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SUMMARY. The frequency avoiding of natural frequency loodathe modal shapes hybridization
are typical phenomena which take place, among other casésitially curved structures with a
simmetry-defect, when a control parameter is varied. Trempmenon plays a key role in the expla-
nation of a modal hybridization evidenced during the expernital tests on the “Valle Castellana”
concrete, twin-arches, bridge (Provincia di Teramo, Jtaly the same way, due to high sensitivity
of the hybrid modal shapes to the imperfections, the ocagg®f those phenomena could be con-
veniently used in structural health monitoring progranmsthiis paper, a linear model of plane arch
with an imperfection in a specific cross-section, is usedtasldn the interpretation of the behavior
observed in the mentioned bridge.

1 INTRODUCTION

In symmetric structures, the crossover phenomenon talkees pthen two natural frequencies
have a different rate of change with respect to a controlrpater. It occurs, for instance, in the case
of symmetric suspended cables when, increasing the egstimetric parameter?, introduced by
Irvine, the frequency of the anti-symmetric mode, which aéms fixed, is crossed by the (increas-
ing) frequency of the symmetric mode [1]. This phenomendth wome modifications, has been
observed also in the nonlinear field, for large amplitudesafiltations [2].

On the other hand, when in the structure, for some reasongaking of symmetry occurs,
the two involved loci of frequencies initially approach tach other. Then, for a specific value of
the control parameter, a frequency avoiding (or veeringuokand, after that, the frequencies drift
away. In the veering transition, differently than the c&s case, the two involved modal shapes
don’tremain in their original classes but they mix each gthiwing rise to mode hybridization. This
phenomenon has been analyzed in case of suspended bridigrsnind effect [3] and in case of
r.c. arch bridges [4].

Even though standard damage detection techniques ardyusaséd on change of the natural
frequencies [5, 6], information obtained by the high savigjtof the hybrid modal shapes to the
symmetry-defect, in case of veering, could be conveniemlyd in structural health monitoring
programs.

In the recent past, a structural health monitoring progréaxtuster of bridges was carried outin
Italy, in the ambit of an applied research program in coaandetween the Structural Department
at University of L'Aquila (Italy) and the Public Territoriduthority “Provincia di Teramo”. Among
one-hundred of bridges under analysis, fifty of them wereadyioally tested three times along the
period 2002-2006 [7].

During the reported campaign, different typology of brisgeere encountered and, among the
others, six twin-arches bridges were tested. In two casesnaxpected behavior was observed: in
correspondence of an apparently symmetric configuratimjdentification of spectral properties



revealed the presence of hybrid modes, not belonging toxpected classes of symmetric and
anti-symmetric modes.

The occurrence of two “apparently strange” cases amongxamieed six, together with the
consideration that in the recent past, before the largasidgh of p.r.c. technology, the typology of
twin-arches bridges was largely used to cover medium sgatightens that the phenomenon could
concern a large number of bridges, still operating in défdércountries.

In the paper, after introducing a linear model of a plane §8ththe phenomena of crossing
and avoiding of frequencies are discussed by means of $ex@maples. In particular, a localized
imperfection is introduced in the continuous model, andéffiects on the loci of frequencies and
on the modal shapes are analized. The results are used &sl tippin the interpretation of the
observed behavior of the “Valle Castellana” twin-arch bad

2 THE CONTINUOUS MODEL

A clamped-clamped symmetric arch, with an horizontal gpin the tip and a damage at a
specified cross-section (symmetry breaking), is consilésee Fig. 1a). The Cosserat’s rod theory
is used to formulate the analytical model of the arch: rigioss-sections linked to an axis line are
considered. It's assumed that the inextensible, no-staidays in a two dimensional configuration
spacef. The regular curve&(s) describes the axis line in the initial reference configoradi C &,
wheres € [0,/] is the curvilinear abscissa arfdthe total length. The unit orthogonal vectors
{a1(s),a2(s)} describe the attitude of the generic cross-section. Itssimeda; = x’ (where
" stands for differentiation with respect 19, i.e. the axis line is orthogonal to the generic cross-
section. The initial curvature, assumed uniform (circular arch), allows one to writg:= xa, and
5./2 = —Raj.

Figure 1: Model of the arch.

The deformation leads the rod from the initial configuratiothe generic oné. The axis curve
in the new configuration ix(s) and the attitude of the cross-sections is described by titooun
thogonal vectorga; (s), az(s)}. The description of the deformation is obtained by the dispent
vectoru(s) = u(s)a; + v(s)az of the axis line, which carrieg(s) ontox(s), and by the the angle
of rotationd(s), which carries{a; (s), az(s)} onto{a;(s), az(s)} (see Fig. 1b). The termsandv
are the tangential and normal translation componentseotisply. Therefore

X = X + uay + vasg Q)

and
a; =aj; + 19212, as = ag — 1951 (2)

The internal constrains for inextensional, no-strain,amelimposed, in the generic configuration,
by means of the equatias’ = a; that leads, by using the previous equations, to the follgwin



identities:
v —kv=0, v 4+uk=1 (3)

The equilibrium equations are:
t'+b=0, m+x'xt+c=0 4)

wheret andm are the internal force and couple, ahdand c the external force and couple and
x stands for the cross product. The normal and shear force @oempsn(s) andt(s), so that
t = na; + tag, and the bending moment(s), so thatm = m(a; x as), are introduced. Retaining
only the linear part, that means considering %, the equilibrium equations (4) become:
n —kt+b =0
t'+REn+by=0 (5)
m +t=0
The response function of the material takes into accourdaineage in the arch localised around
a section at the abscissgsee Fig. 3a), and it is assumed in the form:

m(s) = BI[L - epa(s — )] (s) (6)

whereFE1 is the bending stiffness of the undamaged cross-sectizna nondimensional quantity
representing the intensity of the damage apds a bump function defined as follows:

1— 22 if
e exp (1- 2#2) sl <o )
0 if |s] >«

which is shown, forx = 1, in Fig. 2. It simulates a regular contraction of the stiffa®f the rod, of
maximum value, in a part of the rod between the sectidis— «, 5 + a}.
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Figure 2: Bump function.

The external force components appearing in Eq. (5) contaiin the continuous inertial forces
and the punctual elastic force due to the spring, applieldeaséction at = ¢/2:

b1(s) = —pAi(s) — ku(s)d (s - g) , ba(s) = —pAi(s) (8)

3



wheref is the elastic stiffness of the sprind(,s — %) is the Dirac function cenetred at= g and

the dot stands for differentiation with respect to the tifiberefore, the complete system of partial
differential equations describing the free dynamics ofthmaged arch, with elastic spring, assumes
the following form:

w —kv=0

vV +uk—19=0

n' — Kt — pAii — kud(s — £/2) =0
t' +r&n — pAi =0

m' +t=0

EINl —epa(s—35)]9 —m=0

(9)

In the case of clamped-clamped arch, the following geomdtoundary conditions must be
added to the system:

u(0) =0, v(0) =0, 3(0) =0
(10)
u(f) =0, v(f) =0, 9() =0
3 THE DISCRETE MODEL
A Galerkin procedure is applied to the system (9), using apsliunctions the first four eigen-
vectors of the perfect arch without spring=£ 0, k£ = 0). If ®(s) is the state vector of the system
(9), i.e.
®(s) = {u,v,9,n,t,m}T (11)

andij(s) is the j-th eigenvector obtained fer= k£ = 0, the projection is done by posing(s) =
ijl q;(t)®;(s), with ¢;(t) time-dependent unknown modal amplitudes. A discrete Bysfethe
following type is obtained:

§+ (K + kG + eH)q = 0 (12)
whereq = {q1, 2, g3, q4}*, and
w7 02 0 0 g1 0 g13 O hit hiz hiz hi
0 @ 0 0 0O 0 0 o0 hio hos hag hoy
K = 2 - 5 G— = 5 H = 13
0 0 @ o gi3 0 g33 0 his  hos  hss hsa 13)
0 0 0 & 0 0 0 0 his hot hss ha

are the perfect stiffness matriK{) and the stiffness correction matrices due to the sprapdnd
to the damage effect¥X), respectively. The matri& contains just four terms different from zero,
the only ones corresponding to anti-symmetric modes (maatel13). The expressions of the coef-
ficients are reported in Appendix A.

The free dynamics of the system (12) is analyzed. It admitstrigial solutions of typeq =
ce™?, wherec andw are unknown andis the imaginary unit. This solution, substituted in Eq.)(12
produces the following algebraic eigenvalue problem:

Alw)c=0 (14)

whereA (w) = —w?I+K+kG +cH, beingl the identity matrix of order four. Equation (14) admits
non-trivial solution if and only ifdet A = 0. This characteristic equation allows one to evaluate the



natural frequencies; of the system. In corrispondence of each frequencies, bs$siple to solve
the system (14), to obtain the eigenveciorsand to reconstruct the contiunous, approximate, modes
of the system (12) as

4
Bi(s) = > c;i®i(s) (15)
=1
beingc;; thei-th component of the vecter;.
4 SOLUTION
When both the spring and the damage are absenrt = 0), the natural frequencies of the
system (12) come down to those of the perfect system:= @;, j = 1,...,4. In this case,

the eigenvectors; coincide to the vectors of the natural base & e;), since the system (12) is
uncoupled. It means that the eigenfunctions of the archxaetly those used as shape functions in
the Galerkin projection. For specific numerical values efplarameters of the arch (bendig stiffness
ET =2.025 x 107 Nm?, mass per unit lenghtA = 225 Kg/m, radiusRk = 40 m, length of the axis
line £ = 20 m) the frequencies assume the values= 44.79 rad/sw-. = 81.16 rad/sws = 146.17
rad/sw, = 212.16 rad/s, and the corresponding eigenfunctions are reparteidi 3.

Figure 3: Eigenfunctions of the perfect arch: (a) first aytinmetric mode; (b) first symmetric mode;
(c) second anti-symmetric mode; (d) second symmetric m&adel thin line: initial configuration;
blue thick line: modal displacement.

When the spring is present in no-damage conditibon4 0, ¢ = 0), the natural frequencies
and shapes of the symmetric modes remain unchangged: @;, c; = e;, j = 2,4, while the
anti-symmetric modes are affected by the spring. Theirdeagies vary significantly (see Fig. 5a):
in corrispondence of the value~ 4 x 108 N/m, a crossing between the first anti-symmetric and
symmetric modes occours; they invert their order withoytiateractions, and some modifications
of the shape of anti-symmetric mode is observed (see Fig. 4).

Figure 4: First anti-symmetric mode before and after thédisssover whea = 0: (a)k = 1 x 108
N/m; (b) k = 1 x 10° N/m. Red thin line: initial configuration; blue thick line:odal displacement.

In corrispondence of the value~ 2 x 10° N/m a veering between the first anti-symmetric and
the second anti-symmetric modes occurs and, consequtrglgorresponding shapes are hybrid,



but keeping their properties of anti-symmetry (see Fig. B).corrispondence of the value =
4x10% N/m, a secondary crossing between the second anti-syneraattisymmetric modes occurs.
Good agreement is obtained, between the analytical framgeand those obtained by using a FE
model (markers in Fig. 5a): for higher values of the paramktghe agreement is less accurate
(diamond markers in Fig. 5a), because the modal shape ofteddel starts to become hybrid near
a secondary veering, which takes place out of the rangeseafiigram; to get better agreement,
a further anti-symmetric mode should be added in the diget&n procedure. Hence, it can be
observed that, quite far in the left side of the first veeringe, that occurs d@ ~ 2 x 10° N/m,

all the modes, except the first anti-symmetric one, cointidihose of the model without spring;
thereforeco = e, andc; = aje; + ases, whereay, as are coefficients which depend én
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Figure 5: Modal frequencies in function of the intensity bé&tspring in no-damage condition (a)
and in damage conditior & 0.3) (b). Markers: FEM.
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Figure 6: Hybrid eigenfunctions of the arch with the sprikg= 2 x 10° N/m): (a) second mode;
(b) third mode. Red thin line: initial configuration; bluédk line: modal displacement.

When both spring and damage are preskst 0, € # 0, for 5 = ¢/4), all the modal frequencies
and shapes are modified. In particular, the crossing phenamigserved in the symmetric config-
uration, atk ~ 2 x 10° N/m and atk ~ 4 x 10° N/m in Fig. 5a, turn into veering (see Fig. 5b);
the modal shapes, near these vaueg, @fre hybrid and lose their proprerty of symmetry and anti-
symmetry (see Fig. 7). The regions of value& efhere the modal shapes are hybrid are as wider as
the damage increases. An estimation of the wideness of thdigation region can be obtained by
evaluating the MAC index between one hybrid maelg calculated for somé ande, and one mode
calculated for the samk, but without damage (referred &s;); focusing the attention to the first
veering regionk ~ 4 x 108 N/m), the modes calculated with=# 0 ande = 0 reduce to®; = <i>j,
(=2,...4), while ®;, = a1 ®; + a3®5. Therefore the MAC index is:

(fog P, - @jds)g

(Jfy @i @ids) (Jy ;- Bjds)

MAC,; = (16)
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where the dot stands for the scalar product. By using Eq.gd8Yhe orthogonality of the eigenvec-
tors®;, Eq. (16) becomes:

2
mAC, — Gl < (17)
Yo (eirci)(ejey)  flel]?
forj =2,3,4and, inthe cas¢ = 1,
MAC,, — (ci - (a1e1 + azes))’ _ (a1ci + azeiz)? (18)
o (circi) ((arer +azes) - (arer +azes))  |lcil[?(af +a3)

which assume values between 0 and 1.

Figure 7: Eigenfunctions of the arch with the spring and dger(a = 6 x 103 N/m, e = 0.4): (a) first
mode; (b) second mode. Red thin line: initial configuratising thick line: modal displacement.

Figure 8a represents the MAC index between the first antirsgtic mode, obtained in presence
of damage and spring, and the first symmetic mode, obtainguegsence of the spring without
damage, in function of both the spring and damage intessiti¢hen damage is absent (section at
e = 0), the index is always zero. When damage is present, the MA&xiassumes values different
from zero around the value @&f~ 4.5 x 10® N/m, and the region where MA&: 0, i.e. the region
where the modes in presence of damage are hybrid, is as veidenaage increases. However, if the
section where the damage is localized, is closer to the tthefrch, the hybridization is extended
in a smaller region (decreasing defect of symmetry).

Fig. 8b, which shows the contour plot of the MAC index in fuootof k£ ande, can be used to
obtain a representation of the damage evolution, obsehaitferent times, when two hybrid modes
are observed and their frequencieg wo, and shape®,, ®, are identified: A given frequency
separation of two subsequent modes is obtainable for difteralues of the “structural” parameter
k and damage at different “detuning” from the nominal value &f producing the crossover on
the perfect system. Giving a frequency separafioa “sz;]“l between the two hybrid modes, it
is possible to find two loci in the plang, ¢} (the red thick lines in Fig. 8b) coherent with such a
value. Only two couples of valugg, €] are however coherent with a particular MAC (green points
in Fig. 8b). They can be referred as: defect-dependerg-gwints. The located points are in direct
correspondance with the mechanism producing the defegtaitry originating the hybridization,
resulting very sensitive to the defect intensity. In a r@skc(as the one presented in the next Section),
in absence of a direct measure of an occurring damage or icatbe of damage not yet localized,
monitoring the evolution of the defect-dependent-statieor damage-state-point (the green point
Fig. 8b) by means of a monitoring program of modal charasties, permits to follow its evolution
and to evaluate the relevant velocity. By using a validatéari®del reproducing the transition, it is
possible to evaluate the critical value[6fMAC] associated to a specific limit state. In particular, the
updated model allows one to locate the position of the darstae-point and then, once the damage
intensity is further increased, the state correspondirgggettled limit condition. The resulting plot
represents a path of evolution of the state of the structsithe@damage changes and a valid mean
to control the structural condition.
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Figure 8: MAC index between the first anti-symmetric mode riesgnce of damage and the first
simmetric mode in absence of damage, in functiok @ihde (a); contour plot of the MAC index
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5 THE FREQUENCY AVOIDING AND MODE HYBRIDIZATION IN THE VALLE CASTEL-
LANA ARCH BRIDGE

When a “real structure” is considered instead of a mathelathodel, the variation of struc-
tural parameters is not meaningful. Notwithstanding, appiy strange behaviors, provided by the
results of experimental tests, can be unfolded in the fraonlkewf the described phenomena.

During an extended campaign of repeated dynamical testsotuster of bridges, maintained
by a Public Territorial Authority in the Abruzzo Region, italy, six twin-arches bridges have been
analyzed. Among the six, two of them exhibited an apparesttignge behavior during the tests,
showing, in correspondence of a nominal symmetric geom@toysubsequent hybrid modes. In the
case of the Valle Castellana bridge (Fig. 9), the first two esdtaving close frequencies correspond
to two modes not belonging to the expected symmetric anesgniimetric classes (Fig. 10):
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Figure 9: The twin-arch Valle Castellana bridge (a) and tteekerometers set-up (b).

The two modes in Fig. 10b clearly appear as a different coatizin of a symmetric mode having
three half waves on the span and of an anti-symmetric modadpewo half waves on the span. The
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Figure 10: The singular values of the spectral density méi)iand the two identified hybrid modes

(b).

resulting hybrid modes appear as a couple of flexural mod@adneespectively a bigger (smaller)

half wave on the left (right) part of the deck. This kind of nabdhteraction could be explained by

means of the theory discussed above: considering that sexwda hybridization range is quite wide
(hybrid modes have frequencies differing of ab6étit), it was easy to forecast a lost of symmetry
probably due to a localized damage. Following this idea airniga FE model of the analyzed struc-
ture, after evidencing a suitable unfolding parameter atrdducing a breaking of the symmetry, it

was possible to obtain a veering sequence exactly repnogitioé observed hybrid modes.

In Fig. 11 the results of the eigen-analysis on the FE modéhi®fValle Castellana bridge are
shown. Itis evident that the introduced localized loss ofisyetry, because of the particular tuning of
elastic-geometric-inertial parameters, could be theeafithe sequence of hybrid modes identified
during the tests. Due to high sensitivity of hybrid modalgbato the imperfections, the occurrence
of this phenomenon could be conveniently used to evaluatl®#s of symmetry affecting the bridge
in the framework of a structural health monitoring program.
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Figure 11: The veering transition in the FE model of the Val&stellana twin-arch bridge.

6 CONCLUSIONS

This paper gives reason for the apparently strange behabgmrved in the r.c. twin-arch “Valle
Castellana” bridge (Provincia di Teramo, Italy), objectseferal dynamical tests by the Structural
Department at University of L' Aquila (Italy). In particulghybrid modes have been identified, while
simple symmetric and anti-symmetric modes were expectdterefore a linear model of plane



arch, with a loss of symmetry due to a localized damage, iedoiced as a tool to describe the

phenomena of crossing and veering of natural frequencies.phenomena are described in terms
of the variation of a suitable control parameter. Moreoités, observed how the localized damage

produces the hybridization of the modal shapes, which iseneeident as the intensity the damage
increases.
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A COEFFICIENTS OF THE DISCRETE SYSTEM

In this Section, the expression of the coefficients of thedimalgebraic system (14) are reported.
Calling ®;(s) = {us, vi,9;,ni,t;, m; }T thei-th eigenvectori(= 1,...4) and defining the modal
massesn; := f(f pA(u? +v?)ds, the coefficients of the stiffness matrices (13) read € 1, ... 4):

1 L
of = —/ [(n} — Rti)u; + (t; + Fng)vi] ds
my 0
¢ (LY, . (L
gljzi/ uiuj(S (S—é) d827uz(2)u_7 (2) (19)
m; 0 2 m;
1 L
hij = — /0 (191»193’@& (s—3)+ 19i199<pg (s — 5))ds
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