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SUMMARY. Ferroelectrics phase transitions are studied in terms of fourth-ordewr Landau poten-
tials: A judicios choice of the reference configuration allows for a complete description of all the
possible transitions. The study of the stability conditions at the phase interface helps to explain the
fairly complex nature of the observed twins.

1 INTRODUCTION
Most ferroelectric solid/solid solutions exhibits a fairly complicated phase-diagram with phase

boundaries between different crystallographic variants which depends on both temperature and rel-
ative concentrations. Amongst these there is one of the ferroelectrics which is most widely-used in
practical applications, namely the PZT Pb(Zr1−xTix)O3; the practical interest in this material lies in
its exceptional dielectric and piezoelectric properties.

Both Lead Titanate and Lead Zirconate are Perovskyte-type oxides whose general formula is
ABO3: in the high-temperature paraelectric phase the symmetry is cubic with point groupm3m(Oh),
whereas upon cooling under the Curie temperature, the material undergoes the transition to the ferro-
electric phase, the resulting phase-diagram exhibits for x ≈ 0.5 a nearly vertical morphotropic phase
boundary between titanium-rich compositions (which favor a cubic-to-tetragonal phase transition
m3m(Oh)→ 4mm(C4v)) and zirconium-rich compositions (which favors a cubic-to-rhombohedral
phase transition m3m(Oh)→ 3m(C3v)).

At the macroscopic level compositions close to the morphotropic phase boundary are character-
ized by excellent physical properties, namely a very large piezoelectric coupling between electric
and mechanical variables related to the presence of a maximum in the dielectric constant, an ease
of poling and a maximum mechanical compliance. The recent discovery reported by Noheda and
co-workers (vid. [3]) that the morphotropic boundary is a new phase in itself with monoclinicm(Cs)
symmetry whose extent is between x = 0.47 and x = 0.51 below 500K, has shed new light on the
understanding of the physical origin of PZT striking ferroelectric properties around the MPB.

Starting from the experimental data collected by Noheda, we studied in a recent paper [2] the
twinning between PZT variants obtaining a complete description of domain-wall structure both in-
terms of domain-wall orientations and spontaneous polarization rotations across domain-walls. The
most interesting results we obtained were those for compositions close to phase boundaries where
ferroelectric wells belong to different crystallographic phases:

• tetragonal and monoclinic variants are compatible and the resulting twin is of the non-generic,
non-conventional type;

• rhombohedral and monoclinic variants are compatible and the resulting twin is of the non-
generic, non-conventional type;
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• rhombohedral and tetragonal variants are not compatible: however a tetragonal finely-twinned
laminate and a rhombohedral variant admit an almost compatible interface in the sense of [1].

The aim of the present work, which deals with energies in ferroelectric solids is two-fold: first
to show how with a fourth-order Landau-Devonshire potential we can describe all the phase transi-
tion which are possible in solid-solid solutions of the perovskite type provided we choose different
reference configurations (this is a step ahead with respect the standard request that a, for instance,
a monoclinic phase can found with at least an eigth-order Landau-Devonshire potential [4] and that
al the possibile phase transitions can be arrived at with a twelve-order potential [16]); second to
show that the twinning relations at morphotropic boundaries depends on the singularities of Landau-
Devonshire potentials

2 VARIATIONAL FORMULATION
The most important feature of ferroelectricity is the onset, below the critical Curie temperature,

of a polar phase associated with a reversible spontaneous polarization which is accompained by an
electric self-field and by a spontaneous strain: the associated electrostatic and elastic energies are
reduced by means of formation of many domains, i.e. regions of uniform spontaneous polarization
in which all the electric dipoles are aligned in the same direction. This process, which render the
material more stable, does not proceed indefinitely, since a certain amount of energy is stored in
the domain walls, interfaces within which the spontaneous polarization undergoes large variations;
ferroelectrics domain walls are thin (of the order of few lattice constants) and within a domain wall
the spontaneous polarization will decrease in magnitude, passing through zero, and increase on the
other side with opposite sign (vid. e.g. [10], II-7). At the equilibrium the material displays a twinned
domain structure which is determined, as pointed out in [9], by the elements of symmetry which are
lost in the paraelectric to ferroelectric transition.

In the continuum theory for deformable ferroelectric bodies proposed into [5, 6, 14] and which
is based on that presented in [7] for deformable ferromagnetic bodies, the physical configuration of
a ferroelectric body is described by means of the deformation and spontaneous polarization fields y
and p.

More precisely, for B a ferroelectric body whose spontaneous polarization in terms of electric
dipole moments for unit volume we denote with the vector p, we define

p = ρ−1p , ‖p‖ ≤ p0 ,

the spontaneous polarization for unit mass where ρ is the mass density and the saturation value p0

a material parameter; further, we pointwise identify B with a reference configuration Br, a region
of the three-dimensional Euclidean space E (whose associated vector space we denote V) and on Br
we define the deformation and polarization fields:

y : Br → E , p : Br → S , S ≡ {p ∈ V | ‖p‖ ≤ p0} ;

we assume that the deformation has a gradient F with positive determinant J = det F > 0, and we
denote B ≡ y(Br) the current configuration of B.

Let a system of electromechanical loads on B be given, namely the surface densities of mechan-
ical forces t and electric dipoles t prescribed on the boundary ∂B and let eext an applied external
electric, which we assume to be unaffected by the deformation and spontaneous polarization of B:
the pair (y ,p) at the equilibrium under the action of these external electromechanical loads can be
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found as the minimizer, in a suitable Sobolev space, of the functional

F(y ,p) = Fint(grad p ,F ,p) + Fself (p) + Fext(y ,p) .1 (1)

The three terms which (1) is composed of denotes respectively the Internal energy Fint, a term
which is the object of a constitutive prescription, the External energy Fext, a term which can be
disposed of during an experiment and the Self energy Fself , a term of electric nature which can’t be
neither disposed of at will, nor constitutively prescribed.

In ferroelectrics it is customary to split the internal energy term into the sum of a domain-
wall energy, which penalizes spatial oscillation of p and prevents the formation of domains, with
a ”coarse-grain” stored energy, which is minimized by mechanical twinning along some preferred
crystallographic directions and therefore accounts for the refinement of domain structure; hence we
get

Fint = Fw + Fs , Fw(grad p) =
∫
B
ϕw(grad p) , Fs(F ,p) =

∫
B
ϕ(F ,p) ,

where ϕw is the domain wall energy density and ϕ the stored energy density. The external energy
contribution takes into account both the electrostatical interaction energy, which models the tendency
of the spontaneous polarization to align with the external macroscopic electric field and the applied
surface electric dipole density, and the mechanical interaction energy, which models the effects of
the external electrostatic volume force and the mechanical surface force on the ferroelectric body:

Fext(y ,p) = −
∫
B

(grad eext)p · y + ρeext · p−
∫
∂B

t · y + t · p .

Finally, the self energy represent, within the ferroelectricity contest, the depolarization energy,
which accounts for dipole-dipole interactions and favors the formation of domains:

Fself (p) =
1
2

∫
E
‖eB(p)‖2 ;

here the electric depolarization field eB, generated by the charges induced on the boundary by p,
is defined as the solution of the Maxwell equations for the electrostatic in absence of volume and
surface charges

div eB = −div pχB , curl eB = 0 , in E , [[eB]] = (pχB · n)n , on ∂B , (2)

where n is the outward unit normal to ∂B, [[·]] denotes the jump across the boundary (outer trace
minus the inner trace) and pχB has to be interpreted as the extension of the polarization field to E
which vanishes outside B.

2.1 Constitutive restrictions for the bulk stored energy
We assume that the ”bulk” stored energy density function is a mapping ϕ : Lin+×S → R+∪{0},

where Lin+ denotes the space of the second order tensors with positive determinant; moreover we
require that ϕ obeys the following restrictions:

• (i) Frame-indifference

ϕ(QF , ·) = ϕ(F , ·) , ∀Q ∈ Orth , ∀F ∈ Lin+ , (3)

1cf. [14]: for the study of (1) within the context of ferromagnetic materials see e.g. [12] and the references quoted therein.
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where Orth denotes the proper orthogonal group. We notice that in this formulation we do
not require rotational invariance for the spontaneous polarization, as for instance in [14]: in-
deed by a result obtained in [6] this is equivalent to the symmetry of Toupin stress tensor.
Consequence of frame indifference is

ϕ(F , ·) = ϕ(U , ·) = ϕ̄(C , ·) , (4)

where C = FTF ∈ Sym+ and U = C
1
2 ∈ Sym+ are respectively the right Cauchy-Green

strain and right stretch tensors with Sym+ the space of second order symmetric and positive
definite tensors.

• (ii) Material symmetry

ϕ(FH ,HTp) = ϕ(F ,p) , ∀H ∈ Gp , ∀(F ,p) ∈ Lin+ × S ; (5)

here Gp denotes the point group of the paraelectric phase, i.e. the subgroup of Orth ∪ {−I}
whose elements maps the reference paraelectric lattice into itself. Consequence of material
symmetry is that

ϕ(FH ,HTp) = ϕ̄(HTCH ,HTp) ; (6)

We limit our analysis to materials with centrosymmetric, non-piezoelectric paraelectric phase
whose point group contains the central reflection H = −I. In this case then (6) implies that ϕ
must be an even function of the spontaneous polarization:

ϕ(U ,p) = ϕ(U ,−p) . (7)

The phase transition from the primitive paraelectric phase to the ferroelectric phase is accom-
pained by a spontaneous strain (the transformation strain) which reflects, at the macroscopic scale,
the crystal lattice distortion which is at the origin of the ferroelectric phenomena. Accordingly, we
may assume that the strain U can be decomposed into a purely mechanical and a spontaneous parts
U = UmU(p), where U(p) represents the spontaneous strain associated with the phase transition
from the paraelectric to the ferroelectric phase with spontaneous polarization p.

Whenever the material is the unpoled paraelectric phase both spontaneous polarization and strain
vanishes and the stored energy coincides with the elastic energy density of the paraelectric phase:

ϕ(Um ,0) = σ(Um) ,

which vanishes for rigid motions, i.e. ϕ(I ,0) = σ(I) = 0.

2.2 Crystallographic potentials
In the poled ferroelectric phase let Um = I, then the stored energy depends only on the spon-

taneous polarization and represents the anisotropy energy W(p), a multi-well crystallographic po-
tential which is minimized along some preferred crystallographic directions, i.e. the polarization
easy-axis:2

ϕ(U(p) ,p) =W(p) ; (8)

clearly, by (7) and (8)
W(p) =W(−p) ;

2In the first-principle approach followed e.g. in [15], the coarse-grain energy plays the role of the Hamiltonian ”local
mode self-energy”.
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and accordingly for p̄ a minimizer forW(p), −p̄ is also a minimizer

W(±p̄) ≤ W(p) , ∀p ∈ S . (9)

By a classical result of crystallography the anisotropy energy admits 2N minimizers ±pk, k =
1, 2, . . . N where

N =
order of Gp
order of Gf

,

the order of a finite point group being the number of the elements in the group and with Gf the point
group of the ferroelectric phase. By (7) and (8) the 2N minimizers forW(p) are associated with N
ferroelectric variants

Uk = U(±pk) , k = 1, 2, . . . N (10)

and thus, for pk a minimizer for the crystallographic potential (8), the pair (U(pk) ,pk) is a mini-
mizer for the stored energy, i.e.

ϕ(U(pk) ,pk) ≤ ϕ(U ,p) , ∀(U ,p) ∈ Sym+ × S . (11)

The N ferroelectric wells are defined as the set of minimizers for the crystallographic potential:

KN ≡ {±p1 ,±p2 , . . . ,±pN} ; (12)

let p1 be a minimizer and Gf,1 the ferroelectric group generated by p1: then by a result of [13] for
Hj , j = 2, . . . N the N − 1 cosets of Gf,1 in Gp the other N − 1 minimizers are given by

pj = HTp1 , for any H ∈ Hj , j = 2, . . . , N , (13)

and the associated ferroelectric variants by

Uj = HTU1H , for any H ∈ Hj , j = 2, . . . , N . (14)

Spontanoeus strain and polarization are closely-related and a quadratic dependence of the former
on the latter is assumed in most solid-state physics texts; in [6] such a dependence was arrived at
by means of crystallographic symmetry requirements and the following explicit representation was
given:

Uk(pk) = αw⊥ ⊗w⊥ + βw⊥ ⊗w⊥ + γpk ⊗ pk , k not summed ; (15)

here {w⊥ ,w⊥ ,pk} is an orthogonal basis, and the parameters (α , β , γ) are characteristic of the
specific ferroelectric transition associated with the onset of pk.

Let
P = p⊗ p = ‖p‖2w ⊗w , w = ‖p‖−1p :

then, by (15), (7) and (8) we may write:

W(p) = Ŵ(P) . (16)

We focus our attention at the minimization problem for the crystallographic potential (8): in
order pk to be a minimizer, by (16) it must obey:

A(pk)pk = 0 , B(pk)u · u > 0 , ∀u/{0} , (17)

where:

A(pk) =
∂Ŵ
∂P

∣∣∣∣∣
p

k

, B(pk) =
∂Ŵ
∂P

∣∣∣∣∣
p

k

+ 2
∂2Ŵ
∂P2

∣∣∣∣∣
p

k

[pk ⊗ pk] .

Condition (17)1 leads to the following alternatives:
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• either
det A(0) 6= 0 , p = 0 , (18)

• or
det A(pk) = 0 , pk ∈ ker A(pk) . (19)

Condition (18) holds in the paraelectric unpoled state, which at a temperature lower than the
Curie one is unstable: accordingly, since A(0) = B(0), conditions (17)2 and (18) must be replaced
by

A(0)u · u < 0 , ∀u/{0} . (20)

3 LANDAU-DEVONSHIRE POTENTIALS
The classical phenomenological model for the crystallographic potential is that proposed by De-

vonshire [8] which accounts for the ferroelectric phase-transition sequence by means of a Landau-
type expansion in terms of even powers of the spontaneous polarization p. In the original Devonshire
paper, which is tailored on the Barium Titanate Cubic→Tetragonal→Orthorombic→Rombohedral
phase-transition sequence was described by means of a sixth-order potential. Recently, it was shown
in [16] that a twelve-order potential is necessary in order to describe all the possible phase transitions
from a cubic parent state in the highly piezolectric mixture compounds PZT, PMN-PT and PZN-PT.
In the following we shall show how, by changing the reference configuration, we can describe the
same phase transitions by means of a fourth-order potential.

We consider the following Landau-Devonshire potential found e.g. in [11]:

Ŵ(p) =W0 −
1
2
S · P +

1
4

S[P] · P , (21)

here S, represent a crystallographic tensor and the second order symmetric and positive-definite
tensor S represents the inverse susceptibility of the material in the paraelectric phase.

3.1 Transitions from a cubic phase
We begin to assume that the tensors S and S have cubic symmetry m3m(Oh); accordingly we

have the following fourth-order Landau potential (vid. [9, 11]):

W(p) =W0 −
1
2
α‖p‖2 +

1
4
γ1(p4

1 + p4
2 + p4

3) +
1
2
γ2(p2

1p
2
2 + p2

1p
2
3 + p2

2p
2
3) , α > 0 , (22)

where pi = p ·wi , i = 1, 2, 3 are the components of the spontaneous polarization in an orthonormal
frame {w1 ,w2 ,w3}. The double-well potential (22), by (19) admits the following minimizers:

• cubic-to-tetragonal phase transition, six minimizers, easy axis [0, 0, 1]:

±pk = ±pswk , k = 1, 2, 3 , p2
s =

α

γ1
; (23)

• cubic-to-rhomboedral phase transition, eight minimizers, easy axis [1, 1, 1]:

±pk = ± 1√
3
ps(w1 ±w2 ±w3) , k = 1, 2, 3, 4 , p2

s =
α

γ1 + 2γ2
, (24)
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• cubic-to-orthorombic phase transition, four minimizers, easy axis [1, 1, 0]:

±pk = ± 1√
2
ps(w1 ±w2) , k = 1, 2 , p2

s =
α

γ1 + γ2
, (25)

where the material parameter ps < p0 represents the value of spontaneous polarization.
By the stability condition (18) we have that the Orthorhombic minimizers are unstable for all

the values of the constitutive parameters γ1 and γ2. The Tetragonal minimizers are stable provided
γ2 > γ1 > 0 whereas the Rhomboedral minimizers are stable provided γ1 > γ2 and γ1 + 2γ2 > 0.
When γ1 = γ2, B(pk) is a rank-one tensor: we have therefore a saddle-point and the so-called
tetragonal-rhomboedral ambiguity.

This is the situation we have for two specific perovskites, namely the (PZT) PbZrxTi1−xO3 (vid.
[10, 11]) and the (PZN-PT) Pb(Zn1/3Nb2/3)1−xTixO3 (vid. [17]); Titanium-rich compositions favor
a cubic-to-tetragonal phase transition m3m(Oh) → 4mm(C4v), with sizable elongation along the
crystallografic direction [001], large spontaneous polarization in the same direction and six possible
domain states. A transition to a rhombohedral ferroelectric state m3m(Oh) → 3m(C3v) is favored
for zirconium-rich compositions: the distortion and polarization are along the [111] (body diagonal)
directions, giving rise to eight possible domain states.

At the morphotropic phase boundary between the tetragonal and the rhombohedral states, which
corresponds to x ≈ 0.5, the two solid phases that remain in a near-equilibrium state over a very wide
temperature range with a nearly ambiguous polarization easy axis (either [001] or [111]).

3.2 Transitions from a tetragonal phase
To describe a transition from a parent tetragonal phase we assume the tensors S and S with

tetragonal symmetry 4mm(C4v); accordingly we have:

W(p) =W0−
1
2

(α1(p2
1+p2

2)+α2p
2
3)+

1
4

(γ1(p4
1+p4

2)+γ2p
4
3))+

1
2

(γ3p
2
1p

2
2+γ4(p2

1+p2
2)p2

3) , (26)

which, provided α1 > 0 and α2 > 0, admits the following, non-trivial, minimizers:

• tetragonal-to-rhomboedral phase transition, eight minimizers, easy axis [1, 1, 1], as in (23)
with

p2
s =

3α1

γ1 + γ3 + γ4
, (27)

provided the following compatibility condition is satisfied:
α1

α2
=
γ1 + γ3 + γ4

γ2 + γ4
; (28)

• tetragonal-to-monocline phase transition, twentyfour minimizers, easy axis [u, u, v], u < v:

±pk = ±(uw1 ± uw2 ± vw3) , k = 1, . . . , 8 ,
±pk = ±(uw1 ± vw2 ± uw3) , k = 9, . . . , 16 , (29)
±pk = ±(±vw1 + uw2 ± uw3) , k = 17, . . . , 24 ,

where

u2 =
γ2α1 − 2α2γ4

(γ1 + γ3)γ2 − 2γ4
> 0 , (30)

v2 =
(γ1 + γ3)α1 − α2γ4

(γ1 + γ3)γ2 − 2γ4
> 0 ,
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provided of course that γ2α1 − 2α2γ4 < (γ1 + γ3)α1 − α2γ4.

By the stability condition (18), the Rhomboedral solution is stable provided:

γ1 > γ3 > 0 , γ1γ2 − γ2
4 > 0 ; (31)

the stability conditions for the Monoclinic solution are quite complicated: for our purpose it is
enough to observe that there exists a monoclinic-rhomboedral ambiguity for γ4 = 0 which gives
stable a solution.

We have a similar situation for the transitions from a rhomboedral phase, with a stable monoclinic-
tetragonal ambiguity.

Interestingly enough, the results obtained in [2] show how that the ferroelectric variants are
compatible with non-generic, non-conventional twins arise whenever the ambiguity gives a stable
solution whereas the non compatibility of rhombohedral and tetragonal variants corresponds to a
saddle-point type ambiguity.

4 CONCLUSIONS
We show that with a fourth-order Landau-Devonshire potential we can describe all the possible

phase transition from a paraelectric cubic phase: by studying the stability conditions and the be-
haviour at the phase boundary, we can also have an insight at the twinning relations, a matter which
deserves further investigations.
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