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SUMMARY. The crack propagation problem for linear elastic fracture mechanics has been studied
by some authors exploiting its analogy with plasticity theory (see e.g. [1, 2, 3] ). This approach is
here further pursued, by noting that Stress Intensity Factors (SIFs) asymptotic expansion allows a
Colonnetti’s approach. As a consequence, a minimum variational formulation is obtained in terms
of crack tip velocity. It is reminiscent of Ceradini’s theorem for plasticity.

1 INTRODUCTION
Fracturing process reveals three distinct phases [4]: loading without crack growth, stable crack

growth an unstable crack growth. During crack advancing, energy dissipation takes place in the
process-region, in the plastic region outside the process region, and eventually in the wake of plastic
region. When the fracture process is idealized to infinitesimally small scale yielding, energy dis-
sipation during crack growth is concentrated at the crack tip. This assumption together with linear
elasticity is assumed in the present note, making use of Hooke’s law without limitation of stress
and strain magnitudes: the stress-strain fields in the cracktip vicinity is uniquely determined by the
stress intensity factors (SIFs).

Similarly to the determination of the “elastic limit”, the concept of incipient crack growth is
difficult to identify: in both cases, the difficulty is solvedby a convention. Onset of crack growth
is governed theoretically by a local condition, describingwhen the process region reaches a critical
state which, in most cases of engineering interest, is independent on body and loading geometry:
this property is termed autonomy (see [5] but also the excellent description in [4]).

Even if the total amount of stable crack growth does not obey the property of autonomy, being
dependent on the plastic region about the crack tip, stable crack growth is ruled by local conditions
at the process region. The onset of unstable crack growth is,on the contrary, a result of a global
instability. These issues are discussed in section 6.

The global quasi-static fracture propagation problem consists in seeking an expression of the
crack propagation rate for all three phases of the fracturing process. The question can be posed in
the following way: given the state of stress and the history of crack propagation (if any), express
the crack propagation rate (if any) as a function of the stress and of the history. Indeed this path
of reasoning seems quite natural: though, most of algorithmfor crack propagation are designed in
the opposite way: they express the external load history as afunction of the crack propagation rate
[6]. Whereas the latter approach is quite easy, it is not optimal in evaluating the critical point of the
equilibrium path; further it seems to be unsuitable in the presence of many propagating cracks in
multi-connected bodies.

For linear elastic fracture mechanics, the global quasi-static fracture propagation problem has
been studied in [3] exploiting its analogy with plasticity theory. A maximum principle was stated,
that expressed the maximum dissipation at the crack tip during propagation; from it, associated flow
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rule and loading/unloading conditions in Kuhn-Tucker complementarity form descend. Consistency
conditions led to the formulation of an algorithm for crack advancing, which was driven by the incre-
ment of external actions (under the simplifying assumptionof proportional loading) and allowed the
evaluation of crack length increment and curvature at the crack tips of several cracks contemporarily
advancing.

This idea is here further pursued, by noting that Amestoy-Leblond [7] Stress Intensity Factors
(SIFs) asymptotic expansion has an effect superposition interpretation. Discussions at section 5
allow a Colonnetti’s approach in fracture mechanics. As a consequence, a minimum variational
formulation is obtained in section 7 in terms of crack tip velocity. It is reminiscent of Ceradini’s
theorem for plasticity.

2 NOTATION
Small strains hypothesis is assumed on a domainΩ =

⋃N
n=1 Ωn ⊂ R

2, together with the
isotropic linear elastic constitutive law in all theN homogeneous closed domainsΩ̄n. Interfaces
between domains are assumed to be rigid, i.e. relative displacements along each interface are not
allowed. LociΥi, i = 1, 2, ..., of possible displacement discontinuitieswi(x) are defined as
usual inside of each domainΩ: the issues of interface cracks and of intersections between moving
cracks and interfaces fall beyond the purposes of the present note.

Figure 1: Notation.C denotes the curvature of the main branch at the crack tip, whereasa∗ andC∗

define the curvature of the elongated branch.

The structural response to the following quasi-static external actions is sought: tractions̄p(x)
on Γp ⊂ ∂Ω, displacements̄u(x) on Γu ⊂ ∂Ω. Bulk forces are assumed to be zero. External
actions are all assumed to beproportional, i.e. that they vary only through multiplication by a time-
dependent scalarκ(t), termed load factor, taken to be zero at initial timet0 = 0 when the cracks
attained their initial length. In the present note, “time”t represents any variable which monotonically
increases in the physical time and merely orders events; themechanical phenomena to study are
time-independent.

The notation of [7], see also figure 1, will be used. In such a celebrated paper, Amestoy and Leblond
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established the general form of the expansion of the stress intensity factors (SIFs) in powers of
the crack extension lengths, for a crack propagating in a two-dimensional body along an arbitrary
kinked (by an angleθ = mπ) and curved path. They evaluated the detailed form the functions
of the geometric and mechanical parameters which appear in the expansion, too. Denoting with
K = {K1, K2} the SIFs vector, the expansion ofK at the extended crack tip in powers ofs is of the
general form:

K(s) = K∗ + K(1/2)
√

s + K(1) s + O(s3/2) (1)

whereK∗, K(1/2), K(1) are given componentwise (using the Einstein summation convention) by

K∗

p = Fpq(m)Kq (2)

K(1/2)
p = Gp(m)T + a∗Hpq(m)Kq (3)

K(1)
p = Zp + Ipq(m) bq + C Jpq(m)Kq + a∗Qp(m)T + a∗2Lpq(m)Kq

+ C∗Mpq(m)Kq (4)

In these equations,T , and thebqs are the non singular stress and coefficients of the
√

r terms in the
stress expansion at the original crack tip0. TheFpqs,Gps,Hpqs, Ipqs, Jpqs,Qps, Lpqs, andMpqs
are functions of the kink angleθ, which are termed universal because they obey to the autonomy
concept; finally,Zp depends on the geometry ofΩ.

3 A VARIATIONAL SETTING FOR CRACK PROPAGATION CRITERIA
Equation (2) is a milestone in the prediction of the kinking angle at a crack tip according to

some crack propagation criteria, as the Local Symmetry [8] (shortened in LS) or the Maximum
Energy Release Rate [9, 10] (shortened in MERR). As a distinctive peculiarity [11, 12], these two
criteria are grounded on the stress and strain fields in the “propagated configuration” as the crack
elongation approaches zero from aboves → 0+. It is natural therefore to analyze these criteria
into theK∗

1 − K∗

2 plane, that from now on will be termed the “Amestoy-Leblond”plane. Several
criteria ( to cite but a few: Maximum Tensile Stress [13], Maximum Shear Stress [14], apparent
Crack Extension Force [15], Strain Energy Density [16] ) widely used in the computational fracture
mechanics community, stem from the crack configuration “at the onset of propagation”: they have
been extensively represented in the planeK1 − K2.

The mathematical representation of the onset of fracture can be written in the following general
form:

ϕ(K1, K2, θ) = ϑ(K1, K2, θ) − ϑ(KC
1 , 0, θC) = 0 (5)

whereas the safe equilibrium domain reads:

ϕ(K1, K2, θ) < 0 (6)

Criteria differs from the choice of functionϑ which is a measure of the safety of a pair{K1, K2}
with respect to a critical state, say{KC

1 , 0}. In (5), KC
1 is the fracture toughness andθC is the

propagation angle attained whenK2 = 0 andK1 = KC
1 , with functionϕ “usually1” defining the

crack propagation criterion.
Inequality (6) has to be understood as follows: it exists a region around the origin in theK1−K2

plane such that for allθ ∈ R it does not exist any vectorK = {K1, K2} for which ϕ vanishes,

1The use of term “usually” worths a better explanation. Whereas in plasticity the choice of a yield function is free, in
fracture mechanics the release (better: dissipation) of energy at the crack tip during propagation poses a constraint to the
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whatever the relationship between the angle of propagationθ and the SIFs might be. This idea can
be given a mathematical picture. At a given timet, values ofK can be evaluated as a linear function
of κ, as the geometry is given; ratioα = K2

K1
, usually termed the “mode mixity” ratio, is therefore

fixed; θ(t) is unknown as well asκ(t) such thatϕ = 0. The pair{K1, K2} is in fact equivalent to
the pair{κ, α}. The onset of propagation:

ϕ(κ, α, θ) = 0

implicitly defines a functionκ(θ, α) with α as a given parameter. The “actual” kinking angleθ is
associated to the lowest value ofκ. If the hypotheses of the implicit function theorem are fulfilled,
then:

dκ

dθ

∣

∣

∣

∣

α

= −∂ϕ

∂θ

(

∂ϕ

∂κ

)−1

= 0 ⇒ ∂ϕ

∂θ
= 0 (8)

The kinking angleθ is sought therefore as the one that, at any givenα, minimizesκ. It turns out that
this condition implies maximizingϕ: in its complete form, the problem of finding{κ, θ} reads:

find {κ, θ} s. t. ϕ = 0 ,
∂ϕ

∂θ
= 0 (9)

As ϕ ≤ 0, {κ, θ} in (9) are maximizers ofϕ.
Scheme (9) applies to all propagation criteria that authorsare aware of, with only one notable

exception, namely the local symmetry criterion. In such a case,ϕ(K1, K2, θ) = 0 is independent on
the load factorκ. At any given mode-mixity ratio corresponds a kinking angletrough formula (36)
in appendix A.

4 A PLASTICITY FRAMEWORK FOR LEFM
4.1 Intuitive facts
The definition (6) of a “safe equilibrium domain” and of the “onset of crack propagation” (5)

as its closure are reminiscent to the plasticity theory [17]: they appear as the counterpart of the
elastic domain and of the yield surface. On the other hand, ifcracks extension is considered irre-
versible, crack lengths and crack tip velocitẏs must be taken as positive quantities. Furthermore,
the following chain of linear complementary conditions:

ϕ ≤ 0 ṡ ≥ 0 ϕ ṡ = 0 (10)

must hold. No propagation is allowedṡ = 0 in the safe equilibrium domain and vice versa. Equa-
tions (10) clearly reproduce Kuhn-Tucker conditions of plasticity. All these similarities pushed to-
wards setting a mathematical analogy between plasticity and fracture, which is shortly summarized
in next section.

choice ofϕ: namely, the safe equilibrium domain must be defined in termsof

ϕ(K∗) =
1

2

1 − ν2

E

“

||K∗||2 − KC
1

2
”

(7)

which defines the maximum energy release rate criterion. Nevertheless, the question arises if from this choice ofϕ, crack
propagation angles from any crack propagation criteria canstill be recovered: this issue has been addressed in a companion
paper.
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4.2 Analogy between plasticity and fracture.
Provided that merely the crack tip is considered as a material point, one is tempted to state that a

crack tip is not going to propagate if the SIFs vectorK∗ belongs to the set:

E =
{

{K∗

1 , K∗

2} ∈ R+
0 ×R | ϕ(K∗

1 , K∗

2 ) < 0
}

(11)

which is termed the “safe equilibrium domain”. WhenK∗ ∈ E the material surrounding the crack
tip is experiencing a purely linear elastic behavior, eventually corresponding to an elastic unloading.
The boundary ofE, ∂E, is named the “onset of crack propagation surface”:

∂E =
{

{K∗

1 , K∗

2} ∈ R+
0 ×R | ϕ(K∗

1 , K∗

2 ) = 0
}

(12)

and vectorsK∗ /∈ E are ruled out. The definitions above implicity label the SIFsvector as an internal
force for the LEFM problem, conjugated to a not yet specified internal variable.

Figure 2: Definition of vectoṙa and of functionς.

At all material points experiencing plastic deformations,mechanical dissipationD > 0 is in-
duced; local dissipation inequality defines in plasticity (and more generally in standard dissipative
systems) generalized strain rate as the conjugate to the generalized stress, as their product gives the
rate of dissipation [1]. In LEFM, mechanical dissipation isdue to the irreversible nature of crack
extension [18]: it seems natural assuming as internal variable a quantity related to the quasi static
crack tip velocity vectoṙs, defined as the vector oriented with axisy1 in figure 1 and with modulus
equal to the quasi static velocitẏs|s→0+ as the crack elongations approaches zero from above. The
internal variable is here termed “dissipation rate” vectorȧ and is defined as in figure 2: it is related
to ṡ by its orientation defined through the kinking angleθ∗ and by its lengtḣa, defined as:

ȧ =
Gc

KC
I

ṡ (13)

whereGc = 2γs stands for the surface energy density andγs the surface energy of each plane of the
crack.
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A maximum principle - termedD-principle - for LEFM is postulated.For given dissipation rate
vectorȧ, among all possible SIFsk∗ ∈ E, the function

D(k∗; ȧ) = k∗ · ȧ (14)

attains its maximum for the actual SIF vectorK∗:

D(K∗; ȧ) = max
k∗∈E

D(k∗; ȧ) (15)

Analogously to maximum dissipation in plasticity,D-principle implies: i) associative flow rule in
the Amestoy-Leblond plane (normality law):

ȧ =
∂ϕ

∂K∗
λ̇ (16)

ii) loading/unloading conditions in Kuhn-Tucker complementarity form:

λ̇ ≥ 0, ϕ ≤ 0, λ̇ ϕ = 0 (17)

iii) convexity of safe equilibrium domainE.

D-principle has a neat physical interpretation. Inserting the Maximum Energy Release Rate
onset of propagation (7) into (16), it comes out:

ȧ =
1 − ν2

E
K∗λ̇ (18)

and from (14)

D(K∗; ȧ) =
1 − ν2

E
||K∗||2λ̇ = Gc λ̇ ≥ 0 (19)

Owing to equation (13), it can be therefore concluded that:i. λ̇ = ṡ is the actual “quasi-static crack
propagation velocity” andλ = s will coincide with the total crack propagation, provided that λ =
s = 0 at the beginning of the crack propagation history;ii. functionD equals the energy dissipation
at the crack tip due to an infinitesimal crack propagationλ̇ = ṡ; consequently,D-principle is the
counterpart of the postulate of the maximum plastic work.

The last of conditions (17) is the rigorous counterpart of the intuitive description (10).Consis-
tency conditioncan be deducted from (17) by time derivative atϕ = 0; they read:

Whenϕ = 0, λ̇ ≥ 0, ϕ̇ ≤ 0, λ̇ ϕ̇ = 0 (20)

Vectorsȧ andṡ materialize the kinking angleθ∗, that comes out from the normality law:

∂ϕ

∂K1
∗

tan θ∗ =
∂ϕ

∂K2
∗

⇒ tan θ∗ =
K∗

2

K∗

1

= α∗ (21)

Angle θ∗ is a measure of the mode mixityα∗ in the Amestoy-Leblond plane. It’s defined in the
kinked reference{y1, y2} as shown in figure 2.

Functionς, which is defined in figure 2, relates angleθ∗ and the actual kinking angleθ according
to (34) in appendix A. Other possibilities for mapς have been considered in a companion paper.
It has been argued if, interpretingς as a “constitutive” property, crack propagation angles from any
criteria could have been eventually recovered.
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5 ON THE AMESTOY-LEBLOND EXPANSION
Expansion (1) details the form of SIFs at the extended crack tip in powers ofs. In other words,

it shows the behavior of SIFs at a given crack tip due to an irreversible change in the geometry of
the same crack tip. As the global quasi-static fracture propagation problem depends on geometry as
well as on external loads, a complete expansion should read:

K(κ, s) = K∗(κ) + K(1/2)(κ)
√

s + K(1)(κ) s + O(s3/2) (22)

If the solution of the global problem at given loadκ and geometrys is such thatϕ < 0, an increase
of loads is not prone to elongate the crack:

at κ s.t. ϕ(K, θ) < 0 ⇒ ∆κ → ∆K =
K

κ
∆κ , ∆K∗ =

K∗

κ
∆κ (23)

This describes the first phase of fracturing process, namelyloading without crack growth. When the
onset of crack propagation is reached, the second phase - when present - is triggered off: stable crack
growth. A further increase of load causes therefore crack elongation. In the elongated configuration
one writes:

at κ s.t. ϕ(K, θ) = 0 ⇒ ∆κ → ∆K = ∆K∗ + K(1/2) √s + o(∆κ) (24)

Equation (24) is a reminiscence of Ceradini’s decomposition of stresses in plasticity. It decomposes
the variation of SIFs as due to an elastic contribution (∆K∗) and to a distortion (in fracture: crack
elongations; in plasticity: plastic strain) which reverses itself intoSIFs (stresses in plasticity) by
means of a stiffness factor (in fracture:K(1/2)(κ), in plasticity the action of theZ matrix over the
plastic part of the volume).

6 A GENERAL STABILITY CONDITION OF CRACK GROWTH
During stable crack growth, propagation is a sequence of equilibrium states. At each load corre-

sponds a geometry configuration which propagates quasi-statically, keeping the system at the onset
of fractureϕ(K, θ) = 0. When the unstable propagation regime takes place, dynamiceffects cannot
be neglected. The transition between these two phases is a crucial information. Assuming in fact that
unstable propagation leads to structural collapse, the safety of a structural components is measured
against the stable/unstable crack growth transition.

From the consistency condition (20) one writes with a small abuse of notation:

0 = ϕ̇ =
∂ϕ

∂K∗
·
(

K̇∗ + K(1/2)(κ)
√

ṡ
)

(25)

The first term in brackets reflects the variation ofK while keeping the initial geometry, becauseK∗

is defined ats → 0+ and is not a function of the crack elongation. In Ceradini’s decomposition
spirit, it is an elastic contribution. As a consequence, (25) becomes:

0 =
∂ϕ

∂K∗
· K∗

κ
κ̇ +

∂ϕ

∂K∗
·K(1/2)(κ)

√
ṡ (26)

In view of definition (7) of the maximum energy release rate criterion, the amount

∂ϕ

∂K∗
· K∗ =

1 − ν2

E
||K∗||2 (27)
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is positive atϕ = 0 where it equalsGc. Furthermore,
√

ṡ > 0 from the irreversible nature of crack
growth. It turns out therefore that:

ϕ̇ = 0 ⇒ 1 − ν2

E
||K∗||2κ̇ = − ∂ϕ

∂K∗
· K(1/2)(κ)

√
ṡ (28)

which sets a condition for stable crack growth and, inherently, for the transition to the unstable phase:

κ̇ > 0 → ∂ϕ

∂K∗
· K(1/2)(κ) < 0 (29)

Condition (29) can be restated in the easy form:

κ̇ > 0 → K∗ · K(1/2) < 0 (30)

owing again to (7). The sign ofK∗ · K(1/2) can easily be tested at any given crack tip. If the crack
path is approximated to be piecewise linear, the evaluationof SIFs and T stresses are merely required
in view of definitions (2)-(3).

7 A (LOCAL) VARIATIONAL STATEMENT FOR CRACK GROWTH
The following variational statement extends Ceradini’s functional to fracture mechanics.Denote

with µ̇ =
√

ṡ. The crack tip velocity that solves the global quasi-staticfracture propagation problem
minimizes the funcional

χ[µ̇] = −1

2

∂ϕ

∂K∗
· K(1/2) µ̇2 − ∂ϕ

∂K∗
· K̇∗µ̇ (31)

provided that:

µ̇ ≥ 0 and
∂ϕ

∂K∗
· K(1/2) < 0

The proof the theorem is here omitted for paucity of space. Inthe form above, Ceradini’s func-
tional is written for a single crack tip. Extension to several crack tips contemporarily propagating is
quite straightforward; the only issue on this point appearsto be the evaluation of expansion (1) at a
crack tip (sayi) when a different crack tip (sayj) is advancing. Numerical studies have been put for-
ward, showing that crack tips do interact but the asymptotical behavior, at authors’ best knowledge,
is still incomplete.

In the easy case of a single crack propagation, the minimum ofCeradini’s functional reads:

µ̇ = −
∂ϕ

∂K∗
· K̇∗

∂ϕ
∂K∗

· K(1/2)
= − 1

κ

∂ϕ
∂K∗

· K∗

∂ϕ
∂K∗

· K(1/2)
κ̇ = − 1

κ

||K∗||2

K∗ · K(1/2)
κ̇ (32)

It is straightforward to extend functional (31) as well as stability condition (29) to the case of straight
propagation (Mode I) at whichK(1/2) vanishes. A similar result was obtained in [3] by a different,
way less rigorous, approach.
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8 CONCLUSIONS
In the present note a variational formulation for the globalquasi-static fracture propagation prob-

lem has been presented. It is rooted in a plasticity framework for linear elastic fracture mechanics,
which stems itself from a maximum principle which is the counterpart of the maximum plastic work
postulate. From such a cornerstone, Griffith’s approach is recovered following a rigorous analogy
setting.

This likely new way of looking at linear elastic fracture mechanics leads to some results that
appear to worth attention. Several functionals have been extended, most of whom are not included
in the present note. In it, the quasi-static crack tip velocity has been shown to be the minima of a
quadratic functional which is analogous to Ceradini’s one for plasticity. Conditions for stable crack
growth and for the onset of instability have been investigated and major results gained.

Extension of the proposed framework to 3D fracture mechanics, cohesive, dynamics, fatigue is
in progress.
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A KINKING ANGLE
A.1 MERR
The kink angle predicted by the MERR is such that:

∂

∂θ
||FK||2 = 0 (33)

Matrix F has been defined in terms of the ratiom = θ
π as a series approximation of integral equation

(39) pag. 476 in reference [7]. It is straightforward to showthat equation (33) implies:

(F11 + αF12)

(

∂F11

∂m
+ α

∂F12

∂m

)

+ (F21 + αF22)

(

∂F21

∂m
+ α

∂F22

∂m

)

= 0 (34)

whereα = K2

K1
. For anyα equation (34) provides the kink angleθMERR. Within the present note,

the solution of (34) was found numerically. The limit value for K1 = 0 was attained at:

θII
MERR = 1rad. 3222 (35)

A.2 LS
The LS criterion is the only exception to the mathematical representation of the onset of fracture

in the general form (5). It gives the kink angleθLS through the equationK∗

2 = 0:

F21 + αF22 = 0 (36)

whereα = K2

K1
. For anyα equation (36) provides the kink angleθLS . Within the present note, the

solution of (36) was found numerically. The limit value forK1 = 0 was attained at:

θII
LS = 1rad. 34966 (37)

10


