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SUMMARY. A criterion for model admissibility is proposed and discussed for applications in the 

field of model updating in presence of uncertainties. The criterion is cast in the framework of 

interval algebra and precede the model calibration process. The concepts are applied to the case 

study of a railway bridge. Two models of the bridge with different complexity are implemented, 

analyzed for admissibility and then calibrated. The solutions are discussed to show how the 

interval approach can help in providing better insight into the modelling effectiveness and validity. 

1 INTRODUCTION 

Calibrated finite element (FE) models are used in a variety of situations that range from the 

response prediction to the damage evaluation of mechanical systems [1,2]. The results depend on 

the accuracy of the calibration that is checked against a set of experimental data. It is customary to 

consider amendable the FE model parameters and to assume “true” the experimental data.   

Calibration involves optimization [3] and therefore a trade off between model complexity and 

number of parameters is one of the main concern of the problem. In fact, the increase of the model 

complexity is supposed to reduce the modelling errors at the expense of augmenting the model 

parameters. This process generally hampers the ill-conditioning of the problem as the amount of 

initial information (experimental data) could not prove sufficient to correct a large number of 

parameters. 

Sub-structuring or model reduction are alternatives to overcome this inconvenient. However, 

both cases suffer from some problems. In the first case the amendable parts of the model should be 

known in advance; in the second case the condensed parameters could not result physically 

representative [4]. In addition, both the model and the experimental data are affected by errors that 

should be considered for a meaningful calibration.  

In this work the model calibration problem is investigated taking into account the effects of the 

model complexity in presence of experimental and modelling errors. The problem, already 

addressed by the authors [5], is herein reconsidered and applied to a case study concerning the 

calibration of a railway bridge deck. 

Model parameters and experimental measures are both assumed errors biased and are 

considered as uncertain quantities. These latter are mathematically represented through intervals 

and the problem of model calibration is formulated in the framework of interval algebra [6,7]. In 

this context it is possible to introduce a measure of the capability of the model to reproduce the 

observed data. This is termed model admissibility and is quantified by the degree of superposition 

between two n-dimensional intervals that stand respectively for the experimental data and their 

numerical counterparts.  

The calibration process is divided in two steps: first a check of the model admissibility is 

performed and, if successful, the model calibration is carried out. The process is applied to two 

very different models of the same structure, according to a fixed set of experimental measures, to 



find out the influence of the model uncertainties on the solution.  

The case study is a railway bridge deck. The deck is a simply supported grillage of precast and 

prestressed concrete beams for which modal data are known by an independent experimental 

campaign. Simple sectional models of the deck are considered together with grillage models with 

increasing number of parameters. Model calibration is performed for each modelling level and the 

results compared and discussed.  

2 INCLUSION AND ADMISSIBILITY 

In this paper it is supposed that the experimental response of a structure to an external 

excitation is measured and known at least with some uncertainty. The goal is to evaluate if a 

possible numerical model of the structure can be considered admissible in the sense that it should 

be capable to reproduce the experimental response within plausible physical ranges of the model 

parameters.  

2.1 Concepts of interval algebra 

An uncertain quantity is here represented by an interval number and the notation used in the 

text to distinguish intervals by standard crisp numbers is as follows (bold letters are reserved for 

vectors or matrices): 

 

 [x] = [xinf, xsup] = xc+!x·[e!] (1) 

 

where the range of values attainable by [x] are bounded by the infimum xinf and supremum xsup 

limits; alternatively xc = (xinf + xsup)/2, [e!] = [-1,1] and !x = (xsup – xinf)/2 are respectively the 

central value, the unit interval and the uncertainty radius. A conventional number, or crisp quantity, 

corresponds to the degenerate interval xinf = xsup= xc. Geometrically, crisp quantities are points in 

an Euclidean space, whereas intervals are boxes in the n-dimensional space that degenerate to 

rectangles and to segments respectively in the 2- and 1-dimensional spaces.  

The standard Moore’s algebra between intervals is defined by crisp operations between the 

interval limits xinf, xsup [5] and since intervals are also special kind of sets, both algebraic and set 

operations make sense. It is important to underline that in both cases the result of an interval 

evaluation is a new interval that includes all the possible results obtainable when every variable is 

made to vary arbitrarily within its limits. This aspect of interval computation is called 

“dependency” and its effect is to widen the uncertainty of the result as compared to the original 

uncertainty of the data. 

A crisp function f of the variable x is represented by f(x). Similarly, an interval function is 

denoted by f([x]) and can be defined as the natural extension of f(x) provided that every single 

occurrence of the variable x is substituted by [x] in f(") and that f([x, x]) = [f(x),f(x)]. When the 

interval evaluation of f([x]) is the interval [y] that contains all possible y = f(x) values for any x#[x], 

the inclusion property holds for f([x]).  

As a consequence of the dependency [6,7], standard interval algebra leads to overestimate the 

[y] bounds. Different strategies have been proposed and can be adopted to mitigate the 

overbounding, however this leads to a lack of uniqueness in the [y] computation. An example is 

provided below after the introduction of the admissibility concepts.  

2.2  Admissibility criterion 

The numerical model of a structure is endowed with some uncertainty due to errors related to 



model order and modelling assumption. In the paper, uncertainty is restricted to the model 

parameters [k] related to the structure stiffness. Generally, in the real world, also the experimental 

response is endowed with a certain amount of uncertainty. In this instance the crisp vector $ e, that 

collects the measures, is substituted by the interval vector [$ ]e. 

The admissibility conditions derive from the comparison between the output of the model 

[$] = [f([k])] and the experimental measures [$]e by way of the comparison function 

[f([k], [$]e)] = [$] % [$]e. In this context admissibility is strictly related to the inclusion property 

of the interval functions. The possible situations are summarized in equation (2) and in Figure 1: 

 

 

 

(a) [! ]" [! ]e = [! ]e

(b) [! ]" [! ]e # [! ]e

(c) [! ]" [! ]e = $

 (2) 

 

  
 Figure 1. Inclusion/admissibility in the space of the measures 

 

By virtue of the inclusion property, in the case (a), where a complete inclusion holds, the 

model is considered admissible. On the contrary, the case (c) indicates a non-admissible model 

because no intersection exists between experimental and numerical responses. The case (b) 

corresponds to an intermediate and indefinite situation. It can be considered identical to case (a) 

for crisp measures, but does not lead to a unique conclusion for interval measures. In this latter 

circumstance, the model can be considered admissible or not depending on the amount of 

intersection. In this work, the inclusion property in the strict sense is considered and therefore the 

case (b) corresponds to a non-admissible model. 

In conclusion, the comparison function allows to characterize the model by checking its 

admissibility with respect to the known measures. An important consequence is that if the model 

ensues non-admissible, then it is necessary to revise the modelling options adopted. It is also 

observed that the conditions stated by equation (2) can be used as well within model updating 

methods. In [5] the authors developed the INTIM interval updating method, in which the inclusion 

property and the intersection criterion are used in place of conventional objective functions. 

2.3 Inclusion property 

The presented approach relies upon the inclusion property. For a quite general kind of interval 

functions this property is guaranteed by the inclusion theorem [7]. However, the literature [8] 

points out that the inclusion is satisfied at the expenses of large overbound, in the model response, 

due to uncertainty propagation. Severe overbounding can lead to cases in which standard interval 



analysis turns out to be useless from an engineering point of view. This topic is currently under 

investigation and computational alternatives are proposed to perform interval computations 

capable to limit overbounding problems, yet preserving the inclusion property. 

 

 (a)  

 (b) 

 Figure 2. Computational alternatives to interval-include a sample function. 

 

An example is shown in Figure 2, where different interval evaluations of the same sample 

function are shown. In order to appreciate the results, it should be observed in advance that Figure 

2a is the same as Figure 2b, but zoomed along the y axis (x axis unchanged). The crisp function 

y = f(x) should be interval evaluated providing for inclusion. The function is non-monotonic and 

has one maximum ymax and one minimum ymin in [x] = [-0.1, 2.1] where it must be evaluated. The 

exact (not overbounded) interval solution would be [y] = [ymax, ymin].  

The function domain is properly selected to show that for non-monotonic functions the  

computation of [y] is not trivial. In fact, when f(x) is monotonic the solution is simply given by 

[y]lu = [f(xinf), f(xsup)] that clearly underestimates and does not include the true solution, Figure 2a. 

Such solutions cannot be used in the admissibility criterion.  

The straightforward application of the interval algebra rules would lead to the interval [y]ia, 

Figure 2b, with excessive overbounding. This aspect turns out to be explosive in some 

circumstances and should therefore be controlled during interval evaluations. An alternative to 

reduce the excess of overbound is given by [y]hu that correspond to a partitioning of [x] and 

reassembling of the results [9]. Theoretically, the best interval inclusion (no overbounding) can be 

obtained by solving two global optimization problems to get [y]op = [min(f(x))[x], max(f(x))[x]], 



Figure 2a. However this approach is presently unfeasible from a computational point of view. 

Different strategies can be devised to obtain inclusive intervals with limited overbounding. One of 

these [y]is is presently under consideration by the authors since it can provide an overbounding of 

order 1%. This strategy is applied to the case study reported below. In particular it is used in 

conjunction to methods [10] for the interval evaluation of frequencies.  

Finally, it is worth noticing that the inclusion property, no matter on how the overbounding is, 

holds for all of the methods above and allows to apply the admissibility criterion (2). This latter 

however can be compromised and made useless for large overbounding.  

3 CASE STUDY 

The above concepts are illustrated through their application to the Sinello railway bridge 

located between Termoli and Vasto in the southern Italy, Figure 3. The central values and the 

uncertainty intervals of both the modal parameters and the mechanical parameters are available 

from previous experimental investigations. The masses are assumed known crisp quantities, 

therefore only the stiffnesses need to be tuned until the numerical frequencies include the 

experimental ones. For simplicity, only the elastic modulus is adjusted since it acts as a scale 

factor for the stiffnesses. 

The bridge is a four-spans post-tensioned concrete railway bridge with a service life of about 

30 years. The bridge deck has the static scheme of a simply supported grillage and is 

representative of many Italian railway bridges. The grillage, with the span length of 20 m, is 

composed by 5 longitudinal beams and 4 transversal beams and rests upon steel supports at the top 

of the piers.  

 

 

 
 

 Figure 3. Longitudinal view of the bridge. 

 

The dynamic behaviour of the bridge deck was identified under service conditions. To this end 

the response to the trains transit was recorded and processed. Several dynamic tests were 

performed for different train speeds and weights. The vertical motion of the deck was recorded 

using 8 accelerometers arranged to capture the global bending and torsion modes of the deck.  

The results of the data processing show that the first two frequencies, i.e. the first bending 

mode and the first torsion mode of the deck, vary in the ranges [!1]e = [7.22,7.29] Hz and 

[!2]e = [8.53,8.76] Hz. It is worth noticing that the said intervals are relatively narrow, therefore 

both frequencies are characterized by small uncertainty, 0.5% and 1.3% respectively. In a crisp 



setting the corresponding values would be the central values of the above ranges, i.e. 

!1c,e = 7.25 Hz and !2c,e = 8.64 Hz.    

 

 

 
 

 Figure 4. Transverse section and sectional model (Model I) of the bridge deck 

 

  
 Figure 5. Grillage FE model (Model II) of the bridge deck 

 

In situ NDT tests were also performed to confirm the design assumptions for the elastic 

modulus Ed = 3.60·10
7
 kN/m

2
. The measured values are well above Ed and fall in the range 

[E]e = [3.78,4.10]·10
7
 kN/m

2
 with central value Ec,e = 3.94·10

7
 kN/m

2
 and relative uncertainty 

!% = 100· !E/Ec,e = 4%. If the uncertainties of !  and E are compared, it is seen that !E% is about 

an order of magnitude greater than !!1%. 

Two different modelling options are used to simulate the modal behaviour of the bridge: one is 

strongly condensed, Figure 4, and the other is of conventional type, Figure 5. The condensed 

model, Model I, is the simplest model capable to account for the fundamental deck modes 

(bending and torsion). It is a sectional model coherent with the hypothesis of rigid body motion of 

the transversal section. The longitudinal beams act as condensed masses and springs with 

appropriate bending kL and torsional k& stiffness. Assuming a sinusoidal deformed shape of the 

beam, the Ritz method gives: kL = '
4
EI/(2L

3
), k& = '

2
GJ/(2L), where E is the Young modulus, G is 

the shear modulus, I is the flexural moment of inertia, J is the torsional inertia constant and L is the 

beam span length. The lumped masses are accordingly calculated as m = µL/2, being µ the mass 

density per unit length. The conventional model, Model II, is a detailed FE grillage whose 



geometry closely reproduces even minor changes in the beams and deck geometry.  

The modal response of Models I and II is first crisp evaluated using the design value Ed for the 

elastic modulus, Figures 6, 7. The comparison of the results gives the initial discrepancy between 

the two models. It is observed that both models share the same phenomenological aspects of the 

first two mode shapes, yet Model I results slightly less stiff than the Model II as can be appreciated 

by the frequencies listed in Table 1.  

 

  
(a) (b) 

Figure 6: Model I –1
st
 mode (a) and 2

nd
 mode (b)   

 

 
(a) (b) 

Figure 7: Model II –1
st
 mode (a) and 2

nd
 mode (b) 

 

 

 Model I Model II !% 

!1 [Hz] 6.66 6.94 4% 

!2 [Hz] 7.89 8.37 6% 

 

 Table 1: Crisp frequencies for E = Ed. 

 

4 MODEL CALIBRATION 

Model calibration is here intended as the tuning of the parameters such that the model response 

matches, in the sense of a prescribed criterion, some experimental measures. In a deterministic 

setting this means to find the parameters that minimize the distance between the experimental and 

the numerical outcomes. On the contrary, in an interval setting, this means to find the parameters 

that allow the numerical outcomes to include the experimental ones with the minimum degree of 

uncertainty. This is equivalent to say that both the central value and the interval radius are to be 

optimised. Accordingly, the interval calibration is performed in two steps. In the first step the 

central value of the parameters is kept fixed and an admissibility interval is searched increasing 

only the radius until a complete inclusion of the whole experimental response is achieved. Once 

find the admissibility interval a second step is preformed to find, inside of it, an optimal interval in 

the sense that the inclusion is obtained with a minimum radius and a different central value.  

In the following the calibrations steps are applied to both Models I and II with the purpose to 

discuss how the above process can be help at evaluating the admissibility of the model and the 



range of validity. For simplicity only the elastic modulus of the longitudinal beams is subjected to 

calibration. This assumption does not affect the qualitative aspects of the results, in fact the joint 

treatment of more parameters is only a problem of computational type.  

Two aspects are important to be underlined: first, that uncertainty is a variable of the problem 

and affect both the bridge response and the bridge mechanical properties; second, that the 

soundness of the identified parameters can be checked against the measured values of the 

mechanical properties.  

4.1 Step 1 – Admissibility interval 

The measured elastic modulus [E]e is assumed as the initial estimate and inserted in Model I 

and II. The comparison is initially carried out using the crisp values for the experimentally 

evaluated frequencies, !1c,e = 7.25 Hz and !2c,e = 8.64 Hz. From Table 2 it is seen that the 

numerical frequencies computed by Model II include !1c,e and !2c,e; hence [E]II = [E]e. The same 

does not happen for Model I that is not capable to include !1c,e and !2c,e with [E]e. It should be 

concluded that Model I does not match the requirements of admissibility. Nevertheless it is 

instructive to analyse what happens if the interval of the parameters is widened. The relative 

uncertainty is increased to 6%, 8% and 10%. Only in this latter case the numerical frequencies 

computed by Model I include the experimental ones. The set of parameter values for which 

Model I is inclusive, or admissible, is [E]I=[3.546, 4.334]·10
7
 kN/m

2
. 

In conclusion, even if referred to different uncertainty levels, both Models I and II satisfy the 

inclusion (2) and can be considered admissible. However, Model II appears physically grounded, 

whereas Model I needs excess of uncertainty to be inclusive. This result seems to suggest an 

apparent obvious conclusion: the solution converges towards the experimental behaviour as the 

degree of model refinement increases, i.e. uncertainty reduces and intervals shrink to crisp values. 

However a definite sentence can be given only after the second calibration step. 

 

Model I  [!1] (Hz) [!2] (Hz) 

[E]/10
7
 (kN/m

2
) !% num. exp. inclusion num. exp. inclusion 

[3.782, 4.098] 4% [6.83,7.11] no [8.09,8.42] no 

[3.704, 4.176] 6% [6.76,7.18] no [8.01,8.50] no 

[3.625, 4.255] 8% [6.68,7.24] no [7.92,8.58] no 

[3.546, 4.334] 10% [6.61,7.31] 

7.25 

yes [7.83,8.66] 

8.64 

yes 

 

Model II  [!1] (Hz) [!2] (Hz) 

[E]/10
7
 (kN/m

2
) !% num. exp. inclusion num. exp. inclusion 

[3.782, 4.098] 4% [7.02, 7.49] 7.25 yes [8.63, 8.89] 8.64 yes 

 

 Table 2: Results of model calibration – step 1. 

 

4.2 Step 2 – Interval calibration 

The admissibility intervals [E]I and [E]II are the smallest intervals that satisfy the inclusion (2). 

However they have been evaluated under the condition of fixed central value. The central value is 

a position of mathematical convenience, and the related point in the interval has no particular 

physical property to be preferred to other points of the interval. Any point belonging to an interval 



has the same chance to be physically representative of the structure properties.  

Therefore, it is plausible to search subintervals of [E]I and [E]II for which the inclusion (2) is 

still verified. These sub-intervals will be those endowed with the minimum uncertainty level. Of 

course, in doing that the central value should be let free to move inside [E] in order to 

accommodate the position of the sub-intervals. An algorithm based on the bisection rule is used on 

purpose [4]. 

The results of this step are given in Table 3. Here, for generality, both the crisp !1c,e, !2c,e and 

the interval evaluated [!1]e = [7.22,7.29] Hz, [!2]e = [8.53,8.76] Hz experimental frequencies are 

considered. When !1c,e and !2c,e are used, the relative uncertainty on the parameters can be 

reduced to !% = 1% for Model II and !% = 2% for Model I as compared to 4% and 10% of step 1.  

On the contrary, when [!1]e and [!2]e are used, then the relative uncertainty on the parameters 

slightly increases, as expected: !% = 3.3% for Model II and !% = 2.8% for Model I; but 

surprisingly, Model I now performs better than Model II. This results shows that Model I is 

anyway robust particularly in the presence of uncertainties and can be used, with some cautions, 

either for qualitative and for quantitative simulations. 

 

Model I  [!1] (Hz) [!2] (Hz) 

[E]/10
7
 (kN/m

2
) !% Num. exp . crisp num exp. crisp 

[4.260, 4.320] 2% [7.24, 7.30] 7.25 [8.59, 8.65] 8.64 

 Num. exp . unc. num exp. unc. 

[4.200, 4.440] 2.8% [7.20, 7.40] [7.22,7.29] [8.52,8.77] [8.53,8.76] 

 

Model II  [!1] (Hz) [!2] (Hz) 

[E]/10
7
 (kN/m

2
) !% Num. exp . crisp num exp. crisp 

[3.826, 3.934] 1 % [7.15, 7.25] 7.25 [8.63, 8.75] 8.64 

 Num. exp . unc. num exp. unc. 

[3.733, 3.987] 3.3% [7.06, 7.30] [7.22,7.29] [8.52, 8.81] [8.53,8.76] 

 

 Table 3: Results of model calibration – step 2.  

 

5 CONCLUSIONS 

In this paper an admissibility criterion based on interval analysis concepts is used to evaluate 

the soundness of numerical models and to calibrate them against experimental data. 

Mathematically, admissibility is made equivalent to the inclusion property of interval functions. In 

this respect, strategies should be devised to limit the overbounding due to interval computations. 

The criterion is applied to the case study of a railway bridge. Two models of the bridge with 

different complexity are considered and compared. Model I is made by rigid bodies with lumped 

masses and stiffnesses, Model II is a conventional FE grillage model. 

The model calibration is performed in two steps. First the admissibility interval of the model 

parameters is sought for; next this interval is optimised and reduced to the interval of minimum 

radius of uncertainty. The calibration process shows that Model II is generally preferable and 

satisfies admissibility with lower uncertainty with crisp data. Model I should compensate the 

model simplicity with larger uncertainty to be admissible, but shows robust and performs better if 

uncertain data are considered.  

 



 

References 

[1] Doebling, S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W., “Damage identification and 

health monitoring of structural and mechanical systems from changes in their vibration 

characteristics: a literature review”, Technical Report LA-13070-MS, Los Alamos National 

Laboratory, Los Alamos, NM (1996).  

[2] DAMAS 2007- VII International Conference on Damage Assessment of Structures, Torino, 

Italy, 25-27 June, (2007).  

[3] Friswell, M.I. and Mottershead, J.E., Finite Element Model Updating in Structural Dynamics, 

Kluwer Academic Publishers (1995). 

[4] Mottershead, J.E. and Friswell, M.I., “Model updating in structural dynamics: a survey”, 

Journal of Sound and Vibration, Vol. 167, No. 2, pp. 347–375 (1993). 

[5] Gabriele, S. and  Valente, C., “An interval-based technique for FE model updating”,  Int. J. 

Reliability and Safety, Vol. 3, Nos. 1/2/3, pp. 79–103 (2009). 

[6] Moore, R.E., Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ (1966). 

[7] Hansen, E.R. and Walster, G., Global Optimisation Using Interval Analysis, 2nd ed.,  Marcel 

Dekker, Inc., New York (2004).  

[8] Muhanna, R.L., Solin, K.V., Chessa, J., Araiza, R. and Xiang, G., “Interval finite element 

methods: new directions”, in Proc. of the NSF Workshop on Reliable Engineering Computing 

(Modelling Errors and Uncertainty in Engineering Computations), Savannah, Georgia, USA 

(2006). 

[9] Gabriele, S. and Culla A., “Comparison of statistical and interval analysis for the energy flow 

uncertainties in structural vibrating systems”, Journal of Sound and Vibration, Vol. 314, pp. 

672–692 (2008). 

[10] Shalaby, A.M., “The interval eigenvalue problem: review article”, in Proc. of ECCOMAS, 

Barcelona (2000). 

 


