Ceradini’s approach in fracture mechanics
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SUMMARY. The crack propagation problem for linear elastiacture mechanics has been studied
by some authors exploiting its analogy with plasticity the(see e.g. [1, 2, 3] ). This approach is
here further pursued, by noting that Stress Intensity Fa¢®lFs) asymptotic expansion allows a
Colonnetti's approach. As a consequence, a minimum vanatiformulation is obtained in terms
of crack tip velocity. It is reminiscent of Ceradini’s theon for plasticity.

1 INTRODUCTION

Fracturing process reveals three distinct phases [4]:ingadithout crack growth, stable crack
growth an unstable crack growth. During crack advancingrgyndissipation takes place in the
process-region, in the plastic region outside the proaggem, and eventually in the wake of plastic
region. When the fracture process is idealized to infimtedlly small scale yielding, energy dis-
sipation during crack growth is concentrated at the crgekThis assumption together with linear
elasticity is assumed in the present note, making use of eledaw without limitation of stress
and strain magnitudes: the stress-strain fields in the dijackcinity is uniquely determined by the
stress intensity factors (SIFs).

Similarly to the determination of the “elastic limit”", theocept of incipient crack growth is
difficult to identify: in both cases, the difficulty is solvdxy a convention. Onset of crack growth
is governed theoretically by a local condition, describivitgen the process region reaches a critical
state which, in most cases of engineering interest, is iedépnt on body and loading geometry:
this property is termed autonomy (see [5] but also the eswetlescription in [4]).

Even if the total amount of stable crack growth does not oheyproperty of autonomy, being
dependent on the plastic region about the crack tip, stabtkgrowth is ruled by local conditions
at the process region. The onset of unstable crack growtmishe contrary, a result of a global
instability. These issues are discussed in section 6.

The global quasi-static fracture propagation problem st 1$n seeking an expression of the
crack propagation rate for all three phases of the fraajypsimcess. The question can be posed in
the following way: given the state of stress and the histdrgrack propagation (if any), express
the crack propagation rate (if any) as a function of the steesl of the history. Indeed this path
of reasoning seems quite natural: though, most of algorftimarack propagation are designed in
the opposite way: they express the external load historyfasaion of the crack propagation rate
[6]. Whereas the latter approach is quite easy, it is nohogitin evaluating the critical point of the
equilibrium path; further it seems to be unsuitable in thespnce of many propagating cracks in
multi-connected bodies.

For linear elastic fracture mechanics, the global quagiesfracture propagation problem has
been studied in [3] exploiting its analogy with plasticityebry. A maximum principle was stated,
that expressed the maximum dissipation at the crack tijmgymiopagation; from it, associated flow



rule and loading/unloading conditions in Kuhn-Tucker céenpentarity form descend. Consistency
conditions led to the formulation of an algorithm for crackvancing, which was driven by the incre-

ment of external actions (under the simplifying assumptibproportional loading) and allowed the

evaluation of crack length increment and curvature at thelctips of several cracks contemporarily
advancing.

This idea is here further pursued, by noting that Amestolgldued [7] Stress Intensity Factors
(SIFs) asymptotic expansion has an effect superpositimrgretation. Discussions at section 5
allow a Colonnetti's approach in fracture mechanics. As asequence, a minimum variational
formulation is obtained in section 7 in terms of crack tipogdy. It is reminiscent of Ceradini’s
theorem for plasticity.

2 NOTATION

Small strains hypothesis is assumed on a donfnie- Uﬁ:;l Q, C R2, together with the
isotropic linear elastic constitutive law in all té homogeneous closed domaiilg. Interfaces
between domains are assumed to be rigid, i.e. relativeatispients along each interface are not
allowed. LociY;, i« = 1,2,..., of possible displacement discontinuities(x) are defined as
usual inside of each domaii: the issues of interface cracks and of intersections betwaaving
cracks and interfaces fall beyond the purposes of the prests.

Figure 1: Notation(C' denotes the curvature of the main branch at the crack tipregise* andC*
define the curvature of the elongated branch.

The structural response to the following quasi-static rmeeactions is sought: tractiogx)
onI', C 09, displacementfi(x) on I', C 092. Bulk forces are assumed to be zero. External
actions are all assumed to pmportional i.e. that they vary only through multiplication by a time-
dependent scalat(t), termed load factor, taken to be zero at initial time= 0 when the cracks
attained their initial length. In the present note, “time&presents any variable which monotonically
increases in the physical time and merely orders eventsméwhanical phenomena to study are
time-independent.

The notation of [7], see also figure 1, will be used. In suchlelrated paper, Amestoy and Leblond



established the general form of the expansion of the strasgadity factors (SIFs) in powers of
the crack extension lengt for a crack propagating in a two-dimensional body along réitrary
kinked (by an angl® = mw) and curved path. They evaluated the detailed form the immet
of the geometric and mechanical parameters which appe&eiexpansion, too. Denoting with
K = {K;, K5} the SIFs vector, the expansionl§fat the extended crack tip in powers«f of the
general form:

K(s) = K"+ K2 /s + KW s + 0(s%/?) (1)
whereK*, K(1/2) KM are given componentwise (using the Einstein summationetion) by
K, = Fpq(m) K, (2)
KZ()I/Q) = Gp(m)T + a"Hye(m) K, 3)
Kz(ﬂl) = Zp+ Ipg(m) by + C Jpg(m) Ky + a*Qp(m)T + a*Qqu(m) K,
+ C* My, (m) K, (4)

In these equationd;, and theb,s are the non singular stress and coefficients of theéerms in the
stress expansion at the original crack@ipThe F},;S, G,S, Hp,¢S, 1pgS, JpgS: @pS: LpgS, andM,,,s

are functions of the kink anglé, which are termed universal because they obey to the autpnom
concept; finallyZ,, depends on the geometry Qf

3 AVARIATIONAL SETTING FOR CRACK PROPAGATION CRITERIA

Equation (2) is a milestone in the prediction of the kinkimgke at a crack tip according to
some crack propagation criteria, as the Local Symmetry §Bpftened in LS) or the Maximum
Energy Release Rate [9, 10] (shortened in MERR). As a distenpeculiarity [11, 12], these two
criteria are grounded on the stress and strain fields in thepggated configuration” as the crack
elongation approaches zero from abave- 0%. It is natural therefore to analyze these criteria
into the K — K3 plane, that from now on will be termed the “Amestoy-Leblomiine. Several
criteria ( to cite but a few: Maximum Tensile Stress [13], Maxm Shear Stress [14], apparent
Crack Extension Force [15], Strain Energy Density [16] ) @lydused in the computational fracture
mechanics community, stem from the crack configurationtiatdnset of propagation”: they have
been extensively represented in the plahe— Ko.

The mathematical representation of the onset of fractunebeawritten in the following general
form:
p(K1, Ks,0) = 0(K1, K»,0) — 9(KT',0,09) =0 (5)

whereas the safe equilibrium domain reads:
©(K1,K5,0) <0 (6)

Criteria differs from the choice of functiofi which is a measure of the safety of a pak, K>}
with respect to a critical state, sgy<,0}. In (5), K¢ is the fracture toughness afff is the
propagation angle attained whéfy = 0 and K; = K¢, with functiony “usually"” defining the
crack propagation criterion.

Inequality (6) has to be understood as follows: it existggarearound the origin in th&'; — Ko
plane such that for a# € R it does not exist any vectd = {K;, K2} for which ¢ vanishes,

1The use of term “usually” worths a better explanation. Whsrim plasticity the choice of a yield function is free, in
fracture mechanics the release (better: dissipation) efggnat the crack tip during propagation poses a constraititet



whatever the relationship between the angle of propagétamd the SIFs might be. This idea can
be given a mathematical picture. At a given timgalues ofKK can be evaluated as a linear function
of k, as the geometry is given; ratio = ? usually termed the “mode mixity” ratio, is therefore
fixed; 6(t) is unknown as well as(¢) such thatp = 0. The pair{ K, K} is in fact equivalent to

the pair{x, a}. The onset of propagation:
p(k,0,0) =0

implicitly defines a function<(6, o) with « as a given parameter. The “actual” kinking anglis
associated to the lowest value«f If the hypotheses of the implicit function theorem are figé,

then: )
de| 8(,0 dp\ Oy
|~ a0 (8/{) =0 =0 ®

The kinking anglé is sought therefore as the one that, at any giveminimizess. It turns out that
this condition implies maximizing: in its complete form, the problem of findirg:, 6} reads:

9%

find {k,0} s.t. =0, 50

=0 9)
As ¢ <0, {k, 0} in (9) are maximizers ap.

Scheme (9) applies to all propagation criteria that authoesaware of, with only one notable
exception, namely the local symmetry criterion. In suchsega( K, K2, 0) = 0 is independent on
the load factork. At any given mode-mixity ratio corresponds a kinking angieigh formula (36)
in appendix A.

4 A PLASTICITY FRAMEWORK FOR LEFM

4.1 Intuitive facts

The definition (6) of a “safe equilibrium domain” and of then'set of crack propagation” (5)
as its closure are reminiscent to the plasticity theory [Xfiy appear as the counterpart of the
elastic domain and of the yield surface. On the other hanctaitks extension is considered irre-
versible, crack lengtl and crack tip velocityy must be taken as positive quantities. Furthermore,
the following chain of linear complementary conditions:

p<0 $>0 ps=20 (20)

must hold. No propagation is allowed= 0 in the safe equilibrium domain and vice versa. Equa-
tions (10) clearly reproduce Kuhn-Tucker conditions ofsgilzity. All these similarities pushed to-
wards setting a mathematical analogy between plasticityfi@tture, which is shortly summarized
in next section.

choice ofy: namely, the safe equilibrium domain must be defined in tesfns

11— . 2
P(KY) = 5 — () - k) ™)
which defines the maximum energy release rate criterion.eftfesless, the question arises if from this choice-ptrack
propagation angles from any crack propagation criteriastiéirbe recovered: this issue has been addressed in a coonpan
paper.




4.2 Analogy between plasticity and fracture.

Provided that merely the crack tip is considered as a mafaiat, one is tempted to state that a
crack tip is not going to propagate if the SIFs vedGr belongs to the set:

E={{K{,K;} € Rf x R|p(K},K;) <0} (11)

which is termed the “safe equilibrium domain”. WhEit € E the material surrounding the crack
tip is experiencing a purely linear elastic behavior, euatly corresponding to an elastic unloading.
The boundary oE, JE, is named the “onset of crack propagation surface”:

OE = {{K{,K3} € Ry x R | ¢(K{, K3) = 0} (12)

and vector&* ¢ E are ruled out. The definitions above implicity label the SiEstor as an internal
force for the LEFM problem, conjugated to a not yet specifigdrinal variable.

Figure 2: Definition of vectoa and of function.

At all material points experiencing plastic deformationmsgchanical dissipatio® > 0 is in-
duced; local dissipation inequality defines in plasticapd more generally in standard dissipative
systems) generalized strain rate as the conjugate to tlerajeed stress, as their product gives the
rate of dissipation [1]. In LEFM, mechanical dissipatiordise to the irreversible nature of crack
extension [18]: it seems natural assuming as internal bigria quantity related to the quasi static
crack tip velocity vectog, defined as the vector oriented with ayisin figure 1 and with modulus
equal to the quasi static velocityf, ., as the crack elongationapproaches zero from above. The
internal variable is here termed “dissipation rate” veeét@nd is defined as in figure 2: it is related
to s by its orientation defined through the kinking angteand by its lengthi, defined as:

G,

e § (13)

a:

whereG,. = 2+, stands for the surface energy density anthe surface energy of each plane of the
crack.



A maximum principle - terme@®-principle - for LEFM is postulated For given dissipation rate
vectora, among all possible SIHs* € E, the function

D(k*;a) =k*- a (14)
attains its maximum for the actual SIF veclsr:
D(K*;a) = max D(k";a) (15)
k*cE

Analogously to maximum dissipation in plasticit®-principle implies: i) associative flow rule in
the Amestoy-Leblond plane (normality law):

a= o (16)
i) loading/unloading conditions in Kuhn-Tucker complemtarity form:
A>0, <0, Ap=0 (17)

iif) convexity of safe equilibrium domaifi.

D-principle has a neat physical interpretation. Inserting Maximum Energy Release Rate
onset of propagation (7) into (16), it comes out:
1—12

E

K*\ (18)

a=

and from (14)

1—02
E
Owing to equation (13), it can be therefore concluded that:= s is the actual “quasi-static crack

propagation velocity” and = s will coincide with the total crack propagation, providedth =

s = 0 at the beginning of the crack propagation histaryfunctionD equals the energy dissipation
at the crack tip due to an infinitesimal crack propagatios: s; consequentlyD-principle is the
counterpart of the postulate of the maximum plastic work.

D(K*;a) = [IK*|[?PA =G A >0 (19)

The last of conditions (17) is the rigorous counterpart efitituitive description (10)Consis-
tency conditiorcan be deducted from (17) by time derivativecat 0; they read:

Whengp = 0, A>0, ¢ <0, Ap=0 (20)
Vectorsa ands materialize the kinking angl¢*, that comes out from the normality law:
Oy dp K3
tan 6" = tan 0" = =a 21
oK an 0Ky = an K « (22)

Angle #* is a measure of the mode mixity* in the Amestoy-Leblond plane. It's defined in the
kinked referencéy,, y»} as shown in figure 2.

Functiong, which is defined in figure 2, relates angleand the actual kinking angteaccording
to (34) in appendix A. Other possibilities for mgghave been considered in a companion paper.
It has been argued if, interpretigcas a “constitutive” property, crack propagation anglesifiamy
criteria could have been eventually recovered.



5 ONTHE AMESTOY-LEBLOND EXPANSION

Expansion (1) details the form of SIFs at the extended ciigck powers ofs. In other words,
it shows the behavior of SIFs at a given crack tip due to awvénsible change in the geometry of
the same crack tip. As the global quasi-static fracture @gagion problem depends on geometry as
well as on external loads, a complete expansion should read:

K(k,s) = K* (k) + K2 (k) /s + K (k) s + O(s3/?) (22)

If the solution of the global problem at given loachnd geometry is such thatp < 0, an increase
of loads is not prone to elongate the crack:

*

K AV (23)
K

K
atk st. o(K,0) <0 = Arx—AK=—Ax, AK"'=
K

This describes the first phase of fracturing process, naloatiing without crack growth. When the
onset of crack propagation is reached, the second phasen-pubsent - is triggered off: stable crack
growth. A further increase of load causes therefore cramkgation. In the elongated configuration
one writes:

at kst p(K,0) =0 = Ax— AK =AK* +KY? /54 o(Ax) (24)

Equation (24) is a reminiscence of Ceradini's decompasitiostresses in plasticity. It decomposes
the variation of SIFs as due to an elastic contributid®(*) and to a distortion (in fracture: crack
elongations; in plasticity: plastic strain) which reverses itself irfbdFs (stresses in plasticity) by
means of a stiffness factor (in fractuf(!/?) (), in plasticity the action of theZ matrix over the
plastic part of the volume).

6 A GENERAL STABILITY CONDITION OF CRACK GROWTH

During stable crack growth, propagation is a sequence dfiledum states. At each load corre-
sponds a geometry configuration which propagates quagiadty keeping the system at the onset
of fracturep(K, §) = 0. When the unstable propagation regime takes place, dyreffeitts cannot
be neglected. The transition between these two phasestisialdinformation. Assuming in fact that
unstable propagation leads to structural collapse, thetysaf a structural components is measured
against the stable/unstable crack growth transition.

From the consistency condition (20) one writes with a snialise of notation:

0=p= 2% (K + KO/ (1)V3) (25)

The first term in brackets reflects the variatior¥ofwvhile keeping the initial geometry, becausé
is defined ats — 07 and is not a function of the crack elongation. In Ceradinésamposition
spirit, it is an elastic contribution. As a consequence) (#tomes:

_ O K*. 0p (19 -
0= e it oo K (k)V3 (26)

In view of definition (7) of the maximum energy release rafeedon, the amount

850 * 171/2 *12




is positive atp = 0 where it equal€s.. Furthermorey/s > 0 from the irreversible nature of crack

growth. It turns out therefore that:

1—12
E

$=0 = |K*||%k = f%~K(1/2)(n)\/§ (28)

which sets a condition for stable crack growth and, inhdygialr the transition to the unstable phase:

: 9o o(1/2)
£>0 — K- K (k) <0 (29)

Condition (29) can be restated in the easy form:
>0 — K -K1/2 <0 (30)

owing again to (7). The sign d&&* - K(1/2) can easily be tested at any given crack tip. If the crack
path is approximated to be piecewise linear, the evaluafi@iFs and T stresses are merely required
in view of definitions (2)-(3).

7 A (LOCAL) VARIATIONAL STATEMENT FOR CRACK GROWTH

The following variational statement extends Ceradinitsdtional to fracture mechanicfenote
with 2 = v/5. The crack tip velocity that solves the global quasi-staticture propagation problem
minimizes the funcional

1 .
19 parm o2 - 9o K* i (31)

Xl = =5 o5 OK*

provided that:
dp
> [ (1/2)
4 >0 and " K <0

The proof the theorem is here omitted for paucity of spaceéhérform above, Ceradini’s func-
tional is written for a single crack tip. Extension to seVerack tips contemporarily propagating is
quite straightforward; the only issue on this point appéaitse the evaluation of expansion (1) at a
crack tip (say) when a different crack tip (saj) is advancing. Numerical studies have been put for-
ward, showing that crack tips do interact but the asympbbehavior, at authors’ best knowledge,
is still incomplete.

In the easy case of a single crack propagation, the minimu@ecddini’s functional reads:

dp . K* 1 Op . K* 1 K* 2
=g K12 & a?aK*Ku/Q) A= KJ«|. K|(|1/2) " (32)

Itis straightforward to extend functional (31) as well addlity condition (29) to the case of straight
propagation (Mode 1) at whicK(!/2) vanishes. A similar result was obtained in [3] by a different
way less rigorous, approach.



8 CONCLUSIONS
In the present note a variational formulation for the glahasi-static fracture propagation prob-

lem has been presented. It is rooted in a plasticity framkarlinear elastic fracture mechanics,
which stems itself from a maximum principle which is the ctmspart of the maximum plastic work
postulate. From such a cornerstone, Griffith’s approackdsvered following a rigorous analogy
setting.

This likely new way of looking at linear elastic fracture rhanics leads to some results that
appear to worth attention. Several functionals have betandrd, most of whom are not included
in the present note. In it, the quasi-static crack tip vejobas been shown to be the minima of a
guadratic functional which is analogous to Ceradini's amepiasticity. Conditions for stable crack
growth and for the onset of instability have been invesddatnd major results gained.

Extension of the proposed framework to 3D fracture meclsamichesive, dynamics, fatigue is
in progress.
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A KINKING ANGLE
Al MERR
The kink angle predicted by the MERR is such that:

0 5
SIFK|? =0 (33)

Matrix F has been defined in terms of the ratio= % as a series approximation of integral equation
(39) pag. 476 in reference [7]. It is straightforward to shtbat equation (33) implies:

0F11 0F12 0F5; OFy\
(Fll +OLF12) (% + « om ) + (Fgl +OLF22) (% + « om ) =0

(34)
wherea = K . For anya equation (34) provides the kink andle; rrr. Within the present note,
the solution of (34) was found numerically. The limit valwe f(; = 0 was attained at:

03 ppp = 170, 3222 (35)

A2 LS
The LS criterion is the only exception to the mathematicptesentation of the onset of fracture
in the general form (5). It gives the kink andlgs through the equatiok’; = 0:

Fgl + OLFQQ = 0 (36)

wherea = 22. For anya equation (36) provides the kink angles. Within the present note, the
solution of (36) was found numerically. The limit value f& = 0 was attained at:

O1L =17 34966 (37)
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