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SUMMARY. Herewith we solve the multiple peeling problem by applying a fracture mechanics 
approach to a complex system of films, adhering to the substrate and having a common hinge, where 
the pulling force is applied. The system consisting of two peeling tapes is considered as a case study. 
The main result of our theoretical considerations is that an optimal peeling angle, at which adhesion is 
maximal, does exist. The solution is validated in experiments using polymeric adhesive tapes. These 
results aid to explain the functional mechanism of biological adhesive systems of insects, spiders, and 
geckos bearing tape-like spatula-shaped contact elements. 
 
 
1. INTRODUCTION 

 
The capacity of geckos and other animals to adhere to inverted surfaces is well known [2-5]. The 
functional mechanism of adhesion is related to the presence of hierarchical, from the nano- to macro-
scale geometry of their feet [6-10]. For example, in Tokay gecko, the adhesive system consists of 
hierarchical structures ranging from macroscopic lamellae (flexible tape-like structures, 1000 µm long) 
covered by setae (30-130 μm long and 5-10 μm in diameter) to setal branches called spatulae (0.1-0.2 
μm wide and 0.015-0.020 nm thick) responsible for contact formation with the substrate. Recently, 
numerous studies [11-22] have discussed factors allowing the gecko to adhere and detach from 
surfaces. Van der Waals attraction [21] and wetting phenomena [22] have been demonstrated to be key 
mechanismsinvolved in the gecko adhesion. 

Similar to geckos, many other animals, such as beetles, flies and spiders, possess the ability to 
move on vertical surfaces and ceilings [23, 24]. This ability arises from the micro/nanostructures of 
their attachment pads. It is noteworthy that with an increase of the animal mass, the size of the terminal 
attachment elements decreases and their density increases [15]. Insects terminal elements are covered 
with the fluid, whereas spiders and geckos exhibit the most versatile and effective dry adhesion known 
in nature. Mimicking such biological adhesive systems for technological applications could lead to a 
revolution in materials science of adhesives [25-28].  

Since insects, spiders and geckos possess spatula-like terminal contact elements on the tips of 
their adhesive setae, the Kendall model [29], describing mechanical behaviour of the single peeling 
tape, can be applied to explain adhesion control by varying the peeling angle. Even if the peeling 
geometry is appropriate to describe behaviour of the single spatula, simultaneous peeling of many 
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spatulae, having different orientation in the opposite digits and contralateral legs, and thus a more 
complex architecture, must be considered to describe forces generated by living animals. Here we have 
solved the multiple peeling problem and found out an optimal angle for maximum adhesion for this 
kind of contact geometry. The solution is validated in experiments using polymeric adhesive tapes. 
These results aided in explaination of the functional mechanism of biological adhesive systems of 
insects, spiders, and geckos bearing tape-like spatula-shaped contact elements, Figure 0. 

 

 
                       
Figure 0. Example of terminal contact units: a 2D adhesive tape like geometry emerges. 

 
 
2. MULTIPLE PEELING  
 
Let us consider a three-dimensional complex system composed by N adhesive tapes converging to a 
common point P, where an external force F  is applied. Each tape has cross-section area Ai, Young 
modulus Yi, length li and orientation defined by the unitary vector in , see Figure 1. 

li ni 

P 
F 

 
Figure 1. Diagram of the multiple peeling system considered in this study (eq. 1). 
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The elastic displacement ηδ  (assumed to be small, i.e. tape orientations do not change significantly) 

of the point P can be calculated as follows. The elongation of each tape is ii nl ×= ηδδ , thus the 
tape tension (if negative, the corresponding tape does not work, and the external load is supported by 
the other tapes) is iiiiiiiii nnklAYnlT ×== ηδδ , where iiii lAYk =  is the tape stiffness. The 

equilibrium of the material point (hinge) P, where the load is applied, imposes FT
N

i
i =∑

=1
 or 

equivalently [ ] FK =ηδ , where [  is the known (by comparing the last two equations) stiffness 
matrix of the system. The elastic displacement 

]K
ηδ  is thus calculated as:  

 
 [ ] FK 1−=ηδ  (1a) 
 

from which the tape elongations ilδ , tensions  and strains iT iε  can be evaluated:  
 
 ii nl ×= ηδδ , iii lkT δ= , iii llδε = ,   i=1,…,N (1b) 

 
Imagine to impose a finite (the tape orientations change significantly) displacement ηΔ  at the point 

P, to be accommodated by multiple virtual delaminations ilΔ  and elastic elongations of the tapes. A 
new global configuration, denoted by the symbol prime, takes place, see Figure 2.  
From the scheme reported in Fig. 2 we deduce the validity of the following equations: 
 
  ( ) ( )// 11 iiiii lll εηε +=Δ+Δ++ ,    iii nll = , ( ) //

iiii nlll Δ+= ,   i=1,…,N  (2) 
 

li(1+εi)

Δli

P 
Δη 

li
/(1+εi

/)

P/ 

 
Figure 2. Finite delamination of the ith tape (eq. 2). 
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The strains iε  are known and their current values  can be derived, according to eq. (1), as a 

function of the unknown orientations 

/
iε

/
in . Accordingly, coupling eqs. (1b) and (2), we can write 4N 

scalar equations in 4N unknowns: the N amplitudes of the virtual delaminations  (their directions 

are known a priori from the configuration of adhering tapes), the N current strains  and the 2N 

significant components of the new tape orientations 

ilΔ
/
iε

/
i nn  ( ).  1/ =i

Inverting the previous problem, assuming as known three delamination amplitudes in eq. (2), 
we could derive the other compatible delaminations as well the displacement ηΔ  of the point P. This 
means that only three virtual delaminations can be considered as independent. 

The virtual forces  required for the delamination of the ith tape can be calculated by the 
Griffith’s energy balance. Accordingly, the delamination takes place when: 

iF

 
  iii wl γ2=∂Π∂− ,   WE −=Π ,   i=1,…,N (3a)  

 
where  is the total potential energy, Π E  is the elastic energy, W  is the external work, iγ  is the 

surface energy of the ith tape/substrate interface and  is its width.  iw
The elastic energy variation can be calculated as: 
 

 (∑
=

−=Δ
N

i
iiiii YlAE

1

22/

2
1 εε ) (3b)  

 
The variation of the external work is:  
 

 ηΔ×=Δ FW  (3c) 
 
The real critical force is: 
 
 { } jiC FFF == min  (3d) 
 
and corresponds to the delamination of the jth tape.  

The algebraic system is nonlinear but can be linearized considering the differentials instead of 
the finite differences (e.g. ηη d→Δ ). However note that the physical system remains intrinsically 
geometrically nonlinear due to the existence of the orientation variations. Moreover, the energy 
balance remains non linear in the force F.  
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3. DOUBLE PEELING  
 
The developed treatment is here applied to study a double peeling system, Figure 3. From eq. (1) we 
derive: 
 

( )
( )21

2
1 sin

sin
αα
αθ

+
+

= FT ,   
( )

( )21

1
2 sin

sin
αα
αθ

+
−

= FT ,   ( )iiii AYT=ε  

 
The previous equations are valid for  thus for 02,1 >T 21 απθα −<< . If a tension is negative 
only the other tape sustains the entire load and thus we have a classical single peeling (if both the 
tensions are negative the load cannot be in equilibrium).  
From eq. (2) we have: 
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where  and  are the horizontal and vertical components of the displacement uΔ vΔ ηΔ . Note that 
the classical single peeling only requires one equation, since no angle and strain variations occur 
during delamination. 

l2 

α1

F 

α2 

l1 

θ

 
Figure 3. Diagram of the double peeling system considered. 
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Considering  and solving the previous system in the limit of small variations 
(i.e. substituting the finite differences with the differentials), yields: 

iii εεε −=Δ /
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[ ] [ ] [ ] [ ]( )2211

1 ddd lblbAx += −  
 
Eq. (3b) in the limit of small variations, gives: 
 

2
2
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1112222211111 d
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as well as eq. (3c) poses: 
 

vFuFW dsindcosd θθ +=  
 
According to eq. (3a) and (3d) the delamination force can now be easily obtained. 

For example, considering the symmetric case ( ααα == 21 , lll == 21 , 2πθ = , and 

consequently  and 0=u εεε == 21  ) we find the following solutions: 
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Figure 4. Dimensionless force ( ) ( )2παα == CC FFf  versus angle α  by varying the 

dimensionless adhesion strength λ ; ( ) ( )λπα 41122 ++−== YAFC : a new angle for optima 
adhesion emergs.  

 
 
The previous equations have been linearized in ε . Accordingly, the energy balance is self-consistently 
written considering terms up to the second power of ε . The result yields: 
 

( ) 04cos122 =−−+ λεαε ,  
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where 
tY
γλ =  and wAt =  is the tape thickness. Solving this equation, the critical value of the 

strain Cε  for delamination is obtained. The previous equation is surprising: it is identical to that of the 
single peeling problem. However the force required for delamination is different since here we have: 
 

αε sin2 CC YAF =  
 
thus only for 2πα =  the prediction is that of the single peeling tape loaded by a force 2F , for 

which CC YAF ε2= , as it must physically be. 
The delamination force is thus: 
 

( ) ⎟
⎠
⎞⎜

⎝
⎛ +−+−= λααα 4cos11cossin2 2YAFC  

 
The behaviour is depicted in Figure 4. An angle for optimal adhesion optα  clearly emerges as a 

function of the parameter λ . 
 
 
4. EXPERIMENTS ON ADHESIVE TAPES AND INSECTS 
 
It is plausible to assume that biological adhesive systems try to actively use changes in the geometry of 
their adhesive system to maximize adhesion by keeping peeling geometry close to the optimal angle 
and to minimize adhesion by increasing the angle by digit hyperextension. In insects, spiders, and 
geckoes, there are several hierarchical levels of structures responsible for maintaining of an optimal 
peeling angle and for switching the system to the non-adhesive state.  

In order to prove this assumption and above theoretical considerations, we have carried out at 
experiment with double peeling system made of rigid and flexible adhesive tape.  

Adhesive rubber tapes connected through the hinge were loaded with different mass at two 
distinct initial peeling angles. After the system came to the equilibrium, the final peeling angle at the 
equilibrium was recorded (Figure 5, inset). The results clearly demonstrate the presence of the optimal 
peeling angle. For given rubber elasticity and adhesive energy, the optimal angle was approximately at 
65° (Figure 5). In the case of the rigid adhesive tape, the optimal angle was not detected: the highest 
mass was kept at the shallowest angle (0°).  

Preliminary experiments on beetle Chrysolina fastuosa, Figure 6, suggest the importance of 
considering the multiple peeling and the existence of an optimal angle for maximal adhesion (work in 
progress).  

Obtained theoretical and experimental results support our initial idea that for elastic tapes an 
optimum peeling angle does exist. This result is of a great importance for the explanation of the 
functional mechanism of biological adhesives and for adhesive technology as well. 
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Figure 5. Equilibrium peeling condition for elastic adhesive rubber: the predicted new angle for 
optimal adhesion is confirmed. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Six, three and two legged beetle Chrysolina fastuosa on a ceiling suggest the importance of 
considering a multiple peeling approach, the animal changes its adhesion angle according to theory 

(work in progress). 
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5. CONCLUSION 
 

Herewith we have solved the multiple peeling problem. The system consisting of two peeling tapes is 
considered as a case study. The main result of our theoretical considerations is that an optimal peeling 
angle, at which adhesion is maximal, does exist. This result is of a great importance for the explanation 
of the functional mechanism of biological adhesives and for adhesive technology as well. 
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