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For the Special Session of Aimeta : “The analytical approach to inviscid two dimensional vortex
dynamics. Is it only an ancient issue?”

SUMMARY How powerful modern-day computers could be, despite these times of CFD twi-
light, what the calculations of today are trying to solve arestill the same equations which Euler put
to paper more than two centuries ago. Now, a 260-somethings-years-old issue is undoubtedly old.
Anyway, if he were to return for following a vortex on the plane, Euler also would maybe prefer ,to
numerics and a lagrangian pursuit, a same attempt tried by analysis and eulerianly. This, in essence,
is what essayed below.

1 INTRODUCTION
The contour dynamics algorithm, as devised by Zabusky, Hughes & Roberts in [1] ( but see also

[2]), is a simple-idea based and a fast numerical tool for thestudy of the dynamics of vortex patches
in unbounded domains. Briefly, applied Green’s theorem to Green function, the entire velocity field,
for a given patch vorticityω, is made there depend only on the shape marked by vorticity jumps and
then determined by line integrals along it. Thus, the geometry of the patch boundary can be updated
by integrating in time the contour velocity and, as consequence, the 2d dynamics of the entire flow
field can be reduced, indeed, to easier 1dcontour dynamics.

The extension of the algorithm to general multi-connectedbounded domains, on the contrary,
has not been straightforward. Only recently, Crowdy and Surana [3] have provided the integral
formulation of a contour dynamics for complex domains bounded by arbitrary impermeable (fixed)
boundaries. Their approach is based on the Green function which defines the Hamiltonian of point
vortices in bounded domains, and on its transformation under conformal mapping, as devised by
Masotti [4] for simply connected domains and generalized tomultiply connected domains by Lin
[5]. So far, as discussed in§1 of ref. [3], previous extensions of the contour algorithm were limited,
in practice, to cases with straight or circular impermeableboundaries (see the examples worked out
in [6], [7] and [8], for instance).

An alternative formulation for the problem of determining,on the basis of its contour data , the
flow velocity of a vortex patch in unbounded domains exploited the concept of Schwarz function. It
is described in§9.2 of ref. [2] and references therein.

A further method is here proposed, which, if it does not explicitly uses the Schwarz function
concept, anyway, could be considered as inspired to it. It ishere formulated for unbounded domains
and for domains bounded by a single, arbitrarily shaped wall. A novel feature of the proposed
method is that the bounding wall can be considered as movableand permeable. Moreover, the
proposed method gains some computational efficiency by taking from Legras and Zeitlin [9] the
idea of aconformal dynamics.

In addition to the general interest in enlarging the panorama of methods now available in vortex
dynamics, the present formulation can be well suited for solving optimization and control problems
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(for instance, to find the shape of a vortex patch which standsin equilibrium in front of a given wall,
as well the inverse problem,viz. to find the shape of a wall which holds a given 2-dimensional vortex
in steady position). Moreover, the ability of the method in dealing with permeable and movable
bounding walls makes possible to formulate the control problem of holding in equilibrium a vortex
patch by wall motion or by wall blowing and suction.

The method here proposed, without resorting to other specific changes, shares with the Schwarz
function formulation the drawback of being unable to followthe contour evolution when it becomes
too far from a more or less rounded shape and filamentation phenomena occur. But for optimization
and control purposes, the class of geometries which can be studied is quite large (wider than before
at least [12], [13]).

The paper is organized this way: in§2 the present formulation is described for unbounded do-
mains along with some details of implementation (§2.1 and§2.2). Section§3 faces the problem of
the evolution of the patch in time, while§4 spots how the approach links to previous studies. In§5
the formulation is extended to bounded simply connected domains with movable and/or permeable
walls and relative treatment follows (§5.1) . Concluding remarks are drawn in§6.

2 VORTEX PATCHES IN UNBOUNDED DOMAINS
We consider the unbounded 2D motion of an inviscid fluid taking place on the complexz-plane

(z = x + i y). Let Di be a simply connected vortex patch, with vorticityω bounded by∂, and let
De be the irrotational region external to it and which extends to infinity. As shown in fig.[1], the
regionDi is conformally mapped inside the unit circle of the transformedζ-plane and the regionDe

is mapped outside the unit circle of the transformedλ-plane. Such mappings existing according to
the Riemann mapping theorem , they can be expressed as Theodorsen-Garrick [10] transformations:
Di is mapped inside the unit circle of theζ-plane by

z(ζ) − zo = ζ exp

∞
∑

n=0

anζn (1)

while De is mapped outside the unit circle of theλ-plane by

z(λ) − zo = λ exp

∞
∑

n=0

bnλ−n. (2)

wherezo is a point inside the patch. Once the series are truncated at aproper large valuen = N , the
coefficientsan andbn can conveniently be determined according to the iterative process proposed
by Ives [11].

In De the motion is irrotational and a complex potentialwe can be defined. For regularity rea-
sons, the complex velocitydwe

dz has to be a holomorphic function ofz in De. Sincez(λ) in (2) is
holomorphic outside the unit circle of theλ-plane, the complex velocity can, in general, be expressed
by the series

ue − i ve =
dwe

dz
=

∞
∑

j=0

cjλ
−j . (3)

In Di the motion has constant vorticityω and the complex velocity can, in general, be written as

ui − i vi = −i
ω

2
z⋆ +

dwi

dz
, (4)
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Figure 1: The physical plane , the interior and the exterior mapping.

with dwi

dz analytic and holomorphic inDi and with⋆ denoting complex conjugation. For the same
regularity reason as above, that inner complex velocity can, in general, be expressed as a function of
ζ by

ui − i vi = −i
ω

2
[z(ζ)]⋆ +

∞
∑

j=0

djζ
j . (5)

Let it be ζ = ρi exp(iϕi) andλ = ρe exp(iϕe). According to the mappings (1) and (2), each
patch contour pointz∂ is the image of a point of the unit circle of theζ-plane and of a point of the
unit circle of theλ-plane, that is,

z∂ − zo =

N−1
∑

n=0

an exp(i n ϕ∂i) =

N−1
∑

n=0

bn exp(−i n ϕ∂e) (6)

which establishes an implicit relationshipF (ϕ∂i, ϕ∂e) = 0 among the anomalies of the two unit
circles. In principle, by making explicitϕ∂i or ϕ∂e, the relationshipϕ∂i = ϕ∂i(ϕ∂e) and its inverse
ϕ∂e = ϕ∂e(ϕ∂i) can be found.

By equating the internal and external flow velocities at the patch contour, eqs.(3) and (5), trun-
cated at a large valuej = J , yield

J−1
∑

j=0

cj exp(−i j ϕ∂e) = −i
ω

2
[z(ϕ∂i(ϕ∂e))]

⋆ +
J−1
∑

j=0

dj exp[i j ϕ∂i(ϕ∂e)] (7)

and

−i
ω

2
[z(ϕ∂i)]

⋆ +

J−1
∑

j=0

dj exp[i j ϕ∂i] =

J−1
∑

j=0

cj exp(−i j ϕ∂e(ϕ∂i)) (8)

which will allow the coefficientscj , dj to be determined.

2.1 The functionsϕ∂i(ϕ∂e) andϕ∂e(ϕ∂i)

The above idea has been here implemented in a practical way for vortex patches belonging to
the so calledstar shapedclass. Let it beϑ∂ = arg(z∂ − zo), the patch is said to be star shaped if
there exists azo such thatr∂ = |z∂ − zo| is a single-valued function ofϑ∂ (in few words, allz∂

boundary points must result “visible” fromzo). Not incidentally, such a class coincides with the
class of shapes for which the Theodersen-Garrick mappings (1) and (2) can be carried out.
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The functionϕ∂i(ϕ∂e) and its inverseϕ∂e(ϕ∂i) are determined by means of a numerical proce-
dure based on periodic splines. Fromlog(z∂ − zo) = log r∂ + i ϑ∂ and from eq. (1), one gets

ϑ∂(ϕ∂i) = ϕ∂i + Im

[

N−1
∑

n=0

an exp(i n ϕ∂i)

]

. (9)

Placedδ = ϕ∂i −ϑ∂(ϕ∂i), a vector of values(ϑ∂(ϕ∂i), δ) can be built for a discrete set of values of
ϕ∂i and a continuous representationδ = δ(ϑ∂) can be obtained by a periodic (cubic) spline. From
eq. (2) one gets

ϑ∂(ϕ∂e) = ϕ∂e + Im

[

N−1
∑

n=0

bn exp(−i n ϕ∂e)

]

. (10)

and the functionϕ∂i(ϕ∂e) is given by

ϕ∂i = δ(ϑ∂(ϕ∂e)) + ϑ∂(ϕ∂e). (11)

The same procedure is followed by inverting the role of eqs. (10) and (11) to get the inverse
functionϕ∂e(ϕ∂i).

2.2 The flow velocity
Once thecj anddj coefficients on the right-hand sides of eqs. (3) and (5) are computed, the entire

flow velocity field, inside and outside the patch, is determined at once. Thesecj anddj coefficients
are numerically computed by means of a fixed point iterative process based on the condition that the
inner and outer flow velocities, as expressed by eqs. (7) and (8), have to match on the contour. Put
cj = crj + i cij anddj = drj + i dij , the imaginary part of eq. (7) yields

J−1
∑

j=0

[cij cos(j ϕ∂e) − crj sin(j ϕ∂e)] =

J−1
∑

j=0

[dij cos(j ϕ∂i(ϕ∂e)) + drj sin(j ϕ∂i(ϕ∂e))] −
ω

2
Im[i z⋆

∂(ϕ∂e)]

(12)

while the real part of eq. (8) gives

J−1
∑

j=0

[drj cos(j ϕ∂i) − dij sin(j ϕ∂i)] =

J−1
∑

j=0

[crj cos(j ϕ∂e(ϕ∂i)) + cij sin(j ϕ∂e(ϕ∂i))] +
ω

2
Re[i z⋆

∂(ϕ∂i)].

(13)

An initial set ofJ values are guessed fordj (typically, dj = 0). By dividing the unit circle of the
λ-plane into2J equispaced intervals, the right-hand side of eq. (12) can beevaluated for2J values
of ϕ∂e and the FFT algorithm can be used to computeJ values ofcj . Let now the unit circle of
theζ-plane be divided into2J equispaced intervals, the right-hand side of eq. (13) can beevaluated
for 2J values ofϕ∂i and the FFT algorithm provides a new set ofJ values ofdj . The process is
repeated until, in a prescribed range, the convergence is achieved.
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Eq. (12), it has to be noted, does not providecr0 and eq. (13) does not providedi0 as well.
Their values can be retrieved by knowing the complex velocity q∞ at infinity in the physical plane.
According to eqs. (2) and (3), in fact, it iscr0 + i ci0 = q∞; it follows thatcr0 = Re(q∞), while di0

has to be such thatci0 = Im(q∞). By enforcing eq. (12) forϕ∂i = 0, it follows that

di0 = −

J−1
∑

j=1

dij + Im(q∞)+

+







J−1
∑

j=1

[cij cos(j ϕ∂e) − crj sin(j ϕ∂e)] +
ω

2
Im[i z⋆

∂]







ϕ∂i=0

.

3 THE CONTOUR EVOLUTION AS CONFORMAL MAPS DYNAMICS
Owing to the material character of vorticity, the evolutionin time of the vortex patch coincides

with the advection of its contour. So, in principle, it can becarried out by numerically integrating in
time its velocitydz∂

dt . Such a procedure is not convenient neither simple; actually, at each time step
the updated geometry should undergo the entire process above explained, including the laborious
and time consuming Ives’s [11] iterative computation of thenew set ofan andbn coefficients of the
mappings (1) and (2).

Following the ideas proposed by Legras and Zeitlin [9], a more robust and fast procedure can be
implemented which avoids the iterative process by computing, in closed form, the time derivatives
ȧn and ḃn of the mappings coefficients. These are integrated in time and the updated countour is
then obtained as the new map from the unit circle of both theζ- and theλ-plane.

Let us first take into consideration the mapping (2). The coordinatezp of a fluid particle depends
on time through its transformed coordinateλ(t) and through the time-dependence of the coefficients
bn(t). The Lagrangian derivative oflog(zp − zo) is then

1

zp − zo

d(zp − zo)

dt
= h(λ)

λ̇

λ
+

N−1
∑

n=0

ḃnλ−n

with h(λ) = 1 −
∑N−1

n=1 n bnλ−n. For the points lying on the contour, enforcing|λ| = 1, it is

Re

[

λ̇

λ

]

= 0 (14)

and hence

Re

[

1

h(λ)

N−1
∑

n=0

ḃnλ−n

]

|λ|=1

= Re

[

((ue − i ve)
⋆ − żo)

(z∂ − zo)h(λ)

]

|λ|=1

,

with z∂ and(ue − i ve) given by eqs. (2) and (3), respectively, andżo = iω
2 zo + d⋆

0. The left-hand
side is the real part of a function ofλ which is holomorphic outside the unit circle. Let us call such
a functionH(λ). The definition of its imaginary part, onceRe(H(λ)) is known on the unit circle
from the right-hand side of above equation, states a classical problem of analysis, already solved
in several manners. In the general spirit of the numerical procedures here adopted, we solve the

5



problem by expressingH(λ) as

H(λ) =

N−1
∑

n=0

enλ−n (15)

and by computing theen coefficients by means of the FFT algorithm applied to its known real part.
OnceH(λ) has been determined, it can be computed

N−1
∑

n=0

ḃnλ−n = h(λ)H(λ) (16)

and, finally, thėbn coefficients can be found by applying again the FFT algorithmeither to the real
or imaginary part of the right-hand side as evaluated on the unit circle.

The procedure for computing the derivativesȧn of the coefficients of the internal mapping (1)
follows the same guidelines, with the trivial variation that the unknown functions to be determined
are holomorphic inside instead of outside the unit circle.

4 THE RELANTIONSHIP WITH THE SCHWARZ FUNCTION METHOD
The present treatment is similar to the Schwarz function method, as described, for instance, in

[2]. In that method, the equations (3) and (5) are replaced, respectively, by functions of the physical
complex coordinatez :

ue − i ve = −i
ω

2
G(z) (17)

and
ui − i vi = i

ω

2
[F (z) − z⋆] (18)

with

G(z) =

∞
∑

j=0

gnz−n, F (z) =

∞
∑

j=0

fnzn

and whereΦ(z) = F (z) + G(z) is the Schwarz function of the patch contour, expressed as a
Laurent series converging in an annulus containing the contour. Like for the method here presented,
the procedure then consists on determining the series coefficients.

But unlike the above splitting of the Schwarz function, in the present method the two pieces
F(z) and G(z) are expressed in two different parametrizations, one outside the unit circle of the
λ-parameter-plane, the other inside the unit circle of theζ-parameter-plane. Some advantage is
gained since the solution is determined on the entire flow field and it is not limited to an annulus.
Moreover, the class of possible contour geometries which are contained in an annulus where the
Laurent expansion of their Schwarz functions converges is,quite reasonably, smaller then the class
of star shaped contours, for which the present method can be carried out. For instance, with a
smart choice of mappings to propitiate convergence (in the case, some appropriate Joukowski maps
preparatory to (1) and (2)), all 6 Riccardi’s vortices [13] can be recovered and then, even if far from
circular, coul be made enter the method as well.

Finally, as below shown, the present formulation can be extended to domains confined by per-
meable and movable walls.
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5 CONFINED DOMAIN
Let the flow region be a 2D simply connected domain bounded by awall which can be a closed

line (fig.[2]) or extend to infinity (as here considered). With reference to fig.[3] and with the same
notation as for the unbounded case,Di denotes a simply connected vortex patch,∂ its boundary and
De the potential flow region bounded by∂ and the wallσ.

Figure 2: The doubly-connected case: Kirchhoff vortex in a circular Penning trap [8], Figure 3:
Rankine vortex on a Ringleb snow cornice, Figure 4: Streamlines about last case.

As well as above,Di is mapped by eq. (1) into the unit disk of the complexζ-plane. The domain
De being now doubly connected, it is mapped onto an annulus of the complexλ-plane bounded by
the unit circle and by a circle of radius1/R, with R < 1. As consequence of the Riemann mapping
theorem, such mapping exists for a unique value ofR(t) at a timet.

The procedure to define the mapping function and the value ofR is inspired to [11]. It can be
seen as a chain of mappings. First, the Möbius mapping

µ =
α z + β

γ z + 1
(19)

mapsσ onto a closed line of theµ-plane, with the flow field mapped inside it. The parameters
(α, β, γ) are such that the centroids ofσand∂ are close to the origin of theµ-plane (for that, a
preliminary translation in thez-plane could be needed). The Theodorsen-Garrick mapping

µ = ν exp

∞
∑

n=0

bnνn (20)

maps the flow field into the unit disk of theν-plane. The patch contour∂ results as mapped onto an
interior closed line. Finally, the Garrick mapping

ν = λR exp

[

∞
∑

n=0

(−cn + i dn)(R2λ)n +

∞
∑

n=0

(cn + i dn)λ−n

]

, (21)
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with real (cn, dn), mapsDe into the annulus of theλ-plane which is bounded inside by the unit
circle (preimage of∂) and outside by the circle of radius1/R (preimage ofσ). Once the series have
been truncated at a large valuen = N , the same iterative procedure as in [11] is used to determine
the values ofR and of the coefficientsbn, cn, dn.

Let the unit circle of theζ-plane beζ∂ = exp(i ϕ∂i) and that of theλ-planeλ∂ = exp(i ϕ∂e).
Again, the conditionz(ζ∂) = z(λ∂) establishes the implicit relationship betweenϕ∂i andϕ∂e. With
obvious mappings variations, the same as above method is used to numerically define the functions
ϕ∂i(ϕ∂e) andϕ∂e(ϕ∂i)

5.1 The flow velocity

In the external domainDe, the complex flow velocity can be expressed asue − i ve = dwe

dz and,
inside theDi patch region, asui−i vi = dwi

dz −i ω
2 z⋆, with we, wi being complex flow potentials. For

the external flow is regular, the quantitydwe

dλ λ can be expressed as a Laurent series which converges
in the annulus of theλ plane1 ≤ |λ| ≤ 1/R, that is

dwe

dλ
λ =

∞
∑

j=0

ej λ−j +
∞
∑

j=1

fj(Rλ)j (22)

while the internal flow regularity allowsdwi

dζ ζ to be written as a positive power series converging in
the unit disk of theζ-plane, that is

dwi

dζ
ζ =

∞
∑

j=1

gj ζj . (23)

Let ũ, ṽ denote the normal and tangential components, respectively, of the flow velocity at the∂
patch boundary. The condition on∂

ũe − i ṽe = ũi − i ṽi, (24)

yields the equation:
(

dwe

dλ

λ

|dz/dλ|

)

=

(

dwi

dζ

ζ

|dz/dζ|

)

− i
ω

2
z⋆

∂Z, (25)

with Z expressed either asZ = ζ dz
dζ /|dz

dζ |ζ=exp(iϕ∂i) or Z = λ dz
dλ/| dz

dλ |λ=exp(iϕ∂e) and with the left-
and right-hand sides computed for values ofϕ∂i or ϕ∂e, respectively, such thatϕ∂i = ϕ∂i(ϕ∂e) and
ϕ∂e = ϕ∂e(ϕ∂i), equivalently.

This complex equation (25) can be rearranged in the form of the two real equations:

Im

(

dwe

dλ
λ

)

ϕ∂e

= Im

{

∣

∣

∣

∣

dz

dλ

∣

∣

∣

∣

ϕ∂e

[

(

dwi

dζ

ζ

|dz/dζ|

)

ϕ∂i(ϕ∂e)

−
(

i
ω

2
z⋆

∂Z
)

ϕ∂e

]}

, (26)

Re

(

dwi

dζ
ζ

)

ϕ∂i

= Re

{

∣

∣

∣

∣

dz

dζ

∣

∣

∣

∣

ϕ∂i

[

(

dwe

dλ

λ

|dz/dλ|

)

ϕ∂e(ϕ∂i)

+
(

i
ω

2
z⋆

∂Z
)

ϕ∂i

]}

. (27)

Moreover, ifũσ is the normal component of the flow velocity at theσ bounding wall, it is

Re

(

dwe

dλ
λ

)

λ=1/R exp(iϕσ)

=
ũσ

R

∣

∣

∣

∣

dz

dλ

∣

∣

∣

∣

λ=1/R exp(iϕσ)

. (28)
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The eqs. (26), (27) and (28) allow the coefficients of the series (22) and (23) to be computed. As
above, a fixed point iteration process can be used.

Let us consider eq. (28). Its right-hand side is defined by themotionżσ of the wall and, if this is
porous, by the suction/blowing distributiondṁ

ds modelled along its surface. In fact, it is

ũσ = Re

(

ż⋆
σ R λ

dz/dλ

|dz/dλ|

)

+
dṁ

ds
.

Instead, the left-hand side of (28) results as

Re

(

dwe

dλ
λ

)

λ=1/R exp(iϕσ)

=

J
∑

j=0

[Aj cos(jϕσ) + Bj sin(jϕσ)]

with
Aj = erjR

j + frj and Bj = eijR
j − fij (29)

and witherj + i eij = ej , frj + i fij = fj . Thus,J coefficientsAj , Bj can be, once and for all,
calculated. As above, the FFT algorithm is used to this purpose.

The iteration process is applied to eqs. (26) and (27). First, a set ofJ values for thegj coefficients
is guessed, allowing the right-hand side of eq. (26) to be evaluated at2J equispaced intervals of the
unit circle of theλ-plane. Since the left-hand side can be written as

Im

(

dwe

dλ
λ

)

ϕ∂e

=

J
∑

j=0

[Cj cos(jϕ∂e) + Dj sin(jϕ∂e)]

with
Cj = eij + fijR

j and Dj = −erj + frjR
j,

J values ofCj , Dj can be found by FFT algorithm, and finally, together with eqs.(29), a set of
coefficientsej , fj can be determined. Being then possible, with these findings,to evaluate the right-
hand side of eq. (27) and being

Re

(

dwi

dζ
ζ

)

ϕ∂i

=

J
∑

j=0

Re[gj exp(i j ϕ∂i)],

a new set ofJ values for thegj coefficients can be computed by FFT. The process, to end, is repeated
until convergence is achieved under a certain tolerance (anexample of solution is made in fig.[4]).

6 CONCLUSIONS
The paper gives both the theory and a practical way of implementation for the problem of de-

termining the 2-dimensional motions of a flow in presence of apatch of vorticity. Unlike contour
dynamics [1], the treatment stands on more purely analytical grounds by making systematic use of
complex analysis tools. In many aspects, the approach is of clear aeronautical derivation for what it
inherits from airfoil design experience in exploiting conformal maps [11].

The unknown to solve for is the flow velocity of a nonviscous incompressible fluid filling the
entire (xy) -plane of complex variable z = x + i y. It is chosen to look directly for the solution of
the instantaneous boundary-value problem for the complex potential around the given vortex. To
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help its deduction, the shape of this vortex is previously transformed into the unit circles of two
parametric and distinct planes. The theory indeed developson the basis of Riemann’s fundamental
theorem of conformal mappings and then goes along with considerations on the analiticity properties
of those latter. While enforcing the matching of external and internal flows on the patch boundary,
it is exploited an equation already known in the field of interface dynamics [9] to compute the time
evolution of the parameters of the mappings, put in the role of dynamical variables of the problem.
The possibility of the presence as of a solid wall as of another boundary in pair with the vortex can
be handled. An example is visited and represented in figures.
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