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SUMMARY. The present paper examines the effect of a concentrated damage in elastic frames 
with reference to the variation induced in natural frequencies of vibration, evaluated by the 
dynamic stiffness method. First the direct problem for both undamaged and damaged frames is 
studied and some important considerations on the number of frequencies required in order to 
evaluate two damage parameters, i.e. location and intensity of the damage, are outlined. Second, 
an identification procedure based on the response comparison is presented. An optimal estimate of 
the parameters is obtained by minimizing an appropriate objective function which is defined as the 
sum of the squares of the differences between analytical and measured variations of frequencies in 
the undamaged and damaged state. Different damage configurations are considered to assess its 
reliability. 

1 INTRODUCTION 
Structural damage consists in a loss of stiffness inducing variations of both static and dynamic 

responses with respect to the undamaged structure and has been investigated in the literature using 
different techniques. These are based on the variation of dynamic characteristics, such as natural 
frequencies, mode shapes, dynamic flexibilities, or static quantities, such as displacements or 
strains induced by applied loads [1-4]. Particular attention has been devoted to the model of 
damage. In many studies, damage is represented by one or more fully open cracks along the axis 
of the beam and is modeled by a reduction in the rigidity at the correspondent abscissae [3, 5], 
others present one dimensional continuum theories [6, 7]. The present paper examines the problem 
of identification of one concentrated damage in elastic frames. The damage consists in a notch that 
reduces the height of the cross section at a given abscissa and is modeled by a reduction in the 
rigidity of the beam, described by means of an appropriate rotational spring [3].  

The effect of damage is studied with reference to the variation induced in the natural 
frequencies of vibration. These are evaluated, for both undamaged and damaged structures, by 
means of an analytical method based on some properties of the dynamic stiffness matrix, i.e. the 
Wittrick and Williams algorithm [8-10]. The direct problem of the undamaged frame has been 
studied obtaining an explicit expression of the adimensional frequency parameters ai

4 = ωi
4 mL4/EI 

with respect to the geometrical and mechanical properties of the model such as distributed mass m, 
Young's modulus of the material E, moment of inertia I and length L. Assuming that I and L are 
known, the ratio m/E can be identified by means of the minimization of an objective function 



which measures the differences between analytical and measured frequencies. Once the 
mechanical parameters of the model have been reliably updated, the variation of the frequencies of 
the damaged frame are studied as a function of the damage parameters, i.e. adimensional location 
l =xd /L and stiffness r = kφ L/EI of the rotational spring. In the direct problem, for assumed values 
of damage parameters, the Wittrick and Williams algorithm provides the value of the i-th natural 
frequency ωi. On the contrary, when ωi is known for the damaged frame, for each possible damage 
position l, one value of stiffness r exists which corresponds to a value of the i-th natural frequency 
equal to ωi. Therefore, for each frequency, a curve r(l) can be obtained that describes r for all the 
possible positions of the damage. The analysis can be used to examine the uniqueness of the 
solution of the inverse problem, in fact, the curves r(l) obtained for different ωi cross at the 
abscissa where the damage is localized, providing the solution to the inverse problem. This fact 
allows to determine the minimum number of frequencies required to obtain a unique solution to 
the inverse problem. Then, the inverse problem is solved by the minimization of an objective 
function measuring the differences between analytical and measured variations of natural 
frequencies in the undamaged and damaged states [11]. Different damage configurations are 
considered to assess its reliability. The identification technique presented in the paper allows to 
reliably evaluate parameters also in the case in which the measured frequencies are affected by 
small instrumental errors [12]. 

2 THE WITTRICK AND WILLIAMS ALGORITHM 
The frequencies of vibration of both undamaged and damaged frames can be evaluated by 

means of an efficient analytical method such as the Wittrick & Williams algorithm, which is based 
on the dynamic stiffness matrix of the structure [8-10]. In this paragraph, the main characteristics 
of the considered algorithm are briefly summarized. Considering the equation of motion of the 
Euler Bernoulli beam 

 
 0),(),( =+ txvmtxEIv IV &&  (1) 

 
 

where EI is the bending stiffness and m the distributed mass per unit length, the solution can be 
expressed in the form:  

 
 )()(),( tyxtxv ϕ=  (2) 
 

where the equation of the mode of vibration is  
 
 ξξξξξϕ aQaQaQaQ coshsinhcossin)( 4321 +++=  (3) 
 
In (3), the constants Qi depend on the boundary conditions; nondimensional abscissa ξ=x/L and 

frequency parameter a4 =ω2mL4/EI have been introduced. Expressing either the vector of the 
generalized nodal forces f and displacements v in terms of the constants Qi, the following relation 
holds, in which K(ω) is the dynamic stiffness matrix of the single beam: 
 

 vf )ω(K= , (4) 
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The Wittrick & Williams algorithm allows to evaluate the number J=Jk+J0 of frequencies of 

vibration which are smaller than a trial value ω* and, therefore, by means of an iterative procedure, 
to converge to any required accuracy. 

The two terms in the evaluation of J are respectively Jk, number of negative eigenvalues of the 
matrix K(ω*), and J0, total number of natural frequencies of clamped clamped beams which are 
smaller than ω*, given by:  
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3 DIRECT PROBLEM 
The considered frames are composed by two columns and a beam whose lengths are 

respectively H and L. The geometric characteristics of the cross sections are represented by the 
area and the moment of inertia which are denoted in the following equations as Ac ,Ic, for the 
columns and Ab, Ib for the beam. Besides the undamaged state, the case in which a concentrated 
damage represented by a notch reduces the height of the cross section from Uh to Dh  is considered. 
It has been assumed that the width of the notch is such that it is possible to neglect the reduction in 
the total mass of the structure. 

The damage determines, at a given abscissa xd, a reduction in the flexural rigidity which can be 
modelled by means of a rotational spring whose non-dimensional stiffness is calculated with the 
following relation [3]: 

 
 

β
β12 −

= Uh
Lkϕ

, (5) 

 
where β=EIU-EID/EIU, EIU and EID are respectively the flexural rigidities of the undamaged and 

damaged cross sections. 

 
Figure 2 Undamaged and damaged models 



In order to evaluate the natural frequencies of vibration of either the undamaged or damaged 
frame, three different dynamic stiffness matrices must be evaluated. In fact, for the damaged frame 
it is necessary to distinguish whether the damage is located on a column or the transversal beam. 
Figure 2 illustrates the considered cases and reports the nodal degrees of freedom with respect to 
which the dynamic stiffness matrices are assembled. 

The three dynamic stiffness matrices turn out to be: 
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where all the terms of the matrices have been expressed as functions of the non dimensional  
frequency parameter of the undamaged beam ab

4 =ω2mbL4/EIb using the following relations: 
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and     h=H/L  ;  l=xd/L  ;     r=kφL/EIb   ;     q=Ic/Ib  ;    μ=mc/mb=Ac/Ab. 



The Wittrick and Williams algorithm allows to evaluate infinite values of the frequency 
parameter ab and can provide some deeper insight, with respect to finite element models, in the 
solution of the inverse problem, related to the identification of some model parameters, for its 
capability to provide exact solutions and, in general, for the synthetic form of the dynamic 
stiffness, which is used to solve several times the direct problem. 

3.1 Natural frequencies of the undamaged frame 
Once the desired number of frequency parameters ab for the undamaged frame have been 

calculated, applying the considered algorithm to the stiffness matrix Ku(ab), the natural frequencies 
of the frame can be evaluated as functions of the mechanical properties of the material. Equation 
(6) shows how the natural frequencies depend on the ratio between the distributed mass and the 
Young’s modulus of the material: 
 

 
4

4

)/(ω
Lm

EIamE
b

bbi
bi = . (6) 

 
This equation allows to have a deep insight in the inverse problem related to the identification 

of material properties. In fact, if the values of some of the fundamental frequencies are plotted as 
functions of the ratio E/mb it is easy to determine the abscissa, and therefore the ratio E/mb, 
corresponding to measured values of the natural frequencies. 

Figure 3 refers to a frame in which L=800mm, H=1000mm, whose rectangular cross section is 
constant for columns and beam with sides 40x8 mm. The first three frequencies are plotted 
through equation (6). Three horizontal lines have been marked corresponding to pseudo-
experimental frequencies evaluated by means of a FEM discretization of the frame with the 
following nominal values of mechanical properties: Young modulus E= 2*105 N/mm2, mass 
density per unit volume μ=7.849*10-9 Nsec2/mm4. The pseudo-experimental frequencies turn out 
to be ω1=52.95 Hz, ω2=167.92 Hz, ω3=348.26 Hz. It can be noticed that the three pseudo-
experimental frequencies are related to the same abscissa equal to 7.96 1010 s-2. 
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Figure 3 Variations of natural frequencies as a function of E/mb 

3.2 Natural frequencies of the damaged frame  
When the Wittrick and Williams algorithm is applied to the stiffness matrices KD1(ab,r,l) and 

KD2(ab,r,l), the natural frequencies of the frame damaged respectively on the transverse beam or 
column can be evaluated. These frequencies depend on location and intensity of damage through 



the non dimensional parameters l and r. In this paragraph, the damage position is referred to by the 
nondimensional abscissa l=xd/(L+2H) that spans the frame from 0 (base) to 0.5, (middle of the 
transverse beam). For the case considered, H=0.8 m and L=1 m, the node between the transverse 
beam and the column is located at l= 0.31, marked with a vertical line in the following figures. The 
influence of damage parameters on natural frequencies can be studied observing Figure 4, that 
reports the variations of the first four natural frequencies with respect to the undamaged case as a 
function of l for three values of r. The maximum variation of frequency depends on the mode 
shape. The maximum variation of frequency coincides with the points where the modal curvature 
is maximum, as already observed for beams and arches [1,11]. 

Once again some important information on the solution to the inverse problem can be obtained 
through an advisement of the results of the parametric study. In fact, when ωi is known, for each 
possible damage position lj, a stiffness ri(lj) exists which corresponds to a value of the i-th natural 
frequency equal to ωi. Therefore, by considering all the possible positions of the damage either in 
the beam or column, discrete curves ri(lj) can be plotted. Assuming, for example, that the first four 
natural frequencies of a damaged frame have been measured, these can be used to build four 
discrete curves ri(lj) with l spanning the column and the transverse beam. These curves are 
evaluated with reference to a frame with the same geometry as described in paragraph 2.1 and 
different damage locations. For the sake of brevity, only two cases are reported in Figure 5 a) and 
b), which represent respectively one case of damage located along the column, at l=0.16, and 
transverse beam, l=0.35, for both cases r= 30. The curves show multiple intersections, however, in 
both cases and in absence of errors, by using three frequencies, the damage parameters can be 
determined univocally. It must be noted that in the diagrams there are areas where different 
couples of curves intersect, which indicates critical situations. In fact, in experimental cases, where 
errors occur, these points can provide solutions not corresponding to the actual values of damage 
parameters.  

 

0

0.02

0.04

0.06

0.08

Δω
1/ω

1

r =10
r =50
r =100

 0

0.02

0.04

0.06

Δω
2/ω

2

 

0 0.1 0.2 0.3 0.4 0.5
l

0

0.02

0.04

0.06

0.08

0.1

Δω
3/ω

3

 
0 0.1 0.2 0.3 0.4 0.5

l

0

0.01

0.02

0.03

Δ
ω

4/ω
4

 
Figure 4 – Variations of natural frequencies as a function of l for different values of r 
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Figure 5 Curves ri(lj) for damage located at l=0.15 a) and at l=0.35 b), r=30. 

 

4 INVERSE PROBLEM 
The study of the direct problem presented in the paragraph 3 allowed to evaluate the minimum 

number of frequencies required to solve the inverse problem. This is here solved by minimizing an 
objective function measuring the differences between analytical and measured natural frequencies. 
The identification technique presented in the paper allows to reliably evaluate the required 
parameters also when the measured frequencies are affected by small instrumental errors. 

4.1  Undamaged frame 
In order to have a good estimate of material's parameters and then a reliable structural model, 

the ratio between Young's modulus E and distributed mass m, can be identified by the minimizing 
the objective function (7), where ωi

a and ωi
e are analytical and experimental natural frequencies. 
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For the same frame as described in paragraph 2.1, the following values of the first three natural 
frequencies are considered as pseudo-experimental data: ω1=52.955 Hz, ω2=167.924 Hz, 
ω3=348.264 Hz. The Wittrick and Williams algorithm provides the first three frequency 
parameters a1

4 =2.13134, a2
4 = 3.79574 , a3

4 = 5.46604. Figure 6 reports the objective function 
GU(E/m) and clearly shows that the absolute minimum, correspondent to zero value, is attained at 
the correct value of the ratio E/m . 
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Figure 6 Objective function for the undamaged frame 



4.2 Sensitivity to experimental noise 
A real damage identification procedure is based on experimental data which are affected by 

unavoidable experimental noise. In order to assess the performance of the proposed identification 
procedure when frequency measurements are affected by instrumental errors, the experimental 
frequencies are here modelled as random variables: 

 
 )ε1(ωω *

ii
e
i R+= , (8) 

 
where ωi

* is the actual value of the i-th natural frequency; Ri are uniformly distributed random 
variables in [ 1,1]−  with zero mean and independent of each other; ε is a parameter defining the 
level of noise. The objective function GU is a function of the random variables ωi

e and therefore the 
ratio E/m correspondent to its absolute minimum is a random variable itself with mean value 
<E/m> and standard deviation σE/m. The sensitivity of the identification procedure to experimental 
noise is studied by means of the normalized average mean error (AME) and the normalized 
average standard deviation (ASD) of the ratio E/m, defined as AME E/m=[<E/m>- (E/m)*]/ (E/m)*; 
ASD E/m= σE/m /(E/m)*, where (E/m)* is the exact value of E/m. The normalized values of AME and 
ASD are respectively measures of the distance between the identified value and actual one and 
scatter of the identified value around the mean value. 

Figure 7 (a) and (b) show respectively the normalized values of AME and ASD as functions of 
the number of samples for the random variables ωi

e with a small level of noise ε =0.05. For a small 
number of samples the results are not representative of the error due to experimental noise 
affecting the identification procedure, but, for a large number of experimental tests, the average 
mean error for E/m approaches a constant value different from zero, i.e. the identification 
procedure is affected by a bias error [13] when the data are contaminated by experimental noise.  

 

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

AME

a)

 0 20 40 60 80 100
0

2

4

6

8

10

ASD 10-13

b)

 
Figure 7 (a) AME and (b) ASD of E/m versus n° of experimental tests 

4.3  Damaged frame 
The identification procedure that will be used is based on the response comparison. An optimal 

estimate of the damage parameters is obtained by minimizing the objective functions:  
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These are defined as the sum of the squares of the differences between analytical Δωi(k,s) and 



experimental Δωei values of the variation of frequencies between the undamaged and damaged 
state, normalized with respect to the related frequencies of the undamaged arch ωi

U and ωei
U .  

The damage parameters l and r are obtained in two phases, by successively seeking two 
distinct minima. First, for each possible discrete damage position l, each function is minimized 
with respect to r providing 
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If the damage is located in the transverse beam, the solution to the inverse problem is given by 

the minimum of G~ D1(l) with respect to l, otherwise, for damage on one column, the solution will 
be provided by the minimum of G~ D1(l) with respect to l. Only the function related to the correct 
position of the damage will exhibit one global minimum in which the value of the function is 
almost zero and therefore, the solution of the inverse problem exists and is unique. 

As an example, the procedure is applied to the same cases as those of Figure 5, considering the 
frequencies obtained by the Wittrick and Williams algorithm as pseudo-experimental data. The 
objective function G~ D1(l) for l=0.15 related to a damage in the column is reported in Figure 8 a) 
and b), where in a) the summation is extended to three frequencies only, which is the minimum 
number necessary to have a unique solution, and in b) to four frequencies. As already remarked in 
paragraph 2.2, nevertheless the global minimum is unique, other local minima appear in the 
vicinity of multiple intersections between curves r(l). Furthermore, the absolute value of the 
objective function at global minima is close to zero, which can bring difficulties in experimental 
cases where modelling and experimental errors are unavoidable. Analogous results are found for a 
damage located on the beam at l=0.35, for which the objective function is reported in Figure 9 a-b, 
where the summation is extended to 3 a) and to 4 b) frequencies too. Here, a double minimum 
very close to zero appears in the vicinity of l=0.1 because of the multiple close intersections of 
curves r(l), as can be seen from Figure 5 b).  

The study of the pseudo experimental case has shown that the minimum number of frequencies 
required may not be sufficient to assure the exact solution of the inverse problem in presence of 
experimental errors, due to the existence of relative minima very close to the global one. 
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Figure 8 Objective functions for l=0.15, i=1-3 a), i=1-4 b) 

 

5 CONCLUSIONS 
An identification procedure for damage parameters based on the response comparison has been 

applied to an elastic frame. An optimal estimate of the location and intensity of damage is obtained 



by minimizing an appropriate objective function which is defined as the sum of the squares of the 
differences between the analytical and measured variations of frequencies, evaluated by means of 
the Wittrick and Williams algorithm, in the undamaged and the damaged state. Considerations are 
made on the minimum number of frequencies required to assure the exact solution of the inverse 
problem.  
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Figure 9 Objective functions for l=0.35, i=1-3 a), i=1-4 b) 
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