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SUMMARY. The present work is a first step towards a refined modeling and simulation of the dissi-
pative phenomena characterizing carbon nanotube composites. In the past decade, nano-structured
materials have gained significant importance from an engineering point of view for the wide range
of applications that require high levels of structural performance and multifunctionality. We propose
a numerical investigation of the vibratory behavior of a suitable equivalent continuum model within
a linearized elastodynamic context. The continuum model is based on the homogenization proce-
dure of Mori and Tanaka which derives the elastic properties of the composite material by means
of the Eshelby theory for elastic inclusions embedded into an elastic hosting material. Within this
framework, we study the modal properties of the equivalent continuum in terms of vibration modes
and frequencies, which clearly highlight the enhanced elastic properties due to the presence of CNT
inclusions. We also pause to elaborate on the homogenization procedure by itself since several ways
can be explored to obtain the elastic tensor of the equivalent continuum. While such approaches are
completely equivalent in providing the linear elastic response, they may suggest different ways of
setting up a nonlinear procedure that describes effectively the internal interfacial dissipation.

1 INTRODUCTION
Carbon nanotube-reinforced composites exhibit significant dissipative phenomena which are

strictly related to the processes of interfacial damping between nanotubes and hosting matrix. The
real physical process develops in a highly complex fashion and leads to a wide scattering of the
mechanical performance of the nano-composites. The interfacial areas between nanotubes and poly-
meric matrices turn out to be order-of-magnitude greater than those of traditional composites. Free
and forced vibration tests were conducted in [1] on samples in the form of cantilevered beams to
characterize the natural frequencies and the modal damping ratios. They observed that the enhance-
ment in damping ratio (up to 700% increase for a multi-walled nanotube–epoxy beam as compared
to the plain epoxy beam) is more important than enhancement in stiffness by using carbon nanotube
reinforcement.

Besides the aforementioned works, a few studies have addressed some aspects of the vibratory
behavior of carbon nanotubes and their composites. Among these aspects, it is worth mentioning
modeling approaches and simulation of vibrating nanotubes, studies of nanomechanical resonators
and oscillators, the use of vibration measurements to characterize the nanotube mechanical proper-
ties, nanotube augmentation of dynamic structural properties of composites, vibrations of nanotube-
based sensors and actuators [2].

Nonetheless, even in the context of simplified models according to which the dissipation takes
place only along the axial direction of the nanotubes (see, for instance, [3]), a suitable equivalent con-
tinuum representation needs to be validated through different and complementary approaches, unless
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one aims to rely on highly sophisticated multiscale computations which are hard to be handled and
very costly. Most of the equivalent-continuum approaches are based on the Eshelby theory [4] and its
generalizations to heterogeneous bodies made of a hosting material with embedded inhomogeneities
(fibers, particles, carbon nanotubes, voids, and so on). Among various methods that have attempted
to generalize the Eshelby theory, we employ one of the most widely used approaches, namely, that
due to Mori and Tanaka [5]. From a physical and mathematical point of view, the interfacial condi-
tions between hosting and embedded materials play the most crucial role [6]; these conditions can
be treated in several ways within the homogenization procedure. An attempt of making order out of
the multitude of seemingly different approaches can be found in Benveniste [7].

We hence start from considering the results presented in [7] with the aim of highlighting some
general aspects and laying down alternative procedures to determine the equivalent elastic properties
of the composite materials. This paves the way towards a suitable framework for improving the
model in view of future works, by directly accounting for the nonlinearities.

Along these lines, we perform some numerical tests within the context of linearized elasticity,
by comparing the proposed model with both numerical and experimental results from the literature.
We show that the theoretically obtained bounds on the elastic properties prove to be very close to
those measured through careful experiments reported in the literature. In agreement with previous
theoretical studies, reinforcement with carbon nanotubes is clearly capable of enhancing the longitu-
dinal Young’s modulus of nano-composites. The extent of enhancement is a function of alignment,
volume fraction of nanotubes, and the type of matrix material. The improvement of mechanical per-
formance, relative to the pure uniform matrix, achieves a maximum when the carbon nanotubes are
uniformly aligned with the loading direction and the difference in the elastic modulus of the matrix
and the carbon nanotubes is the highest. These fundamental elastic properties are shown to reflect
themselves into the modal vibrational signatures of the nano-composites.

2 EQUIVALENT ELASTIC MODEL
The equivalent continuum model considers a low volume-fraction dispersion of cylindrical in-

homogeneities, representative of the carbon nanotubes, embedded into a linearly elastic isotropic
matrix. There are different ways of constructing such a model, as shown in several works dealing
with the general problems of equivalent continuum characterization of a composite material where
the inhomogeneities, treated as inclusions, can be representative of fibers or particles or defects [6].
Broadly speaking, two approaches may be distinguished. One approach formulates the configura-
tional forces acting at the interface between the two materials. The other approach, widely used in
computational schemes, carries out directly a continuum (macroscopic) elastic characterization on
the basis of suitably assumed stress and deformation patterns. The second approach can be direct or
be grounded on energy considerations [7].

The nano-structured composite material is made of two domains denoted BM (hosting matrix)
and BC (carbon nanotubes), such that B = BM ∪ BC is the reference configuration of the composite
material. A representative quantity of the relative sizes of the two domains is the volume fraction
nC = VC/V , VC and V being the volumes of the carbon nanotubes and of the overall composite
material, respectively.

The proposed model is framed within the Eshelby theory for elastic inclusions. The original
theory [4] is restricted to one single inclusion in a semi-infinite elastic, homogeneous and isotropic
medium. The theory, generalized by Mori and Tanaka [5], allows to extend the original approach to
the practical case of multiple inhomogeneities and a finite domain for the composite material [8]. In
both cases there is an apparently similar but different definition of the Eshelby tensor, which depends
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on how the stress distribution is described in the hosting matrix material caused by the eigenstrain
originated through the inclusion (see [9] for more details). When the equivalent elastic properties
are considered to be independent of such eigenstrain field, the most straightforward way to account
for the presence of the inhomogeneities is to consider averaged strains and stresses.

Within this framework, let LM and LC be the elastic tensor of the matrix and of the carbon nan-
otubes, respectively. The constructed theory leads to a macroscopic equivalent elastic constitutive
equation for the composite material in the form

T̂(E) = L : E(x), x ∈ B (1)

where the stress tensor T and the infinitesimal strain tensor E have to be interpreted as the tensorial
quantities describing the equivalent elastic continuum. The Gibbs notation is adopted throughout
this manuscript; (:) indicates the standard inner product between tensors, and (·) will henceforth
denote the standard dot product in Euclidean space IE3.

We employ either Voigt’s uniform strain assumption (E = E0 with E0=uniform) or Reuss’s
uniform stress (T = T0 with T0=uniform) depending on the type of chosen approach, the stiffness
or the flexibility approach. The main ansatz for the development of the equivalent continuum theory
are the following:

E = nM EM + nC〈EC〉 = E0 (2a)
T = nMTM + nC〈TC〉 = T0 (2b)

where (nM, nc) denote the volume fractions of the two phases; EC and TC are the orientation-dependent
average strain and stress tensors, respectively, in a typical individual inclusion, and the brackets
denote an average over all possible orientations of the inhomogeneities; EM and TM are the average
quantities in the matrix; E and T denote the overall average strain and stress tensors in the composite
material.

Together with assumption (2), we express the linearly elastic constitutive laws regarding the two
materials separately as:

TM = LM : EM (3a)
TC = LC : EC (3b)

The Eshelby equivalence allows us to relate the stress in the matrix with the stress in the inclusion.
This is possible by introducing the eigenstrain E* acting in the inclusion:

TC = LM : (EC − E*) (4a)

This equation states that, to within a suitable eigen-strain in the inclusion, the same constitutive
equation can be used to express the stresses in the two materials. In the same way, in terms of the
strains in the two materials, we can consider EC equivalent to EM to within a perturbation strain ẼC,
and thus rewrite (4a) as

TC = TM + LM : (ẼC − E*) (4b)

Sophisticated methods can be conceived depending on how strong the influence of the material
phases is considered in terms of the inhomogeneity volume fraction with respect to the volume
matrix (for a deeper insight see [10]). The Mori-Tanaka method moves along these lines [5] aiming
at a proper account of higher volume fractions of interacting particles.
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The elastic constitutive law of the equivalent continuum is obtained starting from a few assump-
tions regarding the relationships between the average strain and stress tensors. These relationships
are given by (2) and by the following equation:

LM : (EC − E*) = LC : EC (5)

obtained by combining (3b) and (4a). In particular, by recasting (3) and (4), the strain fields can be
expressed as perturbations of the average strain according to

EM = E + ẼM (6a)

EC = EM + ẼC (6b)

ẼC = S : E* (6c)

where ẼM denotes the average perturbed strain in the matrix due to the presence of the inclusions
while ẼC represents the average perturbed strain in the inclusion with respect to the matrix; S is the
Eshelby tensor which relates the strain in the matrix to the eigen-strain in the inclusion.

There are different ways of condensing out the stresses and strains to obtain (1). For sake of
simplicity, we tacitly avoid to indicate the effect of averaging (indicated by brackets) among all
possible CNT orientations. Therefore, following Benveniste [7], we first express the relation

EM = B : EC , with B := I + S : LM
−1 : (LC − LM) (7)

by arranging (5) as
LM : (EC − S−1 : ẼC) = LC : EC

⇓

−LM : S−1 : (EC − EM) = (LC − LM) : EC

(8)

once the ordered sequence of (6c) and (6b), respectively, is used. By exploiting the known Hill’s
condition [12] which states that the equivalent elastic tensor is

L = nM LM : AM + nC LC : AC , when


I = nM AM + nC AC

EM = AM : E
EC = AC : E

(9)

we can rewrite the latter, by using (7) that regulates the relationship between EC and EM, and by
finding a tensor A that relates E to EC. This is done arranging (2a) by (7) as

B−1 : E = nM EC + nC B−1 : EC

⇓

B−1 : A−1 : EC =
(
nM I + nC B−1

)
: EC

(10)

We thus obtain
A =

(
nM I + nC B−1

)−1
: B−1 (11a)

with B defined in (7). Consequently,

L = LM + nC(LC − LM) : A (11b)
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Mori and Tanaka [5] used the same assumptions, but with a different sequence of intermediate
steps to obtain the equivalent elastic tensor L. They first posed the correspondence between EM and
E* by expressing (5) as

LM :
[
EM + (S − I) : E*] = LC : (EM + S : E*)

⇓

(LC − LM) : EM = −[LM + (LC − LM) : S] : E*

(12)

where use of Eqs. (6) has been made. Secondly, from (2a) we can obtain the relationship between
ẼM and E*, by using (6):

E = nM(E + ẼM) + nC(E + ẼM + S : E*) (13)

from which
ẼM = −nCS : E* (14)

We can then rewrite (12) as

(LC − LM) : (E + ẼM) = −[LM + (LC − LM) : S] : E*

⇓

(LC − LM) : E = −[LM + nM(LC − LM) : S] : E*

(15)

by using (14). Finally, we can express the equivalent stress tensor as

L : E = nM LM : EM + nC LC : EC

= nM LM : (E + ẼM) + nC LM :
(
E + ẼM + (S − I) : E*

)
= LM :

(
E − nCS : E* + nC(S − I) : E*) ≡ LM : (E − nC E*)

= LM :
{
I + nC[LM + nM(LC − LM) : S]−1 : (LC − LM)

}
: E

by using the following sequence of equations: (5), (6), (14), and (15). The latter yields the expression
of the equivalent elastic tensor due to Mori and Tanaka in the form

L = LM : [I + nC[LM + nM(LC − LM) : S]−1 : (LC − LM)] (16)

The last expression of L can be differently employed in finite element frameworks. With re-
spect to (11), Eq. (16) seems to be more flexibly employed in nonlinear formulations, where the
nonlinearity is expected to affect the modeling of S and may possibly require re-assembling of the
Jacobian matrix of the problem. However, for the linear elasto-dynamic case we have studied, the
two expressions lead to the same stiffness coefficients.

3 NUMERICAL TESTS
3.1 Experimental validation

The approach illustrated in the previous section can be used to predict the effective elastic mod-
ulus of carbon nanotube-reinforced nano-composites. To make these comparisons meaningful, it is
essential that the synthesis of the nano-composites be carried out experimentally with precise con-
trol of the microstructure of the composites. In particular, special attention has to be devoted to the
following aspects: homogeneous dispersion, efficient interfacial stress transfer, and good alignment.
One of the few works where we found these requirements fulfilled is [13]. The single-walled carbon
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nanotubes (SWNTs), produced by catalytic chemical vapor deposition, had diameters of about 1-2
nm and lengths of about 5-15 µm. Pristine SWNTs, with a weight fraction equal to 0.5 %, were
dispersed into epoxy. In different tests, the nano-composites were fabricated with dispersions of
functionalized SWNTs with various generations of grafted dendrimers. We did not consider the case
of functionalized SWNTs since the functionalization typically alters the mechanical properties of the
carbon nanotubes; however, these properties are not available. In all cases, SWNTs were uniformly
dispersed and aligned by means of a reactive spinning process. The alignment, as we shall see, plays
a crucial role in the enhancement of the elastic modulus of the resulting composite as well as in
the enhancement of the tensile strength. The composites were characterized by optical and electron
microscopy and by conducting tensile tests. The tensile tests delivered a Young modulus of 3.47
GPa.

To carry out the calculation of the effective elastic modulus within our theoretical setting, we had
to compute the CNT volume fraction nC, one of the prescribed data of our computational framework.
We assumed the specific weights of 1.20 ·103 Kg/m3 for the epoxy resin and 7.85/6 ·103 Kg/m3 for
the CNTs, respectively. The resulting CNT volume fraction is nC = 0.46%. In agreement with the
experimentally measured characteristics, in the numerical computations we employed the following
mechanical parameters: (E, ν, λ) = (2.35 GPa, 0.4, 3.357 GPa) for the epoxy resin and (E, ν) =

(970 GPa, 0.28) for the CNT. The thus calculated elastic modulus is 3.27 GPa which turns out to be
only 5 % lower than the experimentally measured value.

3.2 Vibrational modal properties
In order to move towards modeling and simulation of the internal dissipation mechanisms in

CNT composites, we have focused on the modal vibrational properties of the nano-composites as a
preliminary step of our work. We have hence conducted an eigenvalue analysis varying the CNTs
alignment considering the specimen of Figure 1.

φ

e1

e2

Figure 1: Variation of the CNT alignment.

The test was numerically carried out using the following mechanical parameters: (E, ν) = (970 GPa, 0.28)
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for the CNTs and (E, ν, λ) = (3.3 GPa, 0.4, 4.7 GPa) for the epoxy resin, respectively, which thus
represent the hosting matrix.

mode 1 2 3 4 5 6 7 8 9 10
matrix 1.07 2.41 6.16 6.45 7.92 8.63 14.66 15.73 17.18 17.19
φ = 0 0.30% 1.27% 3.32% 1.50% 11.08% 48.76% 9.66% 8.81% 1.57% 7.18%
π/12 2.12% 4.83% 3.86% 6.06% 12.03% 44.13% 9.23% 8.67% 6.46% 12.83%
π/6 10.74% 11.17% 6.43% 17.50% 10.74% 36.22% 10.38% 3.68% 8.33% 14.61%
π/4 32.97% 16.36% 14.52% 28.51% 7.98% 36.11% 5.92% 14.17% 14.27% 18.51%
π/3 60.06% 22.87% 27.22% 27.46% 11.89% 42.94% 8.21% 26.42% 23.09% 31.08%

5π/12 81.83% 26.14% 28.54% 25.72% 31.51% 45.55% 14.55% 20.77% 36.60% 59.14%
π/2 92.03% 25.88% 27.19% 25.80% 44.31% 43.54% 18.28% 17.00% 37.98% 52.99%

Table 1: Variation of the frequencies of the lowest ten vibration modes with the CNTs orientation
when nC = 1%. The variations are given in % increments with respect to the frequencies of the
all-matrix material.

The frequencies of the lowest ten modes of the specimen, made of pure matrix or made of the
composite CNT-reinforced material, are compared in Table 1. Here, the ratios of the frequencies with
respect to the lowest frequency of the equivalent homogeneous, isotropic, all-matrix, cantilevered
plate are reported. When we take the specimen made of the pure matrix material, this ratio becomes
1 in the first mode. Moreover, we conveniently normalized the mode shapes according to

∫
B
ψk ·

ψkdV = 1, ∀ k = 1, 2, . . ., where ψk(x) denotes the kth mode shape of the plate. Note finally
that, unless otherwise stated, the volume fraction nC is assumed to be 1 % in most of the reported
calculations.

The comparison in terms of the frequencies for the case of epoxy clearly emphasizes the fact
that the nano-structured composite material exhibits improved mechanical properties. In particular,
for the specific conducted tests, the lowest frequency of the specimen with longitudinally oriented
CNTs (φ = π/2) is about 100 % that of the specimen with the homogeneous matrix material.

To investigate in depth the fundamental properties of the vibration modes of nano-structured
composites, we observed the spatial patterns of the modal stored-energy and its distortional part
in each mode. In particular, according to [14], the distortional energy interpretation for the von
Mises yield criterion can also be used effectively to construct yield criterions for particle-reinforced
composites that bear isotropic properties.

The analysis of the contour plots of the von Mises stress, associated with modes possessing close
frequencies in epoxy-based CNT-reinforced composites, shows in Figure 2 that, in the optimal case
with longitudinally aligned CNTs, the third mode would vibrate with the same frequency as that of
the fifth mode of the all-matrix plate. The von Mises stress distribution would not be very different
in the CNT-reinforced case although it exhibits higher values due to the higher stiffness.

4 CONCLUSIONS
In this work, we have investigated the elastic properties of carbon nanotube-reinforced compos-

ites and the linear vibrations signatures employing an equivalent continuum formulation based on
the Eshelby-Mori-Tanaka approach. This approach, also known as the Equivalent Inclusion-Average
Stress method, consists of the combination of the equivalent inclusion idea of Eshelby with the con-
cept of average stress and strain in the isotropic elastic matrix of Mori and Tanaka. The elastic
inclusions are assumed to be bonded to the matrix through a perfect interface. The amount of inclu-
sions is naturally prescribed in terms of their volume fraction.

The theoretically obtained bounds on the elastic properties proved to be very close to those
measured through careful experiments reported in the literature. In agreement with previous theo-
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retical studies, reinforcement with carbon nanotubes is clearly capable of enhancing the longitudinal
Young’s modulus of nano-composites. The extent of enhancement is a function of alignment, volume
fraction of nanotubes, and the type of matrix material. The improvement of performance, relative
to the case of pure uniform matrix, achieves a maximum when the carbon nanotubes are uniformly
aligned with the loading direction and the difference in the elastic modulus of the matrix and the
carbon nanotubes is the highest.

(a) (b)

(c) (d)

Figure 2: Slices of the contour plots of the von Mises stress associated with modes possessing close
frequencies in an epoxy-based (Epx) composite plate: (a) 5th mode of pure matrix, (b) 4th mode of
CNT-reinforced with φ = π/6 , (c) 4th mode of CNT-reinforced with φ = π/4, and (d) 3rd mode of
CNT-reinforced with φ = π/2. For the sake of clarity, the ranges in plots (b) and (c) were bounded
with respect to the actual ranges of [1e−3, 1.153] and [5.5e−4, 0.5], respectively.

The in-depth investigations into the elastic modal vibration properties, confined to the analysis
of the lowest ten modes of cantilevered composite plates, have shown that the integration of carbon
nanotubes into the hosting material is indeed a powerful and useful mechanism for tuning the vi-
bration properties of the composite plates. We obtained, in the case vulcanized rubber as hosting
material, predictions of frequency increases in the lowest mode of the order of 500% without alter-
ing the mass density of the material. In particular, nano-composites plates can be designed so as
to respond with a dominant selected mode to certain known excitations. Further, the selected mode
can be such that the likely probability of failure may be minimized since a certain degree of control
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is possible over the way the distortional modal energy is distributed within the vibrational energy
patterns.

This study is the first step towards a more complex nonlinear equivalent continuum modeling
capable of describing the internal interfacial dissipation at the carbon nanotubes-matrix interfaces.
Towards this end, we analyzed and compared different ways of obtaining the equivalent elastic tensor
of the composite material. Although the different approaches turn out to be substantially equivalent
in linear elasticity, alternative procedures to the one here adopted (Benveniste [7]) are envisioned to
likely lead to models of the dissipative phenomena with more efficient computational features.

References
[1] Rajoria, H. and Jalili, N., “Passive vibration damping enhancement using carbon nanotube-

epoxy reinforced composites”, Composites Science and Technology, 65, 2079–2093 (2005).

[2] Gibson, R.F., Ayorinde, E. O. and Wen, Y. F., “Vibrations of carbon nanotubes and their com-
posites: A review”, Composites Science and Technology, 67, 1–28 (2007).

[3] Zhou, X., Shin, E., Wang, K. W. and Bakis, C. E., “Interfacial damping characteristics of carbon
nanotube-based composites”, Composites Science and Technology, 64, 2425-2437 (2004).

[4] Eshelby, J. D. ,“The determination of the elastic field of an ellipsoidal inclusion, and related
problems”, Proceedings of the Royal Society, A241, 376–396 (1957).

[5] Mori, T. and Tanaka, K., “Average stress in matrix and average elastic energy of materials with
misfitting inclusions”, Acta Metallurgica, 21, 571–574 (1973).

[6] Mura, T., Micromechanics of defects in solids, Martinus Nijhoff, The Netherlands (1987).

[7] Benveniste, Y. ,“A new approach to the application of Mori-Tanaka’s theory in composite ma-
terials”, Mechanics of Materials, 6, 147–157 (1987).

[8] Zhao, Y. H. and Weng, G. J. , “Effective elastic moduli of ribbon-reinforced composites”,
Journal of applied mechanics, 57, 158-167 (1990).

[9] Schmidt, I. and Gross, D., “Directional coarsening in Ni-based model for an elasticity base
superalloys: analytical results”, Proceedings of the Royal Society, A 455, 3085–3106 (1999).

[10] Nemat-Nasser, S. and Hori, M., Micromechanics: Overall Properties of Heterogeneous Mate-
rials. North-Holland Series in Applied Mathematics and Mechanics (1993).

[11] Johannesson, B. and Pedersen, O. B. , “Analytical determination of the average Eshelby ten-
sor for transversely isotropic fiber orientation distributions”, Acta Materialia, 46, 3165–3173
(1998).

[12] Hill, R., “Elastic properties of reinforced solids: some theoretical principles”, Journal of the
Mechanics and Physics of Solids, 11, 357–372 (1963).

[13] Che, J. , Yuan, W., Jiang, G., Dai, J., Lim, S. Y. and Chan-Park, M. B., “Epoxy composite
fibers reinforced with aligned single-walled carbon nanotubes functionalized with generation
0-2 dendritic poly(amidoamine)”, Chemistry of Materials, 21, 1471–1479 (2009).

[14] Zheng, M., Yang, J. and Jin, Z., “Estimation of yield strength for composites reinforced by
grains”, International Journal of Fracture, 68, 53–56 (1994).

9


