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SUMMARY. The motion of a class of plane uniform vortices iniawmiscid fluid is analytically in-
vestigated through a (nonlinear) integral equation, amifh the Laplace transform (in time) of the
Lagrangian Schwarz function of the vortex boundary. An agpnate analytical technique based
on successive substitutions for finding the solution of dwatation is proposed. The first order ap-
proximation is preliminarly compared with numerical simtibn and the progresses in the analytical
calculations are illustrated.

1 INTRODUCTION

The study of the inviscid motion of uniform vortices in twamknsions is a quite old issue in
Fluid Mechanics (see [1], ca@® and in particular the paragrapt2 about the use of the Schwarz
function). The theoretical analyses has been almost gntielicated to relative equilibrium con-
figurations of one ([2] for the Kirchhoff vortex) or more vims [3, 4, 5, 6, 7, 8, 9] which are
stationary solutions of Euler equations, while the studyhef motion of nonequilibrium vortices
have been faced essentially through numerical simulatibhe approximate numerical integration
is based on the rewriting of the Biot-Savart law as a linegrakon the vortex boundary and on the
Lagrangian integration of the motion of a discrete set ohfsdn that curve. The resulting algorithm
is calledcontour dynamicsin Literature [10, 11].

In the last years, the present authors proposed a diffenatytical approach to the study of the
motion of nonequilibrium uniform vortices [12, 13, 14]. # &till based on the use of the Schwarz
function [15] of the vortex boundary, but it does not requhre splitting of such a function in the
sum of a function analytical inside and another one analltiatside the vortex, as described in [1].
Indeed, this splitting is almost impossible in real casess for the class of quasi-circular vortices
the motion of which is not so interesting. A new integral tiela between the Schwarz functidn
(a complex quantity is indicated with a bold symbol) and tbejagate velocityu (overbar means
conjugate) has been proposed:
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, (1)

u(x,T) = 5
w being the vorticity level inside the vortex and the intedraing understood as a Cauchy one (it
will be indicated with a bar on the integral) whanlies on the vortex bounda§P. Moreover,
xp Is the characteristic function of the domd it holds 1 inside P, 0 outsideP and justl/2 on

the boundary. The link (1) enables us to analytically evi@ulae velocity induced by any uniform
vortex with standard tools of complex analysis. As brieflgadissed in [14], the same relation opens
the way to the analytical study of the vortex dynamics foreguilibrium vortices.



The Lagrangian Schwarz functi@{x (&, 7), 7] =: S(&; 7) (€ is the position on the initial vortex
boundaryP(0) andr is the time, nondimensionalized by'4) is introduced, as well as its Laplace
transform in timeS(&; o). This latter satisfies the integral equation [14]:
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= = N——
sD[S]: singular dominant part (linear) R[S): regular part (nonlinear) 1D: data

which is easily deduced from the relation (8), being the initial Schwarz function. Equation (2) is
a singular nonlinear integral one [16], the nonlinearitingeconfined into the functiop:

(m;7) —=(&7)
n—¢& ’
which accounts for the vortex geometry at the present time.

In [14] an iterative procedure to analytically solve eqaat{2) has been proposed and tested
(through numerical integration). It is based on the sotutibequation (2) for vanishing:
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SD[S '] =1D, 3)

which defines the so call@dth order solution. Equation (3) has solution e 0P (0):

SO (&) = So(€) + A(r)uo(€) , (4)

A(T1) being4 ¢’ sint. The above solution can be analytically continued in anyypgiexternal
to 0P (0) through the nevd-th order function:S(¥ (¢;7) = S (&) + A(7) Uo(€), U, being the
continued initial velocity (nondimensionalized withand an arbitrary length scale):

1.1 1 So(n)
0o(e) = 55 (300 + 55 [ an g™
deduced from equation (1), via analytic continuation frbetortex boundary. In an equivalent way,
the0-th order vortex shape following from equation (5) througimplex conjugation is analytically
continued asz(®) (¢;7) = & + A(7) Uy(&), where the (analytically continued) velocity fielid,

is:
1, 1 1 n So(n)
U =—|—=-£+ —/ dn —————+——1 .
o) =75 : 2 ¢ o oP(0) K 50(5)—50(77)]
Higher order approximations of the solution of equation 428 obtained through successive
substitution k£ = 1, 2, ...) inside the same equation (2) in which the nonlinear termeiatéd as a
source one:

2 (k)

SD[§ A

]=1ID - R[S ]. (5)
S’(k) will be named as thg-th order solution. The present paper deals with the armalitalculation
of the first order £ = 1) solution of equation (5), which will be evaluated for a edémtclass of
vortices, the kinematics of which has been previously arealyf13].



2 FIRST ORDER SOLUTION (GENERAL CASE)

At the first order, the regular terﬁh[ ] (5) must be evaluated in correspondence to the solution
5 (4) found just above. First of all, the functidnis introduced:

ug(n) — uo(§)
n—§ ’

which is continuous together with all its derivatives on theve 9P (0). The solution at the first

order is evaluated by specifying the functigevaluated in correspondence to thth order solution

(4):

h(n,§) := (6)

(1. €7) = 0glog [1+ A(A(1.) | = 7T o )

the apex indicating a derivative with respect to the firsuargnt {.e,, ). In this way the Laplace
transform in time is given by the following formula:
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959 (m.&0) = L£{[So(n)+AMT(n)]dnlog [1+AMh(™.E) ]} (o)
) [So(n) + A(1)Uo(n)]

= 7765{ 1+A()(T]a£) }(0'),
which leads to the following form of the regular term:
R(S"|(€ ) = LIN(E)}Ho), ®)

having introduced the function:

A7) , So(x) + A(1)Uo(x)
p /ap(o)dx P08 T ARG 8)

In the following, the initial vortex boundary is defined thigh a map onto the unit circle— &, the
integral inside the functiofV (9) is rewritten as the following integral ah

(9)

N(T) =

N7 = = [ e { SO+ BT } clogll + A H(C2)] . (10)

H (¢, z) indicating the composite functidia)x (¢), £(z)].

The regular term (8) is inserted into the first order equa‘ﬂﬁ){S(l)] =1ID — R[S(O)], so that
the Laplace transform of the solution at the first order foi@s:

Vo) = 5%60) - ST LN &) +
1 1 N(m;7)

Tiotio ) i)™ e 17 .

The Laplace antitransform (ﬂ‘(l) is evaluated by considering the following fact.Af o) is the
Laplace transform of the functiofi(r), due to the fact that:
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the Laplace antitransfoms of the above terms can be wrien a

+1 + e—QiT

[ dr 8ratr = () with: 1a(r) = 0
i 21

once Appendix A has been accounted for. As a consequenciafiece antitransform of the first
order solution (11) is rewritten as:

sV = SOEn - [ar o - NG+
(12)
T o i N(n;7)
—|—/0 dr" 0s(r —7") Wi/ap(o)dnin—'f .

The above first order solution is calculated for non-triviaitex shapes in the following, firstly in
a numerical fashion and then in an analytical form. Thislat@alculation is the main aim of the
present paper and is not compled at the present time.

3 CALCULATION OF THE FIRST ORDER SOLUTION FOR Al,1)-VORTEX

The results about the first order solution found in SectionilRbg now specified for a certain
class of vortices, having their Schwarz function with twdgsan the transformed-plane. Indeed,
it has been proved in a previous paper [13] that a completenkétical analysis of such a kind
of vortices can be carried out, thanks to the new integrahtda (1). These vortices have been
classified into six classes, on the basis of the behavioureofunctionse(z) and¢™(z), this latter
being the pseudo-inverse one (satisfying the relatielg™ (z)] = x(z) for any z. In the present
calculations, only the first classé the (1, 1)-vortices) will be considerédjue to the fact that their
possess the simplest analytical structure of the selféadwelocity.

Introduced the complex time(7’') := exp(2¢7') — 1, for a vortex of kind(1, 1) the function
H (¢, z) assumes the following form:

A(TH(C,z) = 7(7')

= wh) € —wh) [(az —B)C—(Bz—~)] =

where the coefficientdy, d; andd, appear in the algebraic structure of the velocity. They arerg
by the following formulae

— 2 9 — 2. 9 — 9. 42 _— 9 9
do =aqw] —awsrp, di =awiw; —Gwiws i, dy =awjws; — QW Wt ,

w beingaias {(z1 — 22)/la1(z2 — w2) + az(z1 — w2)]}2. The algebraic structure of the above
coefficients will be a key-point in evaluating the first ordefution: it implies a certain symmetry
property that will be discussed later, see equation (16).

1The notations used below are the ones in the paper [13]. T8z function is assumed in tkeplane as:

al az

z— 2z z—2zy

for suitable choice of the polez{,2) and of the corresponding residues (2). The image pointavy, = 1/Z; (k = 1, 2)
are used, as well as the poie = ¢*(z2) and its imagew} = 1/Z3. Poles and residues are combined into the quantities
o= Eﬂu? + ngg, B =wiw2(a@aiwi + axws), vy = w%’w%(61 + a») andé? = oy — B2.
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Figure 1: For a vortex of kind1,1) (a; = 1, as = 0.2+ 4, 21 = —0.7 + 40.05 and
zo = —1 + 41.5) the curves; (red solid line) andC, (black) are drawn at different times

(expressed in degrees) in the first period. The positione@btanch points of the functions
¢1 5(z,7) are indicated with black symbols, while with a dashed blauk is drawn the curve
(not simple) described by that points ferrunning onC. C is drawn with green dashed line.
The pointw, as well as the circl€* are also drawn with turquoise symbol and dashed line,

respectively.

The conditionl + A H = 0 is written by using equation (13) as:
(z —w3) (az = B) [C(z,7) —w3] [¢(2,7)

= —7(7') (z —w2) (doz — d1) [¢(z,7") —wa] [C(2,7)

_ Bz—~
az —

d1Z — d2 ]
doZ — d1 '

The two roots of such an equation will be named{aéz, 7’) (which reduces to the poinb; for
anyz € C attimesr’ = kx with & non-negative integer) and gs(z, 7’) (satisfying the condition
Ci(z,km) = z*(2) at the same times). The two functiogs,(z; ') are roots of the quadratic

equation in¢:

P(z, 7' |() =

+[(z—wi)n +7 (2 —wa) n'']

[(z —w3) U+ 7 (2 —ws) '] ¢ = 2[(z —wh) m/ +7 (2 —wz) m"| { +

]

V2

:O,

(14)



the coefficients of which are given by the following formulae

! = az-p " = dyz—d;
n' = wi(Bz—7) n’ = ws(diz—ds)
m' = (wil'+n'/w3)/2  m' = (wul” +n"/wy)/2.

It is worth noticing that in a fixed time’ (being fixed, time dependences are omitted) the polynomial
P satisfies the symmetry property:

P(z|¢)=P(|2), (15)
which comes from the corresponding propertyHf Moreover, their roots verify the identity:
P[¢,(2) | C2(2)] = PlCy(2) [ €i(2)] =0, (16)

for anyz. It will be calledreciprocity.

3.1 Behaviour of theroots ¢, , asfunctionsof z. Critical times 77 .

At any fixed timer’ the roots¢; ,(z,7’) lie on the two curve€; »(7') for z running onC. Due
to the periodicity ofr, these curves move in a periodic way, with a perioth time. A sample
sequence of configurations assumed by these curves atediffémes inside the periofd, 7) is
shown in Fig. 1.£; reduces to the poinb} at the time0, whenZ, lies on the circleC* = ¢*(C)
insideC. L, lies insideC up to the timer; ~ 0.5577, when it touche&, while £, becomes a
non-simple one. At later times the curve intersecét@sthe two pointsiexp( 67 ,) =: 41,2, See
Fig. 2. Both curves; » remain separated up to the timg ~ 0.6527, when they merge in a non-
simple closed one called below. In turn,C breaks at time3 ~ 0.7787, where two closed curves
L1 (non-simple and external 1©) and L, (crossingC) reappear. FinallyL, returns inside the unit
circle at the timer; ~ 0.8627, when alsaC; becomes simple again.

The angled); , are evaluated in the following way. As-
sume that in a fixed time (being fixed, time dependences are |
omitted) £, intersecateg€ in a pointd;. It follows that a
pointd, € C exists, such thag,(d2) = ;. The other root
¢1(02) =: ¢, lies outside the unit circle. Due to equation
(15), if P(d2 | 41) = 0, then alsoP(d; | d2) = 0 holds.
As a consequencé, = ¢,(d1), while from equation (16),
¢1(61) = ¢y In this way, the intersection poindg andd. I
verify the properties¢; (d1) = ¢;(d2) = €y, €2(01) = 92 100 |-
and the viceversg,(d2) = ;. As a consequence of the Lo
first property,L; intersecates itself in correspondencetothe 0 20 40 60 80 100 120 140 160
point¢,, that will play a key role in the following. It follows 0
also thaw, ands, are the roots of the polynomial evaluated'gure 2: Anglesf] , (degrees) vs.
in ¢,. This fact opens the way to calculate the pajptas 7 (Measured in degrees) for the vor-
the one for which both roots of the polynomial (14) lie@n € of Fig. 1.

In order to determine the position of the poiy, which is a double point for the curvé,, the
following ideas will be employed. The algebraic equatiof)(fias the formwo¢? — 2v1¢ + v = 0

(in order to avoid more complicate algebraic structuresefdoefficients, this equation is not putin
normal form), the coefficients, ; » being complex functions of another point)(and of the time




(7). If one root¢ of this equation lies of, a real number exists such thafl + in)/(1 —in) =
¢ € C and the quadratic equation:

(vg + 2v1 + v2) 772 +2 i(va —vo) N+ (—vg+2v1 —v2) =0 a7
| S —
v v} vy

possesses at least one root. As shown in Eign order to satisfy equation (17) the vectar;n =:
vYn, once it starts from the endpoint of the vectgn? on the bold dashed line must have its
endpoint on the origi®. As it is shown by Fig3, if the three vectors|,, v} andv, are not parallel,
only one solution of the equation can lie on the unit circldersuitable constraints on the complex
numbersvy, v} andv,. Indeed, in Fig. 3 the regions which are forbidden to the vectdrare
indicated: ifv! (applied to the origirD) belongs to that regions, real solutions are not possibte. O
the contrary, if such vector lies in the region indicatedwit< 0 solutions are possible only for
negativen, as well as in the region > 0 only for positivern. The point¢,, on the contrary, is such
that both roots must lie 08. As a consequencey,({,),

v (¢,) andvb(¢,) must be parallel. By starting from this

consideration, a way to collocafg (and, as a consequence,

the two roots orC) which is based on that property can be forbidden / < vpn?

developed. It leads to the solution of a quartic equatioh wit v

real coefficients, which in turn can be interpreted in a ge- . 7

ometrical fashion through the intersection of two conica” > O ! n<0

curves. T
forbidden

3.2 Opening and closing of the curves £, ». Critical
times 73 5
The calculation of the time in which £, » open and of the
time 73 in which they close are performed by starting from
the definition of the branch points of the functiafys,.
Indeed, when a branch point crosgesumps in the square root of the discriminant of equation
({refel5) appear and, as a consequence, the cirvespen.

Figure 3: Discussion for the real
solutions of equation (17), for non-
parallel coefficient®y, v} andvj,.

3.3 Sourceterm N
The quantityN (10) is rewritten through the using of the equation (13) fibllowing way:

. B 1 a; as -, All Bll )
Nie@:rl = Ech[(C—Z1+C—Z2)+A(T)(C—1z1 C—QZ§+Cl ) >
1 1 1 1
N g Tw ) (18)

Once the positions of the pol€s , are evaluated as functions of the point C and of the timer’,
straightforward residue calculation enables us to evaldathrough the use of equation (18). As
an example, consider a poiate C (and eventually a time’) such that,(z, 7’) lies insideC, the



source term is:

1 / ay 1 ay6> (7' 1
§N[€(z);7-] = _T(T,)+1 Cl(Z,T’)—zl - a2(z2_cgo)2 T(T/)+1 Cl(Z,T,)—Z§+
as as z — C;o a; 1
Colz, 7)) =22 22-Ch z2—25 z1—wj T(7) +1
[¢3) 52 T(T/)

Sz wh al(z - (5)? T(r) 1

At the present stage of this reasearch activity, the abawe & IV is put in equation (12) and then
numerically integrated in time and, eventually, in its analytical calculation is under investigation,
as discussed in the following section.

4 PRELIMINARY RESULTS AND FUTURE WORK
The numerical evealuation of the first order solution (12)ikits a close agreement with the

results of the numerical simulation through a contour dyicarnode. A sample case is shown in
Figs. 4« andb. Analogous agreement is obtained for the other five clastesrtices having
Schwarz function with two simple poles, as discussed in #pep[14] where the present first order
solutions are calculated numerically.
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Figure 4: Comparisons between the results at ting$a) and0.6 (b) of numerical simulation
(black solid lines) and of the present integral (red solhraach for the vortex of Fig. 1. The
time 7 = 0 is also shown (green dashed line). The curves describedebyrnch points
(blue dashed line) ané;, (red solid) forz running onC are drawn in ¢), together with the
circleC — 1 described by (7') in a period.

The present research activity regards the evaluation afitegrals in time in equation (12). They

are based on a rewriting of the polgs, in the time-form:

In

vi(z,7) F elz —wa)(z — 2)V[r — T (2)]lT — Ta(2)]

C1,2(Z77—/) = vo(z,7)

(19)

equation (19)¢ is a constant anél = (wadi — ds)/(wady — dq). The two branch point#; »

are functions ok, they move on the curves shown in Figc4er z running onC. Once the suitable



branch of the square root in the formula (19) has been defthedntegrals inr of the first order

solution (12) can be analytically evaluated. This part ef ¢alculation is under investigation at the
present time.

A LAPLACE ANTITRANSFORM OF F(y)/(y + ia) FORa REAL
If F(y) is the Laplace transform gf(z) anda is an arbitrary real number, we have:

d . ; F 1 d [rP> F :
— [ tazp-1 [ (y) } ({L)} - _/ dy (y) e(y+1a) z
dx Y+ ia 2718 dx J, 400 Y+ ia
. patico )
= [ iy F(y) % = e f(o),
1—1200

1 being an arbitrary real and positive number. So that by natiétg in «, the following relation is
obtained:

o

But the second term in the right hand side is zero. Indeedxtlyanging the singular and the regular
integrals that term becomes:

o [20 )0 - [ 2

Yy + a 21t J oo yy—i—ia

1) = ef'iaa: ¢ eiaf -1 F(y)
] @) ([aer@eret 220} @

1 p+1i00 dy +oo B
= — d ye
| e

271 p—1i0o Y+ ia

i L 21
S R ICE=Y R 1)

where it is important thag > 0, in the lastintegral. It results
to be zero, as easily proved by integrating on the rectangle Yo

in Fig. 5 the functionF'(y)/(y + ¢a). One obtains in the < <
limit M — +o0: +iM

ptioo ~y¢ —p—too ~y¢ . .
1 y e 1 dy e — elag Y o —da A
278 J—iso y+ia 27 J_ 400 y+1a

From the above relation the firstintegral is evaluated tghou Y1
a change of variable in the second integral (frgrio vy’ = —H +u
—y), which leads to the following result:

1 pn+t00 ’ e~ Y _ iag_i ptioco ) ey/g
278 J—iso Y+ ta 2me

. ' —q2a’ .
pH—100 Yy a —1

Wi

\ 4

which vanishes. The relation (21) now gives:
Figure 5: Integration path for the
F . .
-1 { (y') } 0)=0. (22) function F(y)/(y + ia).
Yy +1a



Once the estimate (22) has been accounted for, the requai@dde antitransform follows by equa-

tion (20) as:
L1 [M

e (ORI R GES @3

It is worth noting that forz = 0 the well known rule is still obtained from equation (23).
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