, (t, s) = 1
r (x, y), a = re1, b = te1 +

√
1− t2e2, ξ = se1 +

√
1− s2e2, {e1, e2, . . . , eN},

the canonical basis of RN , and letting r → +∞, we obtain by (1.7)

ϕ(x) ≥ ϕ(y), for every x, y ≥ 0,

which ensures that ϕ has to be constant. The difference among the two classes is not very surprising, and in fact,
also the techniques adopted to prove the two lower semicontinuity results (Theorem 1.1 and Theorem 1.2) are very
different, the first relying on Geometric Measure Theory and the second on the structure of the Special fields of
Bounded Deformation, enlightened in [6, 3].
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In order to further generalize the previous results, expecially with the aim of considering surface energies whose
densities have explicit dependence on the two different one side Lebesgue’ s limits (see Section 2 below) and on the
normal to the jump site, we introduce the class Θ.

Θ : (i, j, p) ∈ RN × RN × SN−1 7→ sup
ξ∈SN−1

|p · ξ||g(i · ξ)− g(j · ξ)| (1.8)

where g : R →]0,+∞[ is a continuous function. Still relying on the structure of the Special Fields of Bounded
Deformation and on the fact that in dimension 1, SBD functions coincide with SBV ones, we prove the following
result

Theorem 1.3. Let Ω be a bounded open subset of RN , let γ : [0,+∞[→ [0,+∞[ be a non-decreasing function
verifying the superlinearity condition (2.11), and let Θ be as in (1.8) where g : R→]0,+∞[ is a continuous function.
Let {uh} be a sequence in SBD(Ω) satisfying the bound (2.12), such that [uh] · νuh ≥ 0HN−1-a.e. on Juh for every
h and converging to u in L1(Ω; RN ). Then (1.2) holds and∫

Ju

Θ(u+, u−, νu)dHN−1 ≤ lim inf
h→+∞

∫
Juh

Θ(u+
h , u

−
h , νuh)dHN−1 (1.9)

The structure of the paper is the following. In Section 2 the principal results from Geometric Measure Theory,
concerning spaces of functions with bounded deformation and special functions of bounded variation, are recalled.
Section 3 is devoted to the proof of Theorem 1.3.

2 NOTATIONS AND PRELIMINARIES
Here and in the sequel, let Ω be a bounded open subset of RN . We shall usually suppose, when non explicitly

mentioned, (essentially to avoid trivial cases) that N > 1. Let u ∈ L1(Ω; Rm), the set of Lebesgue points of u is
denoted by Ωu. In other words x ∈ Ωu if and only if there exists ũ(x) ∈ Rm such that

lim
%→0+

1
%N

∫
B%(x)

|u(y)− ũ(x)|dy = 0.

The spaceBD(Ω) of vector fields with bounded deformation is defined as the set of vector fields u = (u1, . . . , uN ) ∈
L1(Ω; RN ) whose distributional gradient Du = {Diu

j} has the symmetric part

Eu = {Eiju}, Eiju = (Diu
j +Dju

i)/2

which belongs toMb(Ω;MN×N
sym ), the space of bounded Radon measures in Ω with values in MN×N

sym , the space of
symmetric N×N matrices. For u ∈ BD(Ω), the jump set Ju is defined as the set of points x ∈ Ω where u has two
different one sided Lebesgue limits u+(x) and u−(x), with respect to a suitable direction νu(x) ∈ SN−1 = {ξ ∈
RN : |ξ| = 1}, i.e.

lim
%→0+

1
%N

∫
B±% (x,νu(x))

|u(y)− u±(x)|dy = 0, (2.1)

where B±% (x, νu(x)) = {y ∈ RN : |y − x| < %, (y − x) · (±νu(x)) > 0}. In [6] it has been proved that for every
u ∈ BD(Ω) the jump set Ju is Borel measurable and countably (HN−1, N − 1) rectifiable and νu(x) is normal to
the approximate tangent space to Ju at x for HN−1-a.e. x ∈ Ju, where HN−1 is the (N − 1)-dimensional Hausdorff
measure (see [7] and [19]).
Let u ∈ BD(Ω), the Lebesgue decomposition of Eu is written as

Eu = Eau+ Esu

with Eau the absolutely continuous part and Esu the singular part with respect to the Lebesgue measure LN .
The density of Eau with respect to LN is denoted by Eu, i.e. Eau = EuLN . We recall that Esu can be further
decomposed as

Esu = Eju+ Ecu

with Eju, the jump part of Eu, i.e. the restriction of Esu to Ju and Ecu the Cantor part of Eu, i.e. the restriction of
Esu to Ω \ Ju. Furthermore, in [6] it has been proved that

Eju = (u+ − u−)� νuHN−1 bJu (2.2)
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where � denotes the symmetric tensor product, defined by a � b := (a ⊗ b + b ⊗ a)/2 for every a, b ∈ RN , and
HN−1 bJu denotes the restriction ofHN−1 to Ju, i.e. (HN−1 bJu )(B) = HN−1(B∩Ju) for every Borel set B ⊆ Ω.
Moreover in [6] it has been also proved that |Ecu|(B) = 0 for every Borel set B ⊆ Ω such that HN−1(B) < +∞,
where | · | stands for the total variation. In the sequel, for every u ∈ L1

loc(Ω; RN ) we denote by [u] the vector u+−u−.
For any y, ξ ∈ RN , ξ 6= 0, and any B ∈ B(Ω) we define

πξ := {y ∈ RN : y · ξ = 0},
Bξy := {t ∈ R : y + tξ ∈ B},
Bξ := {y ∈ πξ : Bξy 6= ∅},

(2.3)

i.e. πξ is the hyperplane orthogonal to ξ , passing through the origin andBξ = pξ(B), where pξ, denotes the orthogonal
projection onto πξ. Bξy is the one-dimensional section of B on the straight line passing through y in the direction of ξ.

Given a function u : B → RN , defined on a subsetB of RN , for every y, ξ ∈ RN , ξ 6= 0, the function uξy : Bξy → R
is defined by

uξy(t) := uξ(y + tξ) = u(y + tξ) · ξ for all t ∈ Bξy. (2.4)

In [6] it has been proved that a vector field u belongs to BD(Ω) if and only if its ’projected sections’ uξy belong to
BV (Ωξy). More precisely the following Structure Theorem (cf. Structure Theorem 4.5 in [6]) has been proved.

Theorem 2.1. Let u ∈ BD(Ω) and let ξ ∈ RN with ξ 6= 0. Then

(i) Eauξ · ξ =
∫

Ωξ
DauξydHN−1(y), |Eauξ · ξ| =

∫
Ωξ
|Dauξy|dHN−1(y).

(ii) ForHN−1-almost every y ∈ Ωξ, the functions uξy and ũξy (the Lebesgue representative of u, cf. formula (2.5) in
[6]) belong toBV (Ωξy) and coincide L1-almost everywhere on Ωξy , the measures |Duξy| and V ũξy (the pointwise
variation of ũξt , cf. formula (2.8) in [6]) coincide on Ωξy ,and Eu(y+tξ)ξ ·ξ = ∇uξy(t) = (ũξy)′(t) for L1-almost
every t ∈ Ωξy .

(iii) Ejuξ · ξ =
∫

Ωξ
DjuξydHN−1(y), |Ejuξ · ξ| =

∫
Ωξ
|Djuξy|dHN−1(y).

(iv) (Jξu)ξy = Juξy forHN−1-almost every y ∈ Ωξ and for every t ∈ (Jξu)ξy

u+(y + tξ) · ξ = (uξy)+(t) = lims→t+ ũ
ξ
y(s)

u−(y + tξ) · ξ = (uξy)−(t) = lims→t− ũ
ξ
y(s),

where the normals to Ju and Juξy are oriented so that νu · ξ ≥ 0 and νuξy = 1.

(v) Ecuξ · ξ =
∫

Ωξ
DcuξydHN−1(y), |Ecuξ · ξ| =

∫
Ωξ
|Dcuξy|dHN−1(y).

The space SBD(Ω) of special vector fields with bounded deformation is defined as the set of all u ∈ BD(Ω) such
that Ecu = 0, or, in other words

Eu = EuLN + (u+ − u−)� νuHN−1 bJu

We also recall that if Ω ⊂ R, then the space SBD(Ω) coincides with the space of real valued special functions
of bounded variations SBV (Ω), consisting of the functions whose distributional gradient is a Radon measure with no
Cantor part (see [7] for a comprehensive treatment of the subject).

Here we recall Proposition 4.7 in [6] that will be exploited in the sequel.

Proposition 2.2. Let u ∈ BD(Ω) and let ξ1, . . . , ξN be a basis of RN . Then the following three conditions are
equivalent:

(i) u ∈ SBD(Ω).

(ii) For every ξ = ξi + ξj with 1 ≤ i, j ≤ n, we have uξy ∈ SBV (Ωξy) forHN−1-almost every y ∈ Ωξ.

(iii) The measure |Esu| is concentrated on a Borel set B ⊂ Ω which is σ-finite with respect toHN−1.
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Definition 2.3. For any u ∈ BD(Ω) we define the non-negative Borel measure λu on Ω as

λu(B) :=
1

2ωN−1

∫
SN−1

λξu(B)dHN−1(ξ) ∀B ∈ B(Ω), (2.5)

where, for every ξ ∈ SN−1

λξu(B) :=
∫

Ωξ
H0(Juξy ∩B

ξ
y)dHN−1(y) ∀B ∈ B(Ω). (2.6)

Let
Jξu :=

{
x ∈ Ju : (u+ − u−) · ξ 6= 0

}
, (2.7)

we recall that

HN−1(Ju \ Jξu) = 0 forHN−1 − a.e. ξ ∈ SN−1. (2.8)

The following result is a consequence of the Structure Theorem

Theorem 2.4. For every u ∈ BD(Ω) and any ξ ∈ SN−1,

λξu(B) =
∫
Jξu∩B

|νu · ξ|dHN−1 ∀B ∈ B(Ω), (2.9)

where νu is the approximate unit normal to Ju. Moreover λu = HN−1bJu.

The same argument of Theorem 2.4, i.e. (iv) of Theorem 2.1 and the fact that the (N − 1)-dimensional area factor of
pξ on Ju is |νu · ξ| guarantees that for every Borel function g : Ω→ [0,+∞], it results∫

Jξu∩B
g(y)|νu · ξ|dHN−1(y) =

∫
Ωξ

∫
pξ(J

ξ
u∩B)

g(y + tξ)dH0(t)dHN−1(y) (2.10)

for any ξ ∈ SN−1.

We recall the following compactness result for sequences in SBD proved in [3], (cf. Theorem 1.1 and Remark 2.3
therein).

Theorem 2.5. Let γ : [0,+∞[→ [0,+∞[ be a non-decreasing function such that

lim
t→+∞

γ(t)
t

= +∞. (2.11)

Let {uh} be a sequence in SBD(Ω) such that

‖uh‖L∞(Ω;RN ) +
∫

Ω

γ(|Euh|)dx+HN−1(Juh) ≤ K (2.12)

for some constant K independent of h. Then there exists a subsequence, still denoted by {uh}, and a function u ∈
SBD(Ω) such that

uh → u strongly in L1
loc(Ω; RN ), (2.13)

Euh ⇀ Eu weakly in L1(Ω;MN×N
sym ), (2.14)

Ejuh ⇀ Eju weakly* inMb(Ω;MN×N
sym ), (2.15)

HN−1(Ju) ≤ lim inf
h→+∞

HN−1(Juh) (2.16)

The following result from Measure Theory will be exploited in the sequel, (cf. Lemma 2.35 in [7]).
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Lemma 2.6. Let λ be a positive σ-finite Borel measure in Ω and let ϕi : Ω→ [0,∞], i ∈ N, be Borel functions. Then∫
Ω

sup
i
ϕidλ = sup

{∑
i∈I

∫
Ai

ϕidλ

}

where the supremum ranges over all finite sets I ⊂ N and all families {Ai}i∈I of pairwise disjoint open sets with
compact closure in Ω.

Next we recall a sufficient condition to ensure lower semicontinuity in SBV (Ω) with respect to the convergence à
la Ambrosio (cf. Definition 5.17 and Theorem 5.22 in [7]). LetK ⊂ Rd be compact and f : K×K×RN → [0,+∞].
The function f is said to be jointly convex if

f(i, j, p) = sup
h∈N
{(gh(i)− gh(j)) · p} ∀(i, j, p) ∈ K ×K × RN (2.17)

for some sequence {gh} ⊂ [C(K)]p. We emphasize that this notion plays for surface energy densities the same role
as policonvexity for bulk energies.

A proof entirely analogous to the proof of Theorem 5.12 in [7] allows us to prove the following result.

Theorem 2.7. LetK ⊂ Rd be a compact set and f : K×K×RN → [0,+∞[ be a jointly convex function Let {uh} ⊂
SBV (Ω; Rd) be a sequence converging in L1(Ω; Rd) to u such that {|∇uh|} is equiintegrable,HN−1(Juh) ≤ const
and, for any h ∈ N, uh(x) ∈ K for LN -a.e. x ∈ Ω. Then (by virtue of Theorem 4.8 in [7]) u ∈ SBV (Ω; Rd), u(x) ∈
K for LN -a.e. x ∈ Ω and∫

Ju

f(u+, u−, νu)dHN−1 ≤ lim inf
h

∫
Juh

f(u+
h , u

−
h , νh)dHN−1.

3 LOWER SEMICONTINUITY OF
∫
Ju

Θ(u+, u−, νu)dHN−1

This section is devoted to the proof of Theorem 1.3. To this end we state and prove some preliminary lower
semicontinuity results.

Lemma 3.1. Let g : R→]0,+∞[ be a continuous function. Let γ : [0,+∞[→ [0,+∞[ be a nondecreasing function
such that the superlinearity condition (2.11) holds. Let I be an open interval of R. Let {uj} ⊂ SBV (I) such that

‖uj‖L∞(I) +
∫
I

γ(|u′j |)dx+H0(Juj ) ≤ C

(here u′j denotes the absolutely continuous part of Duj with respect to the Lebesgue measure). Assume also that
uj → u in L1(I). Then ∫

Ju

|g(u+)− g(u−)|dH0 ≤ lim inf
j→+∞

∫
Juj

|g(u+
j )− g(u−j )|dH0.

Proof. First consider a subsequence {ujk} such that lim infj→+∞
∫
Juj
|g(u+

j )−g(u−j )|dH0 is a limit on k. By virtue

of Theorem 2.5, it results that it admits a further subsequence, still denoted by {ujk}, such that all the convergence
relations (2.13)÷(2.16) hold in I . Consequently, since {uj} is bounded inL∞, the function f : (i, j, p) ∈ R×R×R→
sup{gβ :gβ=g or−g}{(gβ(i)−gβ(j))p}, can be considered restricted to the product of a compact set for itself, as regards
the first two components, and thus it turns out to be jointly convex. Thus Theorem 2.7, applied to f , ensures that∫

Ju

|g(u+)− g(u−)|dH0 ≤ lim
k→+∞

∫
Jujk

|g(u+
jk

)− g(u−jk)|dH0 = lim inf
j→+∞

∫
Juj

|g(u+
j )− g(u−j )|dH0.

Remark 1.
We observe that the lower semicontinuity result proved in Lemma 3.1 still holds when replacing the open interval

I , by any open set of R, thanks to the superadditivity of the liminf operator, at least on non-negative families.
The proof of the following result exploits the structure of SBD functions enlightened in Theorem 1.1 in [3].
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Lemma 3.2. Let g : R → [0,+∞[ be a continuous function. Let Ω be a bounded open subset of RN , and let
γ : [0,+∞[→ [0,+∞[ be a non-decreasing function verifying the superlinearity condition (2.11). Let {uh} be a
sequence in SBD(Ω) satisfying the bound (2.12), such that [uh] · νuh ≥ 0 HN−1-a.e. on Juh for every h and
converging to u in L1(Ω; RN ) . Then∫
Ju

|ξ ·νu||g(u+(y)·ξ)−g(u−(y)·ξ)|dHN−1(y) ≤ lim inf
h→+∞

∫
Juh

|ξ ·νuh ||g(u+
h (y)·ξ)−g(u−h (y)·ξ)|dHN−1(y) (3.1)

forHN−1-a.e. ξ ∈ SN−1.

Proof. Let {uh} ⊂ SBD(Ω) satisfying the bound (2.12) and converging to u ∈ L1(Ω; RN ). From Theorem 2.5
u ∈ SBD(Ω).

Let ξ ∈ SN−1, and let pξ : Ju → πξ be the orthogonal projection onto πξ. First we observe that (iv) in
Theorem 2.1 and Proposition 2.2 ensure that for HN−1- a.e. y ∈ Ωξ it results (uξy)+(t) = (u · ξ)+(y + tξ) and
(uξy)−(t) = (u · ξ)−(y+ tξ) for every t ∈ Juξy and (uhξy)+(t) = (uh · ξ)+(y+ tξ) and (uhξy)−(t) = (uh · ξ)−(y+ tξ)
for every t ∈ Juhξy , with uξy, uh

ξ
y ∈ SBV (Ωξy) forHN−1-a.e. y ∈ Ωξ.

On the other hand, by (2.7) and (2.8), it results that∫
Ju

|ξ · νu||g(u+(y) · ξ)− g(u−(y · ξ))|dHN−1(y) =
∫
Jξu

|ξ · νu||g(u+(y) · ξ)− g(u−(y) · ξ)|dHN−1(y),∫
Juh

|ξ · νuh ||g(u+
h (y) · ξ)− g(u−h (y) · ξ)dHN−1(y) =

∫
Jξuh

|ξ · νuh ||g(u+
h (y) · ξ)− g(u−h (y) · ξ)|dHN−1(y)

(3.2)
for every h ∈ N and for HN−1-a.e. ξ ∈ SN−1. Formulas (3.2), (2.10) guarantee that there exists N ⊂ SN−1 such
thatHN−1(N) = 0 and it results:∫
Ju

|ξ · νu||g(u+(y) · ξ)− g(u−(y) · ξ)|dHN−1(y) =
∫

Ωξ

[ ∫
J
u
ξ
y

|g((uξy)+(t))− g((uξt )
−(t))|dH0(t)

]
dHN−1(y),

and∫
Juh

|ξ·νuh ||g(u+
h (y)·ξ)−g(u−h (y)·ξ)|dHN−1(y) =

∫
Ωξ

[ ∫
J
uh
ξ
y

|g((uhξy)+(t))−g((uhξy)−(t))|dH0(t)
]
dHN−1(y),

for every h ∈ N and for every ξ ∈ SN−1 \N .
Consequently the proof will be completed once we show that∫

Ωξ

[ ∫
J
u
ξ
y

|g((uξy)+(t))− g((uξt )
−)(t)|dH0(t)

]
dHN−1(y) ≤

lim inf
h→+∞

∫
Ωξ

[ ∫
J
uh
ξ
y

|g((uhξy)+(t))− g((uhξy)−(t))|dH0(t)
]
dHN−1(y)

(3.3)

for every ξ ∈ SN−1 \N .
To this end, for each ξ ∈ SN−1 \N consider a subsequence {uk} ≡ {uhk} such that

lim inf
h→+∞

∫
J
uh
ξ
y

|g((uhξy)+(t))− g((uhξy)−(t))|dH0(t) = lim
k→+∞

∫
J
uk
ξ
y

|g((ukξy)+(t))− g((ukξy)−(t))|dH0(t). (3.4)

Next consider a further subsequence (denoted by {uj} ≡ {ukj}) such that

lim
j→+∞

HN−1(Juj ) = lim inf
k→+∞

HN−1(Juk). (3.5)

We want to show that the assumptions of Lemma 3.1 are satisfied. Let Iy,ξ(uj) =
∫

Ωξy
γ(|u′j

ξ

y
(t)|)dt, where ujξy(t) =

uj(y + tξ) · ξ. From (ii) in Theorem 2.1 (i.e. Euj(y + tξ) · ξ = (ujξ)′y(t) for HN−1-a.e. y ∈ Ωξ and for L1-a.e.
t ∈ Ωξy) and from Fubini-Tonelli’s theorem, for any ξ ∈ SN−1 \N we have∫

πξ

Iy,ξ(uj)dHN−1(y) =
∫

Ω

γ(|Euj(x)ξ · ξ|)dx.
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Since {uj} satisfies the bound (2.12) and γ is non-decreasing, it follows that∫
πξ

Iy,ξ(uj)dHN−1(y) ≤
∫

Ω

γ(|Euj(x)|)dx ≤ K, (3.6)

for every ξ ∈ SN−1 \N and for HN−1-a.e. y ∈ Ωξ. It is also easily seen that, from the bound on ‖uj‖L∞ , deriving
from the global bound (2.12),

‖ujξy‖L∞(Ωξy) ≤ K. (3.7)

From (3.6), (2.10) for every ξ ∈ SN−1 \N it results that there exists a constant C ≡ C(K) such that

lim inf
j→+∞

∫
πξ

[Iy,ξ(uj) +H0(Jujξy )]dHN−1(y) ≤ C < +∞.

Let us fix ξ ∈ SN−1 \ N (such that the previous inequality holds). Using Fubini-Tonelli’s theorem we can extract a
subsequence {um} = {ujm} (depending on ξ) such that

lim
m→+∞

∫
πξ

[Iy,ξ(um) +H0(Jumξy )]dHN−1(y) =

lim inf
j→+∞

∫
πξ

[Iy,ξ(uj) +H0(Jujξy )]dHN−1(y) ≤ C < +∞,
(3.8)

and for a.e. y ∈ Ωξ, uξm,y ∈ SBV (Ωξy) and umξy → uξy in L1
loc(Ω

ξ
y), with uξy ∈ SBV (Ωξy).

Let ξ ∈ SN−1 \N , by (3.8), Fatou’s lemma, forHN−1-a.e. y ∈ Ωξ, it results

lim inf
m→+∞

[Iy,ξ(um) +H0(Jumξy )] < +∞. (3.9)

Let us fix NΩξ ⊂ Ωξ and a point y ∈ Ωξ \ NΩξ , such that HN−1(NΩξ) = 0, (3.9) and (3.7) hold and such that
um

ξ
y ∈ SBV (Ωξy) for any m. Passing to a further subsequence {ul} ≡ {uml} we can assume that there exists a

constant C ′ such that

lim inf
m→+∞

[Iy,ξ(um) +H0(Jumξy )] = lim
l→+∞

[Iy,ξ(ul) +H0(Julξy )] ≤ C ′.

This means that {ulξy} ∈ SBV (Ωξy) and satisfies all the assumptions of Lemma 3.1 for each interval (connected
component) I ⊂ Ωξy . Consequently (3.4) and Lemma 3.1 guarantee that∫

J
u
ξ
y

|g((uξy)+(t))− g((uξy)−(t))|dH0(t) ≤ lim
l→+∞

∫
J
ul
ξ
y

|g((ulξy)+(t))− g((ulξy)−(t))|dH0(t) =

lim inf
h→+∞

∫
J
uh
ξ
y

|g((uhξy)+(t))− g((uhξy)−(t))|dH0(t)

(3.10)

forHN−1-a.e. ξ ∈ SN−1 and forHN−1-a.e. y ∈ Ωξ.
The lower semicontinuity stated in (3.3) follows now from Fatou’s lemma, which completes the proof.

Now we are in position to prove Theorem 1.3.

Proof of Theorem 1.3. (1.2) has been proved in [4] (cf. Lemma 3.1 therein). It remains to prove (1.5). The continuity
of g allows us to assume ξ in (1.8) varying in any countable subset of SN−1. It will be chosen in SN−1 \N , N being
theHN−1 exceptional set introduced in Lemma 3.2, and it will be denoted by A, with elements ξα.

By superadditivity of liminf:

lim inf
h→+∞

∫
Juh

Θ(u+
h , u

−
h , νuh)dHN−1 ≥

∑
α

lim inf
h→+∞

∫
Juh∩Aα

|ξα · νuh |g(ξα · u+
h )− g(ξα · u−h )|dHN−1
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for any finite family of pairwise disjoint open sets Aα ⊂ Ω.
By Lemma 3.2 we have

lim inf
h→+∞

∫
Juh

|ξα · νuh ||g(ξα · u+
h )− g(ξα · u−h )|dHN−1 ≥

∫
Ju

|ξα · νu||g(ξα · u+)− g(ξα · u−h )|dHN−1

for every ξα ∈ A. Therefore

lim inf
h→+∞

∫
Juh

Θ(u+
h , u

−
h , νuh)dHN−1 ≥

∑
α

∫
Ju∩Aα

|ξα · νu||g(ξα · u+)− g(ξα · u−)|dHN−1

for every ξα ∈ A and for any finite family of pairwise disjoint open sets Aα ⊂ Ω.
By Theorem 2.6 we can interchange integration and supremum over all such families, thus getting

lim inf
h→+∞

∫
Juh

Θ(u+
h , u

−
h , νuh)dHN−1 ≥

∫
Ju

Θ(u+, u−, νu)dHN−1,

whence (1.9) follows and that concludes the proof.

Remark 2. We emphasize that Theorem 1.3 still holds with obvious adaptations if one replaces the integrand Θ in
(1.8) by

Θ(i, j, p) := sup
ξ∈SN−1

|b · ξ||gξ(i · ξ)− gξ(j · ξ)|

with gξ : R→ [0,+∞[ continuously depending on ξ ∈ SN−1, continuous functions.
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