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SUMMARY. The motion of a class of plane uniform vortices in aninviscid fluid is analytically in-
vestigated through a (nonlinear) integral equation, written in the Laplace transform (in time) of the
Lagrangian Schwarz function of the vortex boundary. An approximate analytical technique based
on successive substitutions for finding the solution of thatequation is proposed. The first order ap-
proximation is preliminarly compared with numerical simulation and the progresses in the analytical
calculations are illustrated.

1 INTRODUCTION
The study of the inviscid motion of uniform vortices in two dimensions is a quite old issue in

Fluid Mechanics (see [1], cap.9 and in particular the paragraph9.2 about the use of the Schwarz
function). The theoretical analyses has been almost entirely dedicated to relative equilibrium con-
figurations of one ([2] for the Kirchhoff vortex) or more vortices [3, 4, 5, 6, 7, 8, 9] which are
stationary solutions of Euler equations, while the study ofthe motion of nonequilibrium vortices
have been faced essentially through numerical simulations. The approximate numerical integration
is based on the rewriting of the Biot-Savart law as a line integral on the vortex boundary and on the
Lagrangian integration of the motion of a discrete set of points on that curve. The resulting algorithm
is calledcontour dynamics in Literature [10, 11].

In the last years, the present authors proposed a different analytical approach to the study of the
motion of nonequilibrium uniform vortices [12, 13, 14]. It is still based on the use of the Schwarz
function [15] of the vortex boundary, but it does not requirethe splitting of such a function in the
sum of a function analytical inside and another one analytical outside the vortex, as described in [1].
Indeed, this splitting is almost impossible in real cases, unless for the class of quasi-circular vortices
the motion of which is not so interesting. A new integral relation between the Schwarz functionΦ
(a complex quantity is indicated with a bold symbol) and the conjugate velocityu (overbar means
conjugate) has been proposed:

u(x, x) =
ω

2i

[
χP (x) x +

1

2πi

∫

∂P

dy
Φ(y)

x − y

]
, (1)

ω being the vorticity level inside the vortex and the integralbeing understood as a Cauchy one (it
will be indicated with a bar on the integral) whenx lies on the vortex boundary∂P . Moreover,
χP is the characteristic function of the domainP : it holds1 insideP , 0 outsideP and just1/2 on
the boundary. The link (1) enables us to analytically evaluate the velocity induced by any uniform
vortex with standard tools of complex analysis. As briefly discussed in [14], the same relation opens
the way to the analytical study of the vortex dynamics for nonequilibrium vortices.
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The Lagrangian Schwarz functionΦ[x(ξ, τ), τ ] =: S(ξ; τ) (ξ is the position on the initial vortex
boundary∂P (0) andτ is the time, nondimensionalized byω/4) is introduced, as well as its Laplace
transform in timeS̃(ξ; σ). This latter satisfies the integral equation [14]:

(iσ − 1)S̃(ξ; σ) +
1

πi

∫
−
∂P (0)

dη
S̃(η; σ)

η − ξ
︸ ︷︷ ︸

SD[S̃]: singular dominant part (linear)

+
1

πi

∫

∂P (0)

dη g̃S(η, ξ; σ)

︸ ︷︷ ︸
R[S̃]: regular part (non linear)

= iS0(ξ)

︸ ︷︷ ︸
ID: data

(2)

which is easily deduced from the relation (1),S0 being the initial Schwarz function. Equation (2) is
a singular nonlinear integral one [16], the nonlinearity being confined into the functiong:

g(η, ξ; τ) =
∂

∂η
log

x(η; τ) − x(ξ; τ)

η − ξ
,

which accounts for the vortex geometry at the present time.
In [14] an iterative procedure to analytically solve equation (2) has been proposed and tested

(through numerical integration). It is based on the solution of equation (2) for vanishingg:

SD[S̃
(0)

] = ID , (3)

which defines the so called0-th order solution. Equation (3) has solution forξ ∈ ∂P (0):

S(0)(ξ; τ) = S0(ξ) + ∆(τ)u0(ξ) , (4)

∆(τ) being4 eiτ sin τ . The above solution can be analytically continued in any point ξ external
to ∂P (0) through the new0-th order function:S(0)(ξ; τ) = S0(ξ) + ∆(τ) U0(ξ), U0 being the
continued initial velocity (nondimensionalized withω and an arbitrary length scale):

U0(ξ) =
1

2i

[ 1

2
S0(ξ) +

1

2πi

∫

∂P (0)

dη
S0(η)

ξ − η

]
,

deduced from equation (1), via analytic continuation from the vortex boundary. In an equivalent way,
the0-th order vortex shape following from equation (5) through complex conjugation is analytically
continued as:x(0)(ξ; τ) = ξ + ∆(τ) U0(ξ), where the (analytically continued) velocity fieldU0

is:

U0(ξ) =
1

2i

[
−

1

2
ξ +

1

2πi

∫

∂P (0)

dη
η S′

0(η)

S0(ξ) − S0(η)

]
.

Higher order approximations of the solution of equation (2)are obtained through successive
substitution (k = 1, 2, . . .) inside the same equation (2) in which the nonlinear term is treated as a
source one:

SD[S̃
(k)

] = ID − R[S̃
(k−1)

] . (5)

S̃
(k)

will be named as thek-th order solution. The present paper deals with the analytical calculation
of the first order (k = 1) solution of equation (5), which will be evaluated for a certain class of
vortices, the kinematics of which has been previously analyzed [13].
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2 FIRST ORDER SOLUTION (GENERAL CASE)

At the first order, the regular termR[S̃
(0)

] (5) must be evaluated in correspondence to the solution
S(0) (4) found just above. First of all, the functionh is introduced:

h(η, ξ) :=
u0(η) − u0(ξ)

η − ξ
, (6)

which is continuous together with all its derivatives on thecurve∂P (0). The solution at the first
order is evaluated by specifying the functiong evaluated in correspondence to the0-th order solution
(4):

g(η, ξ; τ) = ∂η log
[
1 + ∆(τ)h(η, ξ)

]
=

∆(τ)h′(η, ξ)

1 + ∆(τ)h(η, ξ)
, (7)

the apex indicating a derivative with respect to the first argument (i.e., η). In this way the Laplace
transform in time is given by the following formula:

˜
gS(0)(η, ξ; σ) = L

{ [
S0(η) + ∆(τ)U (η)

]
∂η log

[
1 + ∆(τ)h(η, ξ)

] }
(σ)

= h′(η, ξ) L
{ ∆(τ) [S0(η) + ∆(τ)U 0(η)]

1 + ∆(τ)h(η, ξ)

}
(σ) ,

which leads to the following form of the regular term:

R[S̃
(0)

](ξ, σ) = L{N(ξ; τ)}(σ) , (8)

having introduced the function:

N(ξ; τ) =
∆(τ)

πi

∫

∂P (0)

dχ h′(χ, ξ)
S0(χ) + ∆(τ)U 0(χ)

1 + ∆(τ)h(χ, ξ)
(9)

In the following, the initial vortex boundary is defined through a map onto the unit circlez 7→ ξ, the
integral inside the functionN (9) is rewritten as the following integral onC:

N [ξ(z); τ ′] =
1

πi

∫

C

dζ
{

S0[χ(ζ)] + ∆(τ ′)U 0[χ(ζ)]
}

∂ζ log[1 + ∆(τ ′)H(ζ, z)] , (10)

H(ζ, z) indicating the composite functionh[χ(ζ), ξ(z)].

The regular term (8) is inserted into the first order equationSD[S̃
(1)

] = ID − R[S̃
(0)

], so that
the Laplace transform of the solution at the first order follows as:

S̃
(1)

(ξ; σ) = S̃
(0)

(ξ, σ) −
iσ − 1

iσ(iσ − 2)
L{N(ξ; τ)}(σ) +

+
1

iσ(iσ − 2)
L

{ 1

πi

∫

∂P (0)

dη
N(η; τ)

η − ξ

}
(σ) . (11)

The Laplace antitransform of̃S
(1)

is evaluated by considering the following fact. IfF (σ) is the
Laplace transform of the functionf(τ), due to the fact that:

iσ − 1

iσ(iσ − 2)
F =

1

2i

(
+

F

σ
+

F

σ + 2i

)
,

1

iσ(iσ − 2)
F =

1

2i

(
−

F

σ
+

F

σ + 2i

)
,
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the Laplace antitransfoms of the above terms can be written as:

∫ τ

0

dτ ′ θ1,2(τ − τ ′)f (τ ′) with: θ1,2(τ) =
±1 + e−2iτ

2i
,

once Appendix A has been accounted for. As a consequence, theLaplace antitransform of the first
order solution (11) is rewritten as:

S(1)(ξ; τ) = S(0)(ξ; τ) −

∫ τ

0

dτ ′ θ1(τ − τ ′)N (ξ; τ ′)+

+

∫ τ

0

dτ ′ θ2(τ − τ ′)
1

πi

∫

∂P (0)

dη
N(η; τ ′)

η − ξ
.

(12)

The above first order solution is calculated for non-trivialvortex shapes in the following, firstly in
a numerical fashion and then in an analytical form. This latter calculation is the main aim of the
present paper and is not compled at the present time.

3 CALCULATION OF THE FIRST ORDER SOLUTION FOR A(1, 1)-VORTEX
The results about the first order solution found in Section 2 will be now specified for a certain

class of vortices, having their Schwarz function with two poles in the transformedz-plane. Indeed,
it has been proved in a previous paper [13] that a complete kinematical analysis of such a kind
of vortices can be carried out, thanks to the new integral formula (1). These vortices have been
classified into six classes, on the basis of the behaviour of the functionsx(z) andζ⋆(z), this latter
being the pseudo-inverse one (satisfying the relation:x[ζ⋆(z)] = x(z) for anyz. In the present
calculations, only the first class (i.e. the(1, 1)-vortices) will be considered,1 due to the fact that their
possess the simplest analytical structure of the self-induced velocity.

Introduced the complex timeτ (τ ′) := exp(2iτ ′) − 1, for a vortex of kind(1, 1) the function
H(ζ, z) assumes the following form:

∆(τ ′)H(ζ, z) = τ (τ ′)
(z − w2) (ζ − w2) [(d0z − d1)ζ − (d1z − d2)]

(z − w⋆
2) (ζ − w⋆

2) [(αz − β)ζ − (βz − γ)]
, (13)

where the coefficientsd0, d1 andd2 appear in the algebraic structure of the velocity. They are given
by the following formulae

d0 = a1w
2
1 − a2w

2
2µ , d1 = a1w

2
1w

⋆
2 − a2w1w

2
2µ , d2 = a1w

2
1w

⋆
2
2 − a2w

2
1w

2
2µ ,

µ beinga1a2 {(z1 − z2)/[a1(z2 − w2) + a2(z1 − w2)]}
2. The algebraic structure of the above

coefficients will be a key-point in evaluating the first ordersolution: it implies a certain symmetry
property that will be discussed later, see equation (16).

1The notations used below are the ones in the paper [13]. The Schwarz function is assumed in thez-plane as:

Φ(z) =
a1

z− z1

+
a2

z− z2

,

for suitable choice of the poles (z1,2) and of the corresponding residues (a1,2). The image pointswk = 1/zk (k = 1, 2)
are used, as well as the pointz⋆

2
= ζ⋆(z2) and its imagew⋆

2
= 1/z⋆

2
. Poles and residues are combined into the quantities

α = a1w2

1
+ a2w2

2
, β = w1w2(a1w1 + a2w2), γ = w2

1
w2

2
(a1 + a2) andδ2 = αγ − β2.
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Figure 1: For a vortex of kind(1, 1) (a1 = 1, a2 = 0.2 + i, z1 = −0.7 + i0.05 and
z2 = −1 + i1.5) the curvesL1 (red solid line) andL2 (black) are drawn at different times
(expressed in degrees) in the first period. The positions of the branch points of the functions
ζ1,2(z, τ ′) are indicated with black symbols, while with a dashed black line is drawn the curve
(not simple) described by that points forz running onC. C is drawn with green dashed line.
The pointw⋆ as well as the circleC⋆ are also drawn with turquoise symbol and dashed line,
respectively.

The condition1 + ∆H = 0 is written by using equation (13) as:

(z − w⋆
2) (αz − β) [ζ(z, τ ′) − w⋆

2]
[
ζ(z, τ ′) −

βz − γ

αz − β

]
=

= −τ (τ ′) (z − w2) (d0z − d1) [ζ(z, τ ′) − w2]
[
ζ(z, τ ′) −

d1z − d2

d0z − d1

]
.

The two roots of such an equation will be named asζ1(z, τ ′) (which reduces to the pointw⋆
2 for

anyz ∈ C at timesτ ′ = kπ with k non-negative integer) and asζ2(z, τ ′) (satisfying the condition
ζ1(z, kπ) = z⋆(z) at the same times). The two functionsζ1,2(z; τ ′) are roots of the quadratic
equation inζ:

P (z, τ ′ | ζ) = [(z − w⋆
2) l′ + τ (z − w2) l′′]︸ ︷︷ ︸

v0

ζ2 − 2 [(z − w⋆
2) m′ + τ (z − w2) m′′]︸ ︷︷ ︸

v1

ζ +

+ [(z − w⋆
2) n′ + τ (z − w2) n′′]︸ ︷︷ ︸

v2

= 0 , (14)
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the coefficients of which are given by the following formulae:

l′ = αz − β l′′ = d0z − d1

n′ = w⋆
2(βz − γ) n′′ = w2(d1z − d2)

m′ = (w⋆
2l

′ + n′/w⋆
2)/2 m′′ = (w2l

′′ + n′′/w2)/2 .

It is worth noticing that in a fixed timeτ ′ (being fixed, time dependences are omitted) the polynomial
P satisfies the symmetry property:

P (z | ζ) = P (ζ | z) , (15)

which comes from the corresponding property ofH. Moreover, their roots verify the identity:

P [ζ1(z) | ζ2(z)] ≡ P [ζ2(z) | ζ1(z)] ≡ 0 , (16)

for anyz. It will be calledreciprocity.

3.1 Behaviour of the roots ζ1,2 as functions of z. Critical times τ⋆
1,4.

At any fixed timeτ ′ the rootsζ1,2(z, τ ′) lie on the two curvesL1,2(τ
′) for z running onC. Due

to the periodicity ofτ , these curves move in a periodic way, with a periodπ in time. A sample
sequence of configurations assumed by these curves at different times inside the period[0, π) is
shown in Fig. 1.L1 reduces to the pointw⋆

2 at the time0, whenL2 lies on the circleC⋆ = ζ⋆(C)
insideC. L2 lies insideC up to the timeτ⋆

1 ≃ 0.557π, when it touchesC, while L1 becomes a
non-simple one. At later times the curve intersecatesC in the two points:exp(i θ⋆

1,2) =: δ1,2, see
Fig. 2. Both curvesL1,2 remain separated up to the timeτ⋆

2 ≃ 0.652π, when they merge in a non-
simple closed one calledL below. In turn,L breaks at timeτ⋆

3 ≃ 0.778π, where two closed curves
L1 (non-simple and external toC) andL2 (crossingC) reappear. Finally,L2 returns inside the unit
circle at the timeτ ′

4 ≃ 0.862π, when alsoL1 becomes simple again.
The anglesθ⋆

1,2 are evaluated in the following way. As-
sume that in a fixed time (being fixed, time dependences are
omitted)L2 intersecatesC in a pointδ1. It follows that a
pointδ2 ∈ C exists, such thatζ2(δ2) = δ1. The other root
ζ1(δ2) =: ζ0 lies outside the unit circle. Due to equation
(15), if P (δ2 | δ1) = 0, then alsoP (δ1 | δ2) = 0 holds.
As a consequence,δ2 = ζ2(δ1), while from equation (16),
ζ1(δ1) = ζ0. In this way, the intersection pointsδ1 andδ2

verify the properties:ζ1(δ1) = ζ1(δ2) = ζ0, ζ2(δ1) = δ2

and the viceversaζ2(δ2) = δ1. As a consequence of the
first property,L1 intersecates itself in correspondence to the
pointζ0, that will play a key role in the following. It follows
also thatδ1 andδ2 are the roots of the polynomial evaluated
in ζ0. This fact opens the way to calculate the pointζ0 as
the one for which both roots of the polynomial (14) lie onC.
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Figure 2: Anglesθ⋆
1,2 (degrees) vs.

τ ′ (measured in degrees) for the vor-
tex of Fig. 1.

In order to determine the position of the pointζ0, which is a double point for the curveL2, the
following ideas will be employed. The algebraic equation (14) has the form:v0ζ

2−2v1ζ +v2 = 0
(in order to avoid more complicate algebraic structures of the coefficients, this equation is not put in
normal form), the coefficientsv0,1,2 being complex functions of another point (z) and of the time
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(τ ′). If one rootζ of this equation lies onC, a real numberη exists such that(1 + iη)/(1 − iη) =
ζ ∈ C and the quadratic equation:

(v0 + 2v1 + v2)︸ ︷︷ ︸
v′

0

η2 + 2 i(v2 − v0)︸ ︷︷ ︸
v′

1

η + (−v0 + 2v1 − v2)︸ ︷︷ ︸
v′

2

= 0 (17)

possesses at least one root. As shown in Fig.3, in order to satisfy equation (17) the vector2v′
1η =:

v′′
1η, once it starts from the endpoint of the vectorv′

0η
2 on the bold dashed line must have its

endpoint on the originO. As it is shown by Fig.3, if the three vectorsv′
0, v′′

1 andv′
2 are not parallel,

only one solution of the equation can lie on the unit circle under suitable constraints on the complex
numbersv′

0, v′′
1 andv′

2. Indeed, in Fig.3 the regions which are forbidden to the vectorv′
1 are

indicated: ifv′
1 (applied to the originO) belongs to that regions, real solutions are not possible. On

the contrary, if such vector lies in the region indicated with η < 0 solutions are possible only for
negativeη, as well as in the regionη > 0 only for positiveη. The pointζ0, on the contrary, is such
that both roots must lie onC. As a consequence,v′

0(ζ0),
v′′

1 (ζ0) andv′
2(ζ0) must be parallel. By starting from this

consideration, a way to collocateζ0 (and, as a consequence,
the two roots onC) which is based on that property can be
developed. It leads to the solution of a quartic equation with
real coefficients, which in turn can be interpreted in a ge-
ometrical fashion through the intersection of two conical
curves.

3.2 Opening and closing of the curves L1,2. Critical
times τ⋆

2,3

The calculation of the timeτ⋆
2 in whichL1,2 open and of the

time τ⋆
3 in which they close are performed by starting from

the definition of the branch points of the functionsζ1,2.

forbidden

forbidden

O

v′
0η

2

v′′
1η

v′
2

η > 0 η < 0

Figure 3: Discussion for the real
solutions of equation (17), for non-
parallel coefficientsv′

0, v′
1 andv′

2.

Indeed, when a branch point crossesC, jumps in the square root of the discriminant of equation
({refe15) appear and, as a consequence, the curvesL1,2 open.

3.3 Source term N

The quantityN (10) is rewritten through the using of the equation (13) in the following way:

N [ξ(z); τ ′] =
1

πi

∫

C

dζ
[ ( a1

ζ − z1
+

a2

ζ − z2

)
+ ∆(τ ′)

( A11
1

ζ − z1
+

B11
2

ζ − z⋆
2

+ C11
) ]

×

×
( 1

ζ − ζ1

+
1

ζ − ζ2

−
1

ζ − w⋆
2

−
1

ζ − z⋆

)
. (18)

Once the positions of the polesζ1,2 are evaluated as functions of the pointz ∈ C and of the timeτ ′,
straightforward residue calculation enables us to evaluate N through the use of equation (18). As
an example, consider a pointz ∈ C (and eventually a timeτ ′) such thatζ2(z, τ ′) lies insideC, the
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source term is:

1

2
N [ξ(z), τ ′] = −

a1

τ (τ ′) + 1

1

ζ1(z, τ ′) − z1
−

a2δ
2

α2(z2 − ζ⋆
∞)2

τ (τ ′)

τ (τ ′) + 1

1

ζ1(z, τ ′) − z⋆
2

+

+
a2

ζ2(z, τ ′) − z2
+

a2

z2 − ζ⋆
∞

z − ζ⋆
∞

z − z⋆
2

−
a1

z1 − w⋆
2

1

τ (τ ′) + 1
+

−
a2

z⋆
2 − w⋆

2

δ2

α2(z2 − ζ⋆
∞)2

τ (τ ′)

τ (τ ′) + 1
.

At the present stage of this reasearch activity, the above form of N is put in equation (12) and then
numerically integrated in time and, eventually, inz: its analytical calculation is under investigation,
as discussed in the following section.

4 PRELIMINARY RESULTS AND FUTURE WORK
The numerical evealuation of the first order solution (12) exhibits a close agreement with the

results of the numerical simulation through a contour dynamics code. A sample case is shown in
Figs. 4-a and b. Analogous agreement is obtained for the other five classes of vortices having
Schwarz function with two simple poles, as discussed in the paper [14] where the present first order
solutions are calculated numerically.
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Figure 4: Comparisons between the results at times0.3 (a) and0.6 (b) of numerical simulation
(black solid lines) and of the present integral (red solid) approach for the vortex of Fig. 1. The
time τ = 0 is also shown (green dashed line). The curves described by the branch points̃τ 1

(blue dashed line) and̃τ 2 (red solid) forz running onC are drawn in (c), together with the
circleC − 1 described byτ (τ ′) in a period.

The present research activity regards the evaluation of theintegrals in time in equation (12). They
are based on a rewriting of the polesζ1,2 in the time-form:

ζ1,2(z, τ ′) =
v1(z, τ ′) ∓ c(z − w2)(z − z̃)

√
[τ − τ̃ 1(z)][τ − τ̃ 2(z)]

v0(z, τ ′)
. (19)

In equation (19),c is a constant and̃z = (w2d1 − d2)/(w2d0 − d1). The two branch points̃τ 1,2

are functions ofz, they move on the curves shown in Fig. 4-c for z running onC. Once the suitable
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branch of the square root in the formula (19) has been defined,the integrals inτ of the first order
solution (12) can be analytically evaluated. This part of the calculation is under investigation at the
present time.

A LAPLACE ANTITRANSFORM OFF (y)/(y + ia) FORa REAL
If F (y) is the Laplace transform off(x) anda is an arbitrary real number, we have:

d

dx

{
eiaxL−1

[ F (y)

y + ia

]
(x)

}
=

1

2πi

d

dx

∫ µ+i∞

µ−i∞
dy

F (y)

y + ia
e(y+ia) x

= eiax 1

2πi

∫ µ+i∞

µ−i∞
dy F (y) eyx = eiax f (x) ,

µ being an arbitrary real and positive number. So that by integrating inx, the following relation is
obtained:

L−1
[ F (y)

y + ia

]
(x) = e−iax

{ ∫ x

0

dξ f(ξ) eiaξ + L−1
[ F (y)

y + ia

]
(0)

}
. (20)

But the second term in the right hand side is zero. Indeed, by exchanging the singular and the regular
integrals that term becomes:

L−1

[
F (y)

y + ia

]
(0) =

1

2πi

∫ µ+i∞

µ−i∞
dy

F (y)

y + ia

=
1

2πi

∫ µ+i∞

µ−i∞

dy

y + ia

∫ +∞

0

dξ f(ξ) e−yξ

=

∫ +∞

0

dξ f(ξ)
1

2πi

∫ µ+i∞

µ−i∞
dy

e−yξ

y + ia
, (21)

where it is important thatξ > 0, in the last integral. It results
to be zero, as easily proved by integrating on the rectangle
in Fig. 5 the functionF (y)/(y + ia). One obtains in the
limit M → +∞:

1

2πi

∫ µ+i∞

µ−i∞
dy

e−yξ

y + ia
+

1

2πi

∫ −µ−i∞

−µ+i∞
dy

e−yξ

y + ia
= eiaξ .

From the above relation the first integral is evaluated through
a change of variable in the second integral (fromy to y′ =
−y), which leads to the following result:

1

2πi

∫ µ+i∞

µ−i∞
dy

e−yξ

y + ia
= eiaξ−

1

2πi

∫ µ+i∞

µ−i∞
dy′

ey′ξ

y′ − ia
,

which vanishes. The relation (21) now gives:

L−1

[
F (y)

y + ia

]
(0) = 0 . (22)

y1

y2

+iM

−iM

+µ−µ

−ia

Figure 5: Integration path for the
functionF (y)/(y + ia).
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Once the estimate (22) has been accounted for, the required Laplace antitransform follows by equa-
tion (20) as:

L−1

[
F (y)

y + ia

]
(x) = e−iax

∫ x

0

dξ f (ξ) eiaξ . (23)

It is worth noting that fora = 0 the well known rule is still obtained from equation (23).
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