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For the Special Session of AimetaTHhe analytical approach to inviscid two dimensional vortex
dynamics. Is it only an ancient issue?”

SUMMARY How powerful modern-day computers could be, desgiitese times of CFD twi-
light, what the calculations of today are trying to solve stilt the same equations which Euler put
to paper more than two centuries ago. Now, a 260-somethjiegss-old issue is undoubtedly old.
Anyway, if he were to return for following a vortex on the pdarieuler also would maybe prefer ,to
numerics and a lagrangian pursuit, a same attempt trieddysis and eulerianly. This, in essence,
is what essayed below.

1 INTRODUCTION

The contour dynamics algorithm, as devised by Zabusky, EsghRoberts in [1] ( but see also
[2]), is a simple-idea based and a fast numerical tool foistbdy of the dynamics of vortex patches
in unbounded domains. Briefly, applied Green’s theorem ge@function, the entire velocity field,
for a given patch vorticity, is made there depend only on the shape marked by vorticitpgiand
then determined by line integrals along it. Thus, the geopwdithe patch boundary can be updated
by integrating in time the contour velocity and, as consegaethe 2d dynamics of the entire flow
field can be reduced, indeed, to easiecadtour dynamics

The extension of the algorithm to general multi-connedtednded domainsn the contrary,
has not been straightforward. Only recently, Crowdy andaBarf3] have provided the integral
formulation of a contour dynamics for complex domains badhby arbitrary impermeable (fixed)
boundaries. Their approach is based on the Green functia@hwlefines the Hamiltonian of point
vortices in bounded domains, and on its transformation uodeformal mapping, as devised by
Masoitti [4] for simply connected domains and generalizethtdtiply connected domains by Lin
[5]. So far, as discussed §1 of ref. [3], previous extensions of the contour algoritherevlimited,
in practice, to cases with straight or circular impermedlolendaries (see the examples worked out
in [6], [7] and [8], for instance).

An alternative formulation for the problem of determinirg, the basis of its contour data , the
flow velocity of a vortex patch in unbounded domains exptbttee concept of Schwarz function. It
is described ir§9.2 of ref. [2] and references therein.

A further method is here proposed, which, if it does not eifhyi uses the Schwarz function
concept, anyway, could be considered as inspired to it.hieis formulated for unbounded domains
and for domains bounded by a single, arbitrarily shaped.wallnovel feature of the proposed
method is that the bounding wall can be considered as mowaigepermeable. Moreover, the
proposed method gains some computational efficiency bygakom Legras and Zeitlin [9] the
idea of aconformal dynamics

In addition to the general interest in enlarging the panarafrmethods now available in vortex
dynamics, the present formulation can be well suited foriegloptimization and control problems



(for instance, to find the shape of a vortex patch which stamdgquilibrium in front of a given wall,
as well the inverse problemniz. to find the shape of a wall which holds a given 2-dimensiongkxo
in steady position). Moreover, the ability of the method eating with permeable and movable
bounding walls makes possible to formulate the control jgmbof holding in equilibrium a vortex
patch by wall motion or by wall blowing and suction.

The method here proposed, without resorting to other spettifinges, shares with the Schwarz
function formulation the drawback of being unable to folldwe contour evolution when it becomes
too far from a more or less rounded shape and filamentationgrhena occur. But for optimization
and control purposes, the class of geometries which carubeestis quite large (wider than before
atleast [12], [13]).

The paper is organized this way: §2 the present formulation is described for unbounded do-
mains along with some details of implementatig8.( and§2.2). Sectior§3 faces the problem of
the evolution of the patch in time, whikg spots how the approach links to previous studieg5In
the formulation is extended to bounded simply connectedailesnwith movable and/or permeable
walls and relative treatment follow§5.1) . Concluding remarks are drawngé.

2 VORTEX PATCHES IN UNBOUNDED DOMAINS

We consider the unbounded 2D motion of an inviscid fluid tgkptace on the complex-plane
(z = x +1iy). Let D; be a simply connected vortex patch, with vorticitypounded by, and let
D. be the irrotational region external to it and which exterafinity. As shown in fig.[1], the
regionD; is conformally mapped inside the unit circle of the transfed(-plane and the regiob,
is mapped outside the unit circle of the transformeglane. Such mappings existing according to
the Riemann mapping theorem , they can be expressed as Thenddarrick [10] transformations:
D; is mapped inside the unit circle of tijeplane by

Z(C) — 2o = (exp Z an(" (1)
n=0
while D, is mapped outside the unit circle of theplane by
z(A) — zo = Aexp Z b AT, (2
n=0

wherez, is a point inside the patch. Once the series are truncateprapar large value = N, the
coefficientsa,, andb,, can conveniently be determined according to the iteratreegss proposed
by Ives [11].

In D, the motion is irrotational and a complex potential can be defined. For regularity rea-
sons, the complex velocit%% has to be a holomorphic function efin D.. Sincez()\) in (2) is
holomorphic outside the unit circle of thkeplane, the complex velocity can, in general, be expressed
by the series

. dw, - —j
Ue —ive =~ :ch)\ . (3)
7=0
In D; the motion has constant vorticity and the complex velocity can, in general, be written as
. LW dw;
ui—lvi:—152*+ dzl’ 4
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Figure 1: The physical plane , the interior and the exteriapping.

with ddlif' analytic and holomorphic i; and with* denoting complex conjugation. For the same

regularity reason as above, that inner complex velocity icegeneral, be expressed as a function of
¢ by

LW
—1—

v = G LOI + ¢ (5)

Letit be¢ = p;exp(ip;) and\ = p. exp(ip.). According to the mappings (1) and (2), each
patch contour pointy is the image of a point of the unit circle of tijeplane and of a point of the
unit circle of theA-plane, that is,

N-1 N-1
25 — 2o = Z an exp(inpg;) = Z b exp(—in pae) (6)
n=0 n=0

which establishes an implicit relationshif{s;, ¥s.) = 0 among the anomalies of the two unit
circles. In principle, by making explicits; or pa., the relationshipg; = @si(vs.) and its inverse
vae = Yae(poi) can be found.

By equating the internal and external flow velocities at th&ep contour, egs.(3) and (5), trun-
cated at a large valug= J, yield

J-1 .
jZ::O cjexp(—ij pac) = —i%[z(%’ai(@ae))]* + JZ::O d; expli j oi(voe)] 7
and
w Jo1 J-1
ipleeall"+ > djexplijail =) cjexp(—ijpoe(por) (8)
j=0 7=0

which will allow the coefficients:;, d; to be determined.

2.1 The functions;(pse) andps.(vai)

The above idea has been here implemented in a practical waspftex patches belonging to
the so callecstar shapectlass. Let it bedy = arg(zs — 2,), the patch is said to be star shaped if
there exists a, such thatry = |z5 — z,| is a single-valued function afy (in few words, allz;
boundary points must result “visible” from,). Not incidentally, such a class coincides with the
class of shapes for which the Theodersen-Garrick mappifygan(@ (2) can be carried out.




The functionps; (vae ) and its inverses. (pa;) are determined by means of a numerical proce-
dure based on periodic splines. Frisg(zs — 2,) = logrs + 199 and from eq. (1), one gets

Ya(pai) = pai +Im

N—1
Z an exp(ing&ai)] . 9)

n=0

Placed) = ¢a; — ¥s(va:), a vector of value§ds(va: ), d) can be built for a discrete set of values of
pa; and a continuous representatiba- §(¢5) can be obtained by a periodic (cubic) spline. From
eg. (2) one gets

Ya(pae) = poe +Im

N-1
Z bp exp(—in (pae)‘| . (10)

n=0

and the functionpy; (ps.) is given by

pai = 6(Va(pae)) + Va(pae)- (11)

The same procedure is followed by inverting the role of ed®€) énd (11) to get the inverse
functiongg. (ps;)-

2.2 The flow velocity

Once the:; andd; coefficients on the right-hand sides of egs. (3) and (5) amgpered, the entire
flow velocity field, inside and outside the patch, is deteeudiat once. Thesg andd; coefficients
are numerically computed by means of a fixed point iteratree@ss based on the condition that the
inner and outer flow velocities, as expressed by eqgs. (7)&ndidve to match on the contour. Put
¢j = ¢y +ic; andd; = d,; +1d,5, the imaginary part of eq. (7) yields

J—-1
[cij cos(j pae) — crjsin(j pae)] =

j=0

J—1 y (12)
[dij cos(j oi(pae)) + drjsin(j pai(wae))] — EIm[i 25(ae)]

7=0

while the real part of eq. (8) gives

J—1
[drj cos(j pai) — dij sin(j pai)] =

7=0

J—1 (13)

[crj cos(d pae(pai)) + cij sin(j pae(pai))] + gRe[i 25(pai)]-

<.
[}

An initial set of J values are guessed fdy (typically, d; = 0). By dividing the unit circle of the
A-plane into2.J equispaced intervals, the right-hand side of eq. (12) cavhkiated foRJ values
of s, and the FFT algorithm can be used to compiitealues ofc;. Let now the unit circle of
the(-plane be divided int@.J equispaced intervals, the right-hand side of eq. (13) cavakiated
for 2.J values ofyps; and the FFT algorithm provides a new setfofalues ofd;. The process is
repeated until, in a prescribed range, the convergencédiewa.



Eq. (12), it has to be noted, does not provide and eq. (13) does not providk, as well.
Their values can be retrieved by knowing the complex vejagit at infinity in the physical plane.
According to egs. (2) and (3), in fact, iti$o + ic;o = ¢oo; it follows thate,o = Re(goo ), While d;o
has to be such that, = Im(¢~). By enforcing eq. (12) fopy,; = 0, it follows that

J—1
dio = — Y dij +Tm(goo) +
j=1
J—1 w
17 (7 e) — r'\. j e _I iz} .
1 Sle ot o) oyt )] + Sz
- ;=0

3 THE CONTOUR EVOLUTION AS CONFORMAL MAPS DYNAMICS

Owing to the material character of vorticity, the evolutiartime of the vortex patch coincides
with the advection of its contour. So, in principle, it candagried out by numerically integrating in
time its velocity%). Such a procedure is not convenient neither simple; agiwleach time step
the updated geometry should undergo the entire procese abglained, including the laborious
and time consuming Ives’s [11] iterative computation of tieev set ofu,, andb,, coefficients of the
mappings (1) and (2).

Following the ideas proposed by Legras and Zeitlin [9], agrmobust and fast procedure can be
implemented which avoids the iterative process by compgutmclosed form, the time derivatives
a, andb,, of the mappings coefficients. These are integrated in tintetlae updated countour is
then obtained as the new map from the unit circle of boti(trend the\-plane.

Let us first take into consideration the mapping (2). The dimatez,, of a fluid particle depends
on time through its transformed coordinatg) and through the time-dependence of the coefficients
b, (t). The Lagrangian derivative &bg(z, — z,) is then

1 d(z,—
Zp — 2o d¢

5 ) )\ N-1 )
S =hAT+ D b
n=0

with h(X) =1 — S " n b, A~". For the points lying on the contour, enforcifg = 1, it is

A

R
“Ix

=0 (14)

and hence

Re

h() 0 A= (20 — 20)h(A) [A|=1

with zg and(u. — iv.) given by egs. (2) and (3), respectively, ahd= 1% z, + d;. The left-hand
side is the real part of a function afwhich is holomorphic outside the unit circle. Let us calllsuc
a functionH ()). The definition of its imaginary part, onde(H (\)) is known on the unit circle
from the right-hand side of above equation, states a ckdsgioblem of analysis, already solved
in several manners. In the general spirit of the numericatg@dures here adopted, we solve the



problem by expressing () as
N—-1
H) =) e A" (15)
n=0

and by computing the,, coefficients by means of the FFT algorithm applied to its knogal part.
OnceH (\) has been determined, it can be computed

N-1
> b AT = h(NH(N) (16)
n=0

and, finally, theb,, coefficients can be found by applying again the FFT algorigtimer to the real
or imaginary part of the right-hand side as evaluated on tiitecircle.

The procedure for computing the derivatives of the coefficients of the internal mapping (1)
follows the same guidelines, with the trivial variation tii@e unknown functions to be determined
are holomorphic inside instead of outside the unit circle.

4 THE RELANTIONSHIP WITH THE SCHWARZ FUNCTION METHOD

The present treatment is similar to the Schwarz functiorhotitas described, for instance, in
[2]. In that method, the equations (3) and (5) are replaaspectively, by functions of the physical
complex coordinate :

Ue —1Ve = —i%G(z) a7)

and
(7 —iUi =i

SOEEY (18)

with

G(z) = Zgnz_", F(z)= Z fnz"
=0 =0

and where®(z) = F(z) + G(z) is the Schwarz function of the patch contour, expressed as a
Laurent series converging in an annulus containing theozont.ike for the method here presented,
the procedure then consists on determining the series cieets.

But unlike the above splitting of the Schwarz function, i hresent method the two pieces
F(z) and G(z) are expressed in two different parametriratione outside the unit circle of the
A-parameter-plane, the other inside the unit circle of ¢farameter-plane. Some advantage is
gained since the solution is determined on the entire flowl fi€ld it is not limited to an annulus.
Moreover, the class of possible contour geometries whiehcantained in an annulus where the
Laurent expansion of their Schwarz functions convergeglige reasonably, smaller then the class
of star shaped contours, for which the present method caraveed out. For instance, with a
smart choice of mappings to propitiate convergence (in #se,csome appropriate Joukowski maps
preparatory to (1) and (2)), all 6 Riccardi’s vortices [1&8hdoe recovered and then, even if far from
circular, coul be made enter the method as well.

Finally, as below shown, the present formulation can bersdd to domains confined by per-
meable and movable walls.



5 CONFINED DOMAIN

Let the flow region be a 2D simply connected domain boundedwglbwhich can be a closed
line (fig.[2]) or extend to infinity (as here considered). Mtference to fig.[3] and with the same
notation as for the unbounded cask,denotes a simply connected vortex patelits boundary and
D, the potential flow region bounded ladyand the wall.

Figure 2: The doubly-connected case: Kirchhoff vortex inrautar Penning trap [8], Figure 3:
Rankine vortex on a Ringleb snow cornice, Figure 4: Straaslabout last case.

As well as aboveD); is mapped by eq. (1) into the unit disk of the compfeplane. The domain
D, being now doubly connected, it is mapped onto an annuluseo€dimplexi-plane bounded by
the unit circle and by a circle of radidg R, with R < 1. As consequence of the Riemann mapping
theorem, such mapping exists for a unique valu&@f) at a timet.

The procedure to define the mapping function and the value isfinspired to [11]. It can be
seen as a chain of mappings. First, the Mobius mapping

_az+f
k= vyz+1

(19)

mapsc onto a closed line of the-plane, with the flow field mapped inside it. The parameters
(a, B,7y) are such that the centroids end 0 are close to the origin of theg-plane (for that, a
preliminary translation in the-plane could be needed). The Theodorsen-Garrick mapping

[ = Vexp Z b ™ (20)
n=0

maps the flow field into the unit disk of theplane. The patch contodrresults as mapped onto an
interior closed line. Finally, the Garrick mapping

v=ARexp | Y (—cn+1id)(RPN)" + ) (cn +ida)A7"|, (21)
n=0 n=0



with real (¢,,, d,,), mapsD. into the annulus of the--plane which is bounded inside by the unit
circle (preimage 09) and outside by the circle of radidg R (preimage o). Once the series have
been truncated at a large value= N, the same iterative procedure as in [11] is used to determine
the values ofz and of the coefficients,, ¢,,, d,,

Let the unit circle of thel-plane bes = exp(ips;) and that of the\-planels = exp(ips.).
Again, the conditiorz(¢y) = z(\y) establishes the implicit relationship betwees andps.. With
obvious mappings variations, the same as above methoddgaseimerically define the functions

©vai(wae) andyae(vai)

5.1 The flow velocity

In the external domai®., the complex flow velocity can be expressedias- i v, = d(;“‘;e and,
inside theD; patchregion, ag;,—iv; = ddlj —i % 2*, withw,, w; being complex flow potentials. For
the external flow is regular, the quantﬁ§$ A can be expressed as a Laurent series which converges
in the annulus of the planel < |A| < 1/R, thatis

dwe [e%e} » [e%e} .
O /\zjgoej/\ J +;fj(m)ﬂ (22)

while the internal flow regularity aIIow%@% ¢ to be written as a positive power series converging in
the unit disk of the-plane, that is

- Zgj ¢ (23)

Let @, v denote the normal and tangential components, respectofelye flow velocity at the)
patch boundary. The condition @éh

e — 10, = @1; — 19, (24)
yields the equation:
dw, A ([ dw; ¢ LW,
(% ) = (% ) 1597 29
with Z expressed either & = g /| |<:Cxp(i%i) orzZ = §/| 5 A=exp(ivs.) @nd with the left-

and right-hand sides computed for value$o@I or Yye, respecuvely, such thaty; = vg;(wse) and

voe = poe(wai), equivalently.
This complex equation (25) can be rearranged in the formenfutlo real equations:

dw, dz dw; ¢ LW
Im< /\) —Im{‘— [< > —(i=232 } , (26)
dA Poe dA Ppoe ¢ |dz/d(] voi(poe) ( 2 )505‘3
dz

dw; dw A w
Re( 1<> _Re{ - l< - > + (i=232 } (27)
d¢ $poi d¢ Poi dA |dz/d)\| vae(wai) ( 2 )W“

Moreover, ifi,, is the normal component of the flow velocity at thhéounding wall, it is

dwe
Re( i /\)
dA A=1/R exp(ivo)

Uy | dz
dX

(28)

A=1/R exp(ivo)

8



The egs. (26), (27) and (28) allow the coefficients of theese22) and (23) to be computed. As
above, a fixed point iteration process can be used.

Let us consider eq. (28). Its right-hand side is defined byrib&on z, of the wall and, if this is
porous, by the suction/blowing distributié{ﬂ1 modelled along its surface. In fact, itis

dz/dX
_— -
i, = Re (za R)\rz/dM) +

din
ds’

Instead, the left-hand side of (28) results as

dw,
Re( o )\>
di A=1/R exp(ips)

J
= [Ajcos(jpo) + Bjsin(jos)]
§=0
with ) .

Aj =e ;R + frj and Bj =eij R — fij (29)

and withe,; +ie;; = e;, fr; +1fi; = f;. Thus,J coefficientsA;, B; can be, once and for all,
calculated. As above, the FFT algorithm is used to this pggpo

The iteration process is applied to egs. (26) and (27).,Firstt of/ values for they; coefficients
is guessed, allowing the right-hand side of eq. (26) to b&uaetad aJ equispaced intervals of the
unit circle of theA-plane. Since the left-hand side can be written as

J
dwe . .
Im < Y /\) = Z[Cj cos(jpoe) + Djsin(jpae)]
Poe j=0
with . }
Cj = e + finJ and Dj = —€rj + frjRJ,
J values ofC;, D; can be found by FFT algorithm, and finally, together with &), a set of

coefficientse;, f; can be determined. Being then possible, with these findingsjaluate the right-
hand side of eq. (27) and being

duw; d y
Re ( d“é <) =D Relg; exp(ij poi)l,
Pai 7=0

a new set of/ values for they; coefficients can be computed by FFT. The process, to enghésited
until convergence is achieved under a certain tolerancexample of solution is made in fig.[4]).

6 CONCLUSIONS

The paper gives both the theory and a practical way of impieaten for the problem of de-
termining the 2-dimensional motions of a flow in presence patch of vorticity. Unlike contour
dynamics [1], the treatment stands on more purely analygimainds by making systematic use of
complex analysis tools. In many aspects, the approach igaf aeronautical derivation for what it
inherits from airfoil design experience in exploiting corthal maps [11].

The unknown to solve for is the flow velocity of a nonviscousampressible fluid filling the
entire (xy) -plane of complex variable z = x + i y. It is chosenldok directly for the solution of
the instantaneous boundary-value problem for the compdésnpial around the given vortex. To



help its deduction, the shape of this vortex is previousysformed into the unit circles of two

parametric and distinct planes. The theory indeed develofhke basis of Riemann’s fundamental
theorem of conformal mappings and then goes along with deraiions on the analiticity properties
of those latter. While enforcing the matching of external axternal flows on the patch boundary,
it is exploited an equation already known in the field of ifdee dynamics [9] to compute the time
evolution of the parameters of the mappings, put in the rblyoamical variables of the problem.

The possibility of the presence as of a solid wall as of andtlbendary in pair with the vortex can

be handled. An example is visited and represented in figures.
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