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SUMMARY. We present some preliminary results regarding the response of a two-phase, rank-1
laminated dielectric composite subjected to large deformations, where the stress state in each phase
is obtained in terms of macroscopic deformation gradient and macroscopic nominal stress. It is
shown that, for some lamination angles, the performance of the composite –in terms of actuation
strain– is improved with respect to the homogeneous case.

1 INTRODUCTION
The class of electroactive polymers (EAPs) provides attractive advantages: they are soft, light-

weight, undergo large deformations, possess fast response time and are resilient. However, wide-
spread application has been hindered by their limitations: the need for large electric field, relatively
small forces and energy density. It is now recognized that the limitations arise from poor electro-
mechanical coupling in typical polymers. This in turn is related to the fact that the typical polymers
have a small ratio of dielectric to elastic modulus. Recent experimental findings [1, 2] suggest that
these difficulties can be resolved with the aid of composites made out of flexible matrices with
inclusions of high dielectric materials.

Analysis of the governing equations for the electromechanical response of composites under-
going finite deformations was initiated in [3]. In this work, starting from the fundamental balance
laws for the energy stored in the composite, and assuming that the energy-density functions for the
individual phases are known, we derive expressions for the stress state in each phase in terms of
macroscopic deformation gradient and macroscopic nominal stress. In a way of an example, we
determine actuation strains [4] of a laminated composite, demonstrating that indeed these strains can
be improved by considering composite dielectrics. We compare our findings with the corresponding
results of [3] that were determined by direct solution of the governing equations for the same class
of composites.

The theory of deformable dielectrics has been firmly established starting from the contributions
by Toupin [5] and Tiersten [6] and, more recently, by other authors (see, e.g., [7, 8, 9]). Even
though different formulations can be presented, it is based on the notion of a free-energy density H ,
sometimes called ‘electric enthalpy’, where the independent entries are the deformation gradient F
and the nominal electric field E◦, so that the constitutive equations for an incompressible material
can be formulated as (see the Appendix for a synopsis of the governing equations of a composite
dielectric under finite strain and for the notation used in this paper)

S =
∂H

∂F
− pF−T , D◦ = − ∂H

∂E◦ , (1)
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where S is the First Piola-Kirchhoff (or nominal) stress tensor and D◦ is the nominal electric dis-
placement vector.

2 HOMOGENEOUS MATERIAL
In this section we carry out the analytic solution of the coupled B.V.P. associated with an elec-

troactive actuator. We consider a strip of a homogeneous dielectric material, with an unstressed
thickness h◦, lying between two parallel and flexible electrodes with fixed potentials φ+ and φ−. To
this end we make the following assumptions:

1. The two electrodes remain straight and parallel during the deformation of the actuator.

2. The electrodes are flexible with a negligible elastic moduli and thus do not extract mechanical
traction on the dielectric layer.

3. We consider the deformation of the actuator due to electromechanical coupling but with no
external loads. Accordingly, the traction boundary condition is t = 0 .

4. The size of the circumferential boundaries of the layer is considerably smaller than the size of
the top and bottom boundaries which are in contact with the electrodes. Thus, we neglect edge
or fringing effects due to the potential field induced by the electrodes outside the actuator, and
assume that the electric field outside the dielectric vanishes identically.

The electric field in the reference configuration (i.e., E◦ = −Grad φ) due to the potential difference
is

E◦ = [0, E◦
2 ] , (2)

where E◦
2 is constant.

In a way of an example, we use the following expression for the energy-density function of the
electro-active polymer

H(F ,E◦) =
µ

2
(I1 − 3)− ε0ε

2
I5e, (3)

where the invariants appearing in (3) are defined as I1 = trC and I5e = E◦ · (C−1E◦).
Consider the boundary condition (38), in the case with no mechanical traction and neglecting

fringing field effects (i.e., σ0), we get σn̂ = 0 , for all n̂ , therefore σ = 0 . From the constitutive
equations, the total stress associated with (3) is

σ = µFFT + ε0εE ⊗E − pI = 0 , (4)

and the electric displacement is
D = ε0εE . (5)

Assuming a deformation gradient of the form

F =
(

F11 F12

0 1
F11

)
, (6)

we obtain the solution

F12 =0,

F11 =

[
1− ε0ε

µ

(
∆φ

h◦

)2
]− 1

4

.
(7)
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As the electric field squeezes the strip along direction x2, the component F11 represents the stretch
along the actuation direction x1 (F11 > 1).

3 A RANK-1 LAMINATED COMPOSITE
We consider now a heterogeneous dielectric electroactive actuator, with the same dimensions as

in the previous examples. In addition to the hypotheses presented in Sect. 2, we add the following
assumptions:

1. The characteristic size of the heterogeneity is much smaller than the size of the actuator.

2. The morphology of the actuator is such that the heterogeneous dielectric is macroscopically
homogeneous.

We note that with the above assumptions the boundary conditions applied to the actuator are
such that if it was made out of a homogeneous material the electrical fields within the actuator were
uniform. These type of boundary conditions are commonly being used to determine the effective
properties of composite materials. It can be shown that if the potential difference between the two
electrodes is φ̂ = −E0 · x , then the mean electric field

E ≡ 1
V

n∑
r=1

∫

B(r)
E

(r)
dV = E0, (8)

where V is the volume of the composite in the deformed configuration. Since we assumed that
the composite is macroscopically homogeneous, to determine the electric fields developing in the
composite it is sufficient to consider a unit volume element (in the deformed configuration) which
is representative of the composite microstructure and yet considerably smaller than the overall size
of the actuator. We require that within the unit volume element E = E0, and thus ensure that the
far-field boundary condition is satisfied in an average sense. With this requirement we need to solve
Maxwell’s equations (27) and (28) in the unit element together with the continuity conditions (29),
(30) and (31) and the constitutive relation (1) for a given composite. A parallel procedure can be
applied to obtain the macroscopic deformation gradient F .

We consider a rank-1 composite made out of two incompressible neo-Hookean phases in volume
fractions λ(1) and λ(2) = 1 − λ(1), respectively. The two phases are characterized by elastic shear
moduli µ(1) and µ(2), and dielectric constants ε(1) and ε(2). The lamination direction is singled out
by the unit vector normal to the layers plane n̂ (in the current state). The electrical field continuity
equation along the interface is

E (1)m̂ = E (2)m̂ , (9)

where E (i) is the electric field in phase (i) of the material and m̂ is an arbitrary unit vector in the
layers’ plane (both are in the current state). This equation can be expressed alternatively as

[[E ]] = E (2) −E (1) = kn̂ , (10)

where k is a scalar. The average electric field in the material (again, in the current state) can be
defined as

E = λ(1)E (1) + λ(2)E (2). (11)

Since the quantities we know by measuring or activating is the overall deformation gradient F and
the applied electric field E , we need to use them when expressing the nominal stress. Therefore,
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in this stage we pull back equations (10) and (11) to the reference state by using the relation E◦ =
FTE to get

(F (2))−TE◦(2) − (F (1))−TE◦(1) = kF−T n̂◦, (12)

and
F−TE◦ = λ(1)F−TE◦(1) + λ(2)F−TE◦(2), (13)

where n̂◦ is a unit vector normal to the phases interface pulled-back to the reference. We get from
these equations

E (1) = E − λ(2)kF−T n̂◦,

E (2) = E + λ(1)kF−T n̂◦.
(14)

In a similar approach [10] it can be shown that the relations between the phases deformation gradi-
ents and the average deformation gradient F are in the form:

F (1) = F (I + λ(2)ωm̂◦ ⊗ n̂◦),

F (2) = F (I − λ(1)ωm̂◦ ⊗ n̂◦).
(15)

The effective strain energy is in the form

H̄(F ,E◦, ω, k) = λ(1)H(1)(F ,E◦, ω, k) + λ(2)H(2)(F ,E◦, ω, k), (16)

where ω(F ) and k(F ,E) are scalar parameters, which can be evaluated from the strain continuity
and electric displacement continuity on the interface, respectively (see [3]). Alternatively, these
parameters should agree with the equations [10]

∂H̄

∂ω
=

∂H̄

∂k
= 0. (17)

In either way, we get for ω and k the following expressions, respectively

ω =
µ(2) − µ(1)

λ(1)µ(2) + λ(2)µ(1)

(Fn̂◦) · (Fm̂◦)
(Fm̂◦) · (Fm̂◦)

, (18)

k =
ε(1) − ε(2)

λ(1)ε(2) + λ(2)ε(1)

E · (F−T n̂◦)
(F−T n̂◦) · (F−T n̂◦)

. (19)

Let us assume an effective electric enthalpy for phase (i) in the form

H(i)(F ,E◦) =
µ(i)

2
(I(i)

1 − 3)− ε0ε
(i)

2
I
(i)
5e , (20)

where

I
(i)
1 = Tr[(F (i))TF (i)] = Tr[(I ± λ(3−i)ωn̂◦ ⊗ m̂◦)C (I ± λ(3−i)ωm̂◦ ⊗ n̂◦)], (21)

and
I
(i)
5e = E◦(i)(F (i))−1(F (i))−TE◦(i). (22)
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An explicit expression for the nominal macroscopic total stress can be calculated by equation (1) to
yield

S =λ(1)
(
µ(1)F (I + λ(2)ωm̂◦ ⊗ n̂◦) + σ

(1)
MXF−T

)
+

λ(2)
(
µ(2)F (I − λ(1)ωm̂◦ ⊗ n̂◦) + σ

(2)
MXF−T

)
− pF−T ,

(23)

where the expressions for the Maxwell stress σ
(i)
MX in the two phases are

σ
(1)
MX = ε0ε

(1)(E − λ(2)kF−T n̂◦)⊗ (E − λ(2)kF−T n̂◦), (24)

σ
(2)
MX = ε0ε

(2)(E + λ(1)kF−T n̂◦)⊗ (E + λ(1)kF−T n̂◦). (25)

This expression for the effective nominal stress tensor of the composite agrees with the results pre-
sented in [3] obtained solving directly the boundary-value problem.
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Figure 1: Overall longitudinal strain of a rank-1 laminated dielectric composite actuator (geometry
described in Sect. 2) as functions of the volume fraction and lamination angle of the layers. The
material parameters are µ(1) = 1000 MPa, µ(2) = 8 MPa, ε(1) = 1000, ε(2) = 8 and the applied
electric field is E = 100 MV/m.

The longitudinal (actuation) strain (along direction x1) of the heterogeneous actuator is reported
in Fig. 1 in terms of volume fraction of phases (left) and lamination angle (right). The parameters
of the two dielectrics (shear modulus and dielectric constants) are taken in such a way the actuation
strain would be the same if the device was homogeneous, of either phase 1 or 2 (approx. 2.2 %). It
is shown that while volume fraction has small influence on the overall response, the actuation strain
is very sensitive on the lamination angle. For angles greater than 45◦ the composite gives a better
performance with respect to the homogeneous case for all volume fractions.
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APPENDIX: GOVERNING EQUATIONS OF A DIELECTRIC, COMPOSITE BODY
The governing equations of a dielectric composite are described in the quasi-(electro)static limit,

so that no electromagnetic effects will be accounted for. x denotes points of the solid belonging to
the current configuration B, that is composed of n phases (B = ∪n

j=1B
(j)); B(0) = R3 − B is the

external domain of the composite, therefore ∂B is the interface between B and B(0), while a generic
interface between phases j and k (j, k = 1, . . . , n; j < k) will be denoted by Ξjk (Ξ = ∪jkΞjk).
Interfaces Ξjk and ∂B = ∪n

k=1Ξ0k are assumed to be sufficiently regular so that a unit normal n
is defined almost everywhere pointing to j and away of k (j < k). Across interfaces, appropriate
jump conditions must be enforced. To this end, the jump operator [[ · ]] = ( · )j− ( · )k (j < k) will be
adopted. The boundary ∂B can be subdivided in regions ∂Bt, where (mechanical) surface tractions
t are applied, and ∂Be, where an electrode sets a constant electric potential φ with a free-charge
density equal to ω.

Under the action of an external electric field, a polarization field P(x ) arises within B. If E(x )
indicates the current electric field, φ(x ) the electric potential, and

D(x ) = ε0E(x ) + P(x ) (26)

the electric displacement field, the equations of electrostatics write

E = −gradφ, in B ∪B(0), (27)

divD = 0, in B ∪B(0), (28)

as free charge per unit volume vanishes, whereas jump conditions across interfaces are

[[D ]] · n = 0, across Ξ, (29)

[[D ]] · n = ω, across ∂Be. (30)

The tangential component of the electric field E is continuous across interface, therefore

n × [[E ]] = 0 , across Ξ ∪ ∂Be, (31)

that means
[[E ]] = ([[E ]] · n)n . (32)

A reference configuration B◦, whose points are labelled as x ◦, is also defined together with a
deformation map χ such that x = χ(x ◦) and F = Gradχ (B(0)

◦ = R3 −B◦).
In the absence of (mechanical) body forces, local equations of equilibrium can be expressed as

divσ = 0 , σ = σT , in B, (33)

divσ0 = 0 , σ0 = σT
0 , in B(0), (34)

where σ is the ‘total stress’ in the medium1, while the divergence-free tensor σ0 is the Maxwell
stress in vacuum, where only electrical effects associated with E are present, of the form

σ0 = ε0E ⊗E − ε0

2
(E · E)I . (36)

1The tensor σ can be formally decomposed into two parts (σ = σMC +σMX ), where the second term, called ‘Maxwell
stress’ by Toupin, corresponds to

σMX = ε0E ⊗ E + E ⊗P − ε0

2
(E · E)I = E ⊗D − ε0

2
(E · E)I , (35)

with the property div σMX = gradEP .
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Across interfaces, jump conditions write

[[σ]]n = 0 across Ξ ∪ ∂Be, (37)

[[σ]]n + t = 0 across ∂Bt, (38)

where t is the applied mechanical traction.
The Lagrangian version of the equilibrium equations follows directly from the framework de-

scribed above and is based on the ‘first Piola-Kirchhoff stress’ S = JσF−T , while Maxwell equa-
tions can be written in terms of the Lagrangian or nominal electric field and electric displacement

E◦ = FTE , D◦ = JF−1D , (39)

respectively. These fields satisfy a set of “reference electrostatic equations” (see reference [7]).
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