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SUMMARY. A micro-scale mechanical model for predicting the response of adhesive lap-joints 
between FRP adherents has been developed. Numerical results obtained via FEM method show the 
main features of such a behaviour. Comparisons with other results available in literature are also 
presented. 
 

1 INTRODUCTION 
As it is well-known, when dealing with thin films the size effect (i.e. the thinner, the stiffer) is 

often observed [1-2]. Such an effect also occurs in the case of adhesive interfaces between FRP 
profiles, where the glue layer can be few µm thick. Due to the lack of internal material length scale 
parameters, classical models are unable to capture the microstructure dependent size effect and, 
therefore, need to be extended by using high order non-local continuum theories.  

Both the classical couple stress elasticity theory elaborated by Koiter [3] as well as several oth-
er higher-order elasticity theories available in literature [4-8] include four material constants: two 
classical and two additional. In particular, the two additional parameters, related to the symmetric 
and antisymmetric part of the curvature tensor, cannot be determined from single experiments as 
the twisting of a thin cylinder or the pure bending test of a thin film. Combinations of both types of 
tests are required. 

In order to overcome the difficulties related to the evaluation of two microstructure length scale 
parameters [9-10], a modified couple stress theory has been recently developed by means of re-
stricting the couple stress tensor to be symmetric [11]. As a consequence, the strain energy does 
not depend on the antisymmetric part of the curvature tensor and, therefore, only one additional 
material length scale parameter is required. 

Based on this modified couple stress theory, several one-dimensional models have been re-
cently proposed for studying both the Bernoulli-Euler [12] and Timoshenko [13] beam problems. 

In this paper the modified couple stress theory [11] has been applied to study the behaviour of 
FRP adhesive lap-joints under axial loads. In particular, two-dimensional elastic fields have been 
introduced in order to simulate the response of both the adherents (plane stress) and the adhesive 
films (plane strain). In the latter, the mechanical model takes into consideration the internal mate-
rial length scale parameter too. 

The study proposed by the authors also accounts for the most common interfacial cohesive 
laws available in literature [14-17] as well as the simplified cohesive law proposed in [18]. In gen-
eral, elastic moduli of the thin adhesive layers, in fact, are updated step-by-step in such a way that 
the current value of the elastic strain energy density is related to the corresponding value of the in-
terface energy density, which depends on the cohesive mixed-mode fracture law considered. 



The goal is to investigate the ultimate behaviour of FRP adhesive lap-joints by extending the 
numerical investigation previously developed by the authors in [19-20], where the micro scale ef-
fect has been neglected. 
 

2 THE MODIFIED COUPLE STRESS THEORY: A BRIEF REVIEW 
High order theories establish that the material particle is able not only to translate, as in classi-

cal continuum mechanics, but also to rotate and deform. As a consequence, the usual conception of 
a material particle as a geometric mass point is inadequate. The main feature is that the kinetic en-
ergy of a material particle depends on its tangential and rotational velocities. In particular, when 
dealing with static equilibrium, in addition to the classical equation involving applied forces, a 
new equation needs to be introduced between couples acting on a generic material particle. 

When examining a system of material particles, unlike classical mechanics, a couple no longer 
behaves as a free vector, but as a driving force that rotates the material particle. As a result, not 
only are conventional force equilibrium and moment equilibrium equations (eqs.1.a-b) required, 
but also a moment of couples equilibrium equation (eqn. 1.c) is necessary [11]. 
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In the previous eqs.1.a-c, the symbol N indicates the number of material particles, iF  denotes 

the force vector applied to the generic i-th particle, iL  represents the couple vector, i ox - x indi-
cates the distance vector to the generic i-th particle from an arbitrary pole, O. 

With respect to a continuum, the first two equilibrium equations (1.a-b) can be replaced as fol-
lows:  
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where V indicates an arbitrary volume of a deformable body bounded by piecewise smooth sur-
faces denoted by V∂ , the symbol n denotes the outer normal to the boundary surface V∂ , b and 
m denote, respectively, the body force and the body couple (per unit mass), ρ is the mass density, 

ox - x denotes the distance vector of a generic particle from an arbitrary pole O. Finally, nt and  

nµ  denote, respectively, the traction and couple (per unit surface) acting on the boundary of the 
deformable body. According to Koiter [3], it is possible to refer to: 
 

,=t Tn    ,=µ Mn  (3.a-b) 
 
where T is the stress tensor and M is the couple stress tensor. Using the divergence theorem to 
transform the surface integrals in eqs. 2.a-b, we obtain: 
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In eqn. 4.a-b the symbol Tw represents the following vector: 
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where iê denotes the generic unit vector (i=1, 2, 3). 
Since the volume V is arbitrary, the volume dependence can be eliminated which then leads to:  

 

                            Div ρ + =T b 0   in V, (6.a) 

TDiv ρ 2+ + =M m 0w  in V. (6.b) 
 

Finally, by manipulating the following additional equilibrium equation for moment of couples: 
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it is possible to obtain the following expression: 
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In eqn. 8, A indicates the skew tensor related to the vector ( )ox - x  and Mw denotes the follow-

ing vector: 
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By substituting eqn. 6.b into eqn. 8, it descends that the couple stress tensor M is symmetric. 

 
3 PRINCIPLE OF VIRTUAL DISPLACEMENTS  
In this section the deformation measures of the mechanical model are derived via the applica-

tion of the principle of virtual displacements by assuming the strain energy, w, as a function of the 
gradients of translation, ∇u , and rotation, ∇θ : 
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Considering eqs. 3.a-b and applying the divergence theorem, by some algebra we can rewrite 

eqn. 10 as follows: 
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By substituting  6.a-b in eqn.11, we can obtain: 
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where the following relationships have been used: 
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In deriving eqn.12 from eqn.11, the following further relationships have been invoked:  

 
M2 0,δ δ⋅ − ⋅ =τ ω w θ    a 0.δ⋅ =I χ  (14.a-b) 

 
4 PROBLEM FORMULATION 
In order to study the behaviour of adhesive lap-joints, a specific model has been developed by 

assuming only two non-trivial displacement field components are present: u and v, along x and y 
axes, respectively. Adherents and adhesive layers are assumed to behave according to plane stress 
and plane strain hypotheses, respectively.  
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Orthotropic constitutive relationships are utilized. In particular, in the case of the adhesive lay-

ers, the microstructure length scale parameter, l, has been considered too. The following relation-
ships exist: 
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Some geometrical details are presented in the following Figure 1. It is important to highlight 
the condition a ah b<< which allows the adhesive layer to be studied under the well-known plane 
strain hypotheses. 
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Figure 1: Generic scheme of an adhesive joint. 

 
The most common cohesive interface models available in literature [14-17] are simulated by 

updating elastic moduli of adhesive. In particular, the strain components xxε  and xyε can be re-
lated to mode I and mode II interface displacements, respectively: 
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where ha  (Fig. 1) indicates the thickness of the adhesive layer, while nδ and sδ  the normal and 

tangential interfacial displacements, respectively. Furthermore, the stress component yyσ  is as-
sumed to be equal to zero: 
 

yyσ 0.=

 
(18) 

 

 As a consequence the normal, nt  , and tangential, st ,  interface interactions can be easily related 

to the strain components xxε  and xyε . It results:  
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It is worth noting the terms within brackets on the right hand side of eqs. 19 represent the cur-

rent secant slopes for Mode I and Mode II cohesive law, respectively (Figs. 2.a-b). 
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Figure 2.a: Mode I cohesive law. Figure 2.b: Mode II cohesive law. 
 
Despite xxE

 
and xyG , which are step-by step updated in order to account for the non-linearity of 

the cohesive laws, the quantity 2
xyGl  can be assumed not dependent on the current values of inter-

facial interactions. 
 

5 FEM MODEL 
In this section a finite element approximation of the proposed mechanical problem is 

developed. A 8-nodes finite element mesh has been introduced over both the adherents and the 
adhesive layers. Cubic interpolant shape functions [21] are utilized to approximate the 
displacement field components iu  and iv  (i=1, 2, ..., 8) over each finite element: 
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In the previous equations, ξ and η  denote the local co-ordinates relative to the master finite 

element shown in Figure 3; they are related to the absolute co-ordinates by the following relation-
ships: 
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where xL  and yL  are the actual lengths of the finite element along the x and y axes, respectively, 
and pedix “O” refers to the centroid of the finite element. 
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Figure 3: Master finite element. 

 
The equilibrium of each finite element can be formulated by using the virtual displacements 

principle. With reference to the generic e-th finite element, it results: 
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In particular, the numeric quantities x,if

 
and

 y,if
 
denote the components of the external force 

applied at the generic i-th node, along x and y axes, respectively; ( )eB  is a 5x16 numeric matrix 
relating the five strain components 

xxε , 
yyε ,

xyε , 
xzχ  , 

yzχ  to the nodal displacements vector ( )ev ; 
( )eC  is a 5x5 numeric matrix relating the five stress components 

xxσ , 
yyσ ,

xyσ , 
xzm , 

yzm to the above 
listed strain components. 

Finally, from the expressions of the matrices ( )eK  and the vector ( )ef , by a standard procedure, 
it is easy to obtain the global system of equations governing the equilibrium of the FEM model. 
Due to the mathematical expression of the cohesive laws considered [14-17], this system can be 
solved by means of an iterative algorithm which updates, at every step, the global secant stiffness 
matrix of the FEM model. 
 

6 NUMERICAL RESULTS AND DISCUSSION 
In this section some numerical results, obtained by using the finite element procedure above 

described, are presented and discussed. The numerical experiments developed not only allow to 
make comparisons with other results currently available in literature in order to assess the accuracy 
of the numerical procedure, but also highlight the influence of the micro-scale parameter on the 
behaviour of a balanced double-lap joint. 
 
      6.1 Comparisons with one-dimensional beam models 

The two-dimensional FEM model here proposed, which accounts for the microstructure length 
scale parameter l, has been validated by means of some comparisons with numerical solutions cur-
rently available in literature, dealing with static beam problems: the Bernoulli-Euler beam problem 



studied by Park and Gao [12] and the Timoshenko beam problem analyzed by Ma et al. [13] have 
been considered (Figs. 4). Geometric and mechanical properties are summarized in Table 1. 
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Figure 4.a: Cantilever beam. Figure 4.b: Simply supported beam. 

 
Table 1:  Geometric and mechanical properties assumed in [12-13]. 

 Case E ν  l  h b=2h L=20h 

  [ GPa ]  [µm] [mm] [mm] [mm] 
I 0.0200 0.0400 0.4000 
II 0.0380 0.0760 0.7600 
III 0.0750 0.1500 1.5000 
IV 

0.0 

0.1150 0.2300 2.3000 
V 0.0200 0.0400 0.4000 
VI 0.0380 0.0760 0.7600 
VII 0.0750 0.1500 1.5000 

Cantilever 
beam 

VIII 

1.44 0.38 

17.6 

0.1150 0.2300 2.3000 
IX 0.0176 0.0352 0.3520 
X 0.0352 0.0704 0.7040 
XI 

0.0 
0.0704 0.1408 1.4080 

XII 0.0176 0.0352 0.3520 
XIII 0.0352 0.0704 0.7040 

Simply sup-
ported beam 

XIV 

1.44 0.38 

17.6 
0.0704 0.1408 1.4080 

 
The mesh adopted by the authors is as follows: two divisions along the vertical axis (x); forty 

divisions along the longitudinal axis (y). A specific test has been developed in order to assess the 
convergence of the solution obtained by the authors (a).  The following Table 2 presents the results 
of a comparative analysis in terms of maximum deflection,  f.  

 
Table 2: Comparisons in terms of beam deflection  f. 

  Cantilever beam (mm ·102) Simply supported beam (mm ·103) 

l [µm] Case I II III IV V VI VII VIII IX X XI XII XIII XIV 
f  (a) 5.551 

5.562

5.553 

2.921 

2.932 

2.923 

1.481 

1.482 

1.483 

0.961 

0.972 

0.973
- - - - 3.971 

3.972
1.981 

1.982 
0.991 

0.992 - - - 

f (b) 5.56 2.92  1.48 0.97 - - - - - - - - - - 0.0 

f (c) - - - - - - - - 2.144 

3.975
1.074 

1.985
0.534 

0.995 - - - 

f  (a) 

- - - - 
4.171

3.882 

1.273 

2.321 

2.212

1.513 

1.291 

1.282 

1.203 

0.891 

0.892 

0.883 
- - - 2.981 

2.712 
1.561 

1.452 
0.861 

0.822 

f (b) - - - - 1.27 1.51 1.20 0.88 - - - - - - 17.6 

f (c) - - - - - - - - - - - 0.654 

0.575 
0.684 

0.795 
0.474 

0.725 
 

(a):  Ascione & Mancusi 
1 --- ν = 0.38     G = E / 2 (1+ν)    
2 --- ν = 0.00     G = E / 2 
3 --- ν = 0.00     G = ∞ 

(b): Park  & Gao (c): Ma & al. 
4 --- ν = 0.38     G = E / 2 (1+ν)    
5 --- ν = 0.00     G = E / 2 



It is important to remark that the additional modulus l2G has been related to the actual value of 
the shear modulus (G=522 MPa) when considering cases V-IX (cantilever beam), without any 
dependency on the current choice assumed for G ( l2G = 0.161614 N ). On the other hand, when 
considering cases XII-XIV (simply supported beam), it has been determined accounting for the 
current choice assumed for G: ( l2G = 0.161614 N  or  l2G = 0.223027 N ). 

Results obtained by the authors (a) strictly agree with the solution (b) given in [12] if the 
Poisson modulus is assumed equal to zero and the shear modulus increases towards +∞ . On the 
contrary, they differ from the solution (c) given in [13]. Generally, the proposed two-dimensional 
model shows a lower size-effect than the Timoshenko beam model developed in [13]. 

 
6.2 Influence of length micro-scale parameter on the behaviour of double lap-joints 
In this sub-section a numerical analysis of a balanced double-lap joint (Fig. 5) has been devel-

oped. Due to the low thickness of the adhesive interfaces between FRP adherents, very close to the 
value of the microstructure length scale parameter l, the authors propose to account for this pa-
rameter with respect to the adhesive layer in order to highlight its influence on the mechanical be-
haviour of the joint. 
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Figure 5: Balanced double lap-joint. 

 
Although the mechanical model presented in section 4 allows to account for general cohesive 

interfacial laws, the example here discussed has been developed by adopting simplified laws char-
acterized by a linear elastic branch up to failure (Fig. 6) subtending well-defined areas (fracture 
energy per unit surface), according to the procedure proposed in [18]. As a consequence, the non 
linear problem introduced in section 5 becomes a linear elastic one. 
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Figure 6: Simplified cohesive laws - a) Mode I; b) Mode II. 

 
According to Hutchinson and Suo criterion [15], full separation between adherents is achieved 
when the following condition occurs:   
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It is worth noting that the symbols nδ  and sδ  indicate the current values of interfacial 

displacements nδ  and sδ , respectively, while the symbols nuδ  and suδ denote the ultimate values 
of such displacements. More details relating to the cohesive laws are summarized in Table 3. 
 

Table 3: Mechanical parameters of cohesive laws.  
δnu 0.368 ⋅ 10-1 mm  δnu 0.343 ⋅ 10-1 mm  
tnu 14.13 N/mm2 tsu 28.28 N/mm2 

 
The geometric and mechanical properties of adherents and adhesive are summarized in Table 

4, with reference to the symbols indicated in Figure 5. They are representative for common FRP 
profiles and epoxy resins currently available. Finally, the mesh details are presented in Table 5, 
where symbols 

xn and 
yn  denote the number of  divisions along the x and y axes, respectively, 

while 
xL  and 

yL  have the same meaning already introduced in section 5. 
 

Table 4: Geometric and mechanical properties of adherents and adhesives. 
Geometric properties Elastic moduli 

Thickness Width Length xxE  
yyE  

xyG xyν  l  
 

[mm] [MPa] [-] [µm] 
External 
adherents eh 0.25=  eb 20.0= eL 90.0= 7450 93700 3970 0.26 0 

Internal 
adherent ih 0.50=  ib 20.0=  

iL 90.0= 7450 93700 3970 0.26 0 

Adhesives 
ah 0.02=  

ab 20.0= aL 80.0= 2500 2500 962 0.30 0-100 

 
Table 5: Mesh details (measures in mm). 

 un-bonded left region 
0 mm y 10 mm≤ ≤  

bonded region 
10 mm y 90 mm< ≤

un-bonded right region 
90 mm y 100 mm< ≤  

External  
adherents 

xn 2= ( )x 0.125L =  

yn 100= ( )y 0.10L =  

xn 2= ( )x 0.125L =  

yn 800= ( )y 0.10L =
- 

Internal  
adherent - 

xn 4= ( )x 0.125L =  

yn 800= ( )y 0.10L =

xn 4= ( )x 0.125L =  

yn 100= ( )y 0.10L =  

Adhesive  
Layers - 

xn 2= ( )x 0.01L =  

yn 800= ( )y 0.10L =
- 



The influence of the micro-scale length parameter l of the adhesive layer is shown in the last 
Table 6 where the ultimate axial load Tu has been related to the strength of the adhesive interface.  

 
Table 6: Ultimate values of axial load Tu 

 Case 1 Case 2 Case 3 Case 4 
 [µm]l  0.0 20.0 50.0 100.0 
Tu [N] 5679 5937 6009 6055 

Diff. [%] - +4.5 +5.8 +6.6 
 
In particular, when the parameter l is supposed to be equal to the thickness of the adhesive layer 
(20 µm), as frequently occurs, the size effect provokes a significant increase in terms of the inter-
face strength (+4.5%). 
 

7 CONCLUSIONS 
A two-dimensional micro-scale mechanical model for predicting the response of adhesive lap-
joints between FRP adherents has been proposed. The model allows to simulate the interfacial in-
teractions according to the most common cohesive laws available in literature. The influence on 
the joint mechanical behaviour of the microstructure length scale parameter of the adhesive layer 
has been investigated and the size-effect on the joint strength has been estimated. Results obtained 
by the authors show a significant increase in terms of joint strength when the influence of this pa-
rameter is accounted for. 
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