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SUMMARY. New analytical and computational results on the static and dynamic response of ne-
matic elastomers to applied electric fields and mechanical loads are reviewed, and compared with
the available experimental evidence.

1 INTRODUCTION
Nematic elastomers display a peculiar mechanical response arising from the interplay between the
electro-optical properties of liquid crystals and the elastic properties of a rubbery solid. They have
been the subject of numerous studies in the recent literature, see [21] and the many references cited
therein. Envisaged by the late P.G. de Gennes [5], nematic elastomers were synthesized at the end
of the 80s [22], [15]. Early experiments [16], [17] have immediately shown their potential as mate-
rials for soft actuators (large spontaneous deformations which, as it is now known, can be activated
thermally, by electric fields, or UV light). At the same time, these experiments have revealed a
very rich and complex behavior: unusually soft elastic response to uniaxial stretching, akin to the
phenomenon of super-elasticity in shape memory alloys, and stripe domain instabilities, which are
reminiscent of mechanical twinning.

The interest in the theoretical understanding of the behavior of nematic elastomers has been
strong and sustained, starting from the pioneering paper of de Gennes [6], and including [14], [1],
[7], [9], [10], [2], [3], [4].

The goal of this paper is to present some new analytical and computational results on the static
and dynamic response of nematic elastomers to applied electric fields and mechanical loads. As
discussed in [11], these results can be used to understand both the classical stretching experiments
in [16], [17] and the more recent experimental measurements contained in [18], [19], and [12].

2 THE BASIC EXPERIMENTAL EVIDENCE
Electro-opto-mechanical effects arise in nematic elastomers from the coupling between nematic or-
der and elasticity. Variable optical properties reflect the variability of nematic order, which controls
dielectric anisotropy. Thus an applied electric field may reorient the nematic director in a free-
standing film, inducing both a change of optical properties and spontaneous deformation. This
experiment is described in [12], and it illustrates the direct electro-opto-mechanical effect.

Since nematic elastomers are not piezolectric, there is no inverse electro-opto-mechanical ef-
fect in the sense that one cannot generate electric fields through stresses. However, thanks to the
coupling between elastic and nematic degrees of freedom, one can achieve director reorientation
through mechanical stretching, hence an inverse opto-mechanical effect. The ability of the material
to accommodate externally imposed stretches by rearranging internal degrees of freedom leads to
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an unusually soft response. The most striking stretching experiments are those in which the sample
is somewhat constrained, for example by rigid clamps, see [16], [17]. In this case one observes
complex optical and deformation patterns, typically in the form of narrow bands (stripe domains),
accompanied by surprisingly low build-up of internal stresses (soft elasticity).

3 THE MODEL
3.1 Elastic energies

For the sake of simplicity, we will illustrate the model starting from an idealized case, namely, the
ideally soft material arising from isotropic elasticity. We later discuss more realistic anisotropic
models, following [11].

Specifying an energy density for an elastic material amounts to identifying its natural states
(i.e., the states of minimal energy density) and the way the energy grows away from this set. The
first prescription is rather generic, and is strongly guided by material symmetry. The second one
is much more material-specific since it determines, in particular, all the elastic moduli and all the
nonlinearities of the stress-strain response.

We denote by u(x) = y(x) − x the displacement at a point x of the body Ω, where y is the
deformation. We write F = ∇y for the deformation gradient, and B = FFT for the left Cauchy-
Green strain tensor. We denote the nematic director, a unit vector field on Ω, by n and set N := n⊗n,
where ⊗ is the tensor product defined by (a ⊗ b)v = (b · v)a for all a, b. The elastic energy
describing an (incompressible) ideally soft nematic elastomer is

W (F,N) =
1
2
µB · L−1(N) (1)

where
L(N) := a

2
3 N + a−

1
3 (I−N) (2)

while µ > 0 and a > 1 are material parameters. Energy (1) is isotropic, and it describes a material
with a large set of natural states. These are all the states of deformation such that the left Cauchy-
Green tensor B matches L(N). They are volume-preserving uniaxial deformation with (current)
direction of largest principal stretch aligned with the (current) direction of the nematic director n.

While very useful fron the conceptual point of view, energy (1) leads to predictions of the me-
chanical response that are not satisfactory. A minimal correction comes by recognizing that the
actual material has a memory of a distinguished direction, namely, the orientation of the nematic
molecules during the crosslinking process. Thus, their response should be transversely isotropic,
with preferred axis given by the director orientation at cross-linking nr, rather than being isotropic.
We consider two model anisotropic enegies, namely,

Wα(F,N) =
1
2
αµ(1−N ·N∗(F)) +W (F,N) (3)

and
Wβ(F,N) =

1
2
βµC · L−1(Nr) +W (F,N) . (4)

Here C = FTF is the right Cauchy-Green tensor, α and β are two positive dimensionless material
parameters, Nr = nr ⊗ nr, and finally

N∗ := n∗ ⊗ n∗ , n∗ = n∗(F) :=
Fnr
|Fnr|

(5)
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describes the current (i.e., after deformation) orientation of nr.
In the regime of small strains and large director rotations, denoting by E = (∇u +∇uT )/2 the

infinitesimal strain, the energies above are appoximated by the following expressions

Φ(E,N) = µ(E−E0(N)) · (E−E0(N)) , (6)

Φα(E,N) =
1
2
αµ(1−N ·Nr) + Φ(E,N) , (7)

Φβ(E,N) = βµ(E−E0(Nr)) · (E−E0(Nr)) + Φ(E,N) , (8)

where
E0(N) :=

1
2
γ(3N− I) , γ := a

2
3 − 1 . (9)

In what follows, we will work within the setting of the geometrically linear theory and use the
small strain energy densities (6), (7), and (8).

3.2 Applied electric fields and total energy
The elastic energy is not the only contribution. In addition, one typically also includes a curvature

elasticity term (Frank energy) penalizing spatial variations of the nematic order, and an electrostatic
energy giving the total work by the batteries to mantain a prescribed electric potential difference
between selected points of the sample. In the isotropic case, we are led to the following free-energy
functional

E (u,n, ϕ) =
1
2

∫
Ω

(
kF |∇n|2 + Φ(E,N)

)
− 1

2

∫
Ω

(
εo(D(N)∇ϕ) · ∇ϕ

)
(10)

where kF > 0 is Frank constant, εo is the free-space permittivity, ϕ is the electric potential, and D
is the dielectric tensor. We take

d := −εoD(N)∇ϕ = −εo

(
ε⊥∇ϕ+ εa(∇ϕ · n)n

)
(11)

where d is the electric displacement, while ε⊥ and εa > 0 are dielectric coefficients. We are omitting
here the potential of applied body forces or traction, since these are either neglected or zero in the
simple experiments we consider in what follows. In the anisotropic cases, we denote the free-energy
by either Eα or Eβ : their expressions are obtained from (10) by replacing Φ with Φα and Φβ .

3.3 Dynamics
The simplest nontrivial dynamics is obtained from the free–energy functional (10) by assuming

insantaneous relaxation to equilibrium of the electric and elastic variables, and a viscous (over-
damped) dynamics for the nematic director. Formally, we write

0 =
δE

δϕ
, (12)

0 =
δE

δu
, (13)

1
m

ṅ× n = −δE
δn
× n , (14)
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where m > 0 is a mobility parameter and the right hand–sides contain the variational derivative of
E with respect to ϕ, u, and n. More explicitly, the equations above read

0 = div d , (15)

0 = div S , (16)

where S = −pI +µEd is the stress tensor (here p is the pressure, a reaction to the incompressibility
constraint, and Ed is the deviatoric part of E) and, finally,

1
m

ṘR>=[ S ,E0 ] +
1
2
εo εa [∇ϕ⊗∇ϕ ,n⊗ n ] +skw (div (kF∇n)⊗ n) . (17)

In the last equation, R is a rotation parametrizing the current orientation of n with respect to nr,
i.e., n = Rnr, [A,B] = AB − BA is the commutator of the matrices A and B, and finally
skw(A) = (A−A>)/2 denotes the skew-symmetric part of the matrix A. Equation (17) is obtained
from (14) by introducing the microspin ṘR> (notice that ṘR>n = ṅ = ω × n, where ω is the
director angular velocity), and by representing vector products with the action of the corresponding
skew tensors.

The structure of equation (17) reveals in a rather transparent way the conditions such that a
spatially uniform director field n be in equilibrium. In particular, the condition [S,E0] = 0 is
satisfied if and only if the stress S and the spontaneous distorsion E0(n) have the same principal
directions, see [13, p. 12]. The condition [∇ϕ⊗∇ϕ,n⊗ n] =0 is satisfied if and only if n is either
parallel or perpendicular to the electric field e = −∇ϕ.

The equation governing the dynamics of the system in the anisotropic cases are obtained with a
similar procedure, by replacing E in (12)–(14) with Eα and Eβ .

4 NUMERICAL RESULTS
We use the finite element method to solve numerically the evolution equations (15), (16), and

(17) (or their anisotropic counterparts) supplemented with initial and boundary conditions suitable
to represent the key experiments described in the introduction.

The first one is the application of an electric field in direction perpendicular to nr to a free-
standing film whose director is initially parallel to nr. Using the dynamics associated with the
free–energy Eβ , we let the system relax to the equilibrium state under an applied electric field. The
plots describing director and strain (along nr) at equilibrium as functions of the applied voltage are
given in Figure 1. The agreement between theoretical prediction and experimental measurements is
quite convincing. The characteristic times of response to instantaneous switching on and off of the
electric field can also be estimated, and they compare rather well with experiments.

We remark that the model based on the isotropic elastic energy Φ and the one based on the
anisotropic energy Φβ are unable to represent correctly the physical picture because, according to
them, the director would not go back to the initial orientation nr when the electric field is switched
off, contrary to what is actually observed.

The second key experiment consists in stretching a film with rigid clamps in direction perpen-
dicular to nr and in the absence of an electric field, at various stretching rates. The resulting force–
stretch curves for the case of the isotropic elastic energy density are given in Figure 2. The initial
plateau, with small build up of forces at the clamps is due to the fact that the specimen can ac-
commodate the imposed elengation by rotating the director towards the stretching direction. This
reorientation process occurs in a nonhomogenous way throughout the sample, hence the formation
of stripe domains.

4



0

0.2

0.4

0.6

0.8

1

0 200 400 600 800

V0 (V)

Δn
s /

 Δ
n 0

(a)

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0 200 400 600 800

(b)

V0 (V)

γ s

Figure 1: Numerical (filled symbols) versus experimental (open symbols) results for (a) effective
optical birefringence and (b) strain along the initial director in the steady state as a function of
applied voltage. The specimen is a free standing film under an electric field applied perpendicularly
to the initial director orientation nr.
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Figure 2: Force-strain curve in a purely mechanical stretching experiment at several stretching rates.
The specimen is clamped and stretched in direction perpendicular to the initial director orientation
nr.
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Figure 2 shows a behavior which, as the loading rate is decreased, tends to an ideally soft re-
sponse, with zero force until the director reorientation process is complete. In actual experiments,
the response is not ideally soft and a threshold force must be overcome to trigger director reorien-
tation. Both anisotropic models, either the one based on Φα or the one based on Φβ , are able to
reproduce this fact.
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