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SUMMARY. Within the context of work-conjugate, higher-@ndstrain gradient plasticity (see, e.g.,
[1]), it has been recently shown [2, 3] that, even in the sigigplacement range, it may be important
to constitutively prescribe the dissipation due to thetpaspin in the isotropic modelling of strain
gradient plasticity, as earlier envisaged by Gurtin inisecfi2 of [4]. In this work, we wish to
further investigate on such a modelling possibility.

With reference to the so-called energetic and dissipatik@nsgradients (see, e.g., [5]), and
the related size effects, we mainly aim at getting an insaghthe role of the material parameters
involved in both the free energy and the dissipation fumctio

About the form of the free energy, we are concerned with itsrloution due to geometrically
necessary dislocations [6], a function of Nye’s dislogatiensity tensor [7, 8] also called the defect
energy (e.g., [4]): a few studies on this, providing sigmifity different results, are available in the
literature [9, 10, 11, 12]. Here, just to appreciate how milnghresults are influenced by different
choices, we analyse a quite simple power-law expressiothéofree energy which, for appropriate
choices of its exponent particularises to the quadratic tardone-homogeneous forms, already
exploited by various authors.

Instead, it is much more difficult to find a dissipation funct{governing the isotropic hardening)
able to account, in the continuum average, for the dissipatue to the motion of dislocations [13].
We will try to reach our goal by determining the influence of trarious material length scales and
parameters which is possible to include in the modelling.

For what concerns the material parameteuling the influence of the dissipation due to plastic
spin, we shall show that it strongly affects the energetie siffect which is possible to describe. In
particular, if y is set as proposed in [3], i.e., as a function of both energetd dissipative length
scales, and other standard material parameters, themstaut that the energetic size effect mainly
consists of strengthening (i.e., an increase in the injiet stress) accompanied with diminishing
size, contrary to what usually found within strain gradiglassticity, i.e., that the energetic size effect
is related to the strain hardening variation. Actuallycigstal plasticity, while the dissipative size
effect seems always to consist of some strengthening, #getic size effect is strongly related to
the number and relative orientations of families of actie systems [2], and provides an increase
in strain hardening without strengthening only when ptitstidevelops on a very limited number
of systems (typically in single slip). Hencg,should be set as in [3] or differently, depending on
whether theisotropic modelling is intended to approximate the multislip behaviof crystals or
not.

1 INTRODUCTION

We consider strain gradient plasticity models for the dpsion of the mechanical behaviour
exhibited by metallic components undergoing inhomogea@tastic flow, in the size range between
a few tens of micrometers to a few hundreds of nanometers.odsdays well documented in the



literature (see, e.g., Fleck et al. [14]), diminishing sidéhin such a range leads to some peculiar
size effects (classified as “second-order” effects by Geeat [15]), with smaller being stronger.
Adopting the terminology of Hirschberger and Steinmanr],[h@ classify the theory presented
here as gradient plasticity based on the plastic straindimrast with the theories where also the
gradient of the elastic strain plays a role, as in Fleck anttilnoson [17]), characterised by

e anexternalvariable approach (as we define some appropriate measutke pfastic parts
of the first and second gradients of the displacemengresary variables with conjugated
stresses entering the higher-order balance equation$whiestitute the so-called Karush-
Kuhn-Tucker conditions, not implicitly enforced)

e acompatibleformulation (as, for instance, we derive the higher-ordgrilrium equations
by imposing that the plastic part of the second gradientefdisplacement is the gradient of
the plastic strain).

This notwithstanding, the theory proposed does not belongny specific category analysed by
Hirschberger and Steinmann [16], because they neglectdbsiljlity to distinguish betweean-
ergeticanddissipativestrain gradient dependences within the external varigipecach, as we do
here, so that a dissipation inequality leading to a flow rale lose constitutively designed.

Since we believe that the defect energy should be expresstatms of Nye's tensor (some
reasons for this are given in [3, 2]), the observation that'dlt{ensor depends on equal footing upon
the plastic strain and plastic spin suggests that also tter khould enter the dissipative potential
(see, e.g., [4]). Infact, in [3] it has been shown that neijigahe dissipation due to plastic spin in
an isotropic strain gradient model may lead to a poor desoripf the micro-plasticity.

In this work, at the light of the way recently proposed by D&rB [18] to derive the balance
equations from the principle of virtual work, we will disaushortcomings and benefits of alternative
constitutive choices oprimary kinematic variables employed to account for the dissipatiae
to the plastic spin; moreover, we shall appreciate the gtayupling of those choices with the
constitutive assumptions for the defect energy in deteingithe modelling capability.

Notation We use lightface letters for scalars. Bold face is used fst-fisecond-, and third-
order tensors, in most cases respectively represented &l lsmtin, small Greek, and capital Latin
letters. In some exceptions, for the sake of clarity, we madaof indices, referred to an orthogonal
cartesian system. -’ represents the scalar product of vectors and tensors (e=g.b - u = b;u,,
b= o€ =o0;ci;,c=T-S = T;;;,5;1). Forany tensop, the scalar product by itself jp|* = p-p.

“ x " is adopted for the vector product: = m x n = e;jpm;ng, = t;, with e;;;, the alternating
symbol (one of the exceptions, as it is a third-order tensprasented by a small Latin letter), and,
for ¢ a second-order tensaf:x n = e;,(ink. For the composition of tensors of different order the
lower-order tensor is on the right and all its indices getisded, e.g.: fobr a second-order tensor
andn a vectort = on = o4;n; = t;; for T a third-order tensor and a vector,Tn = Tj;,nk;
for L a fourth-order tensor and a second-order tensa#, = Le = L;;ner = oi;. Moreover,
(Vu);j = O0u;/0x; = wj, (dive), = oy, and( curly);; = ejrva,, designate, respectively,
the gradient of the vector field, the divergence of the second-order tensgrand the curl of
the second-order tenser, whereaq devg);; = (si; — di;5%k/3) (with 6 the Kronecker symbol),
(symg);; = (si; + s5i)/2, and(skws);; = (si; — j:)/2 denote, respectively, the deviatoric,
symmetric, and skew parts of the second-order teqsor



2 THE MODEL

We are concerned with the mechanical response of a body giotup space regiof2, whose
external surface5, of outward normake, consists of twocomplementanparts: Sy, where the
tractionst’ are known andlislocations are free to exit the badgnd Sy, where the displacement
u? is known anddislocations are blockedMiore general higher-order boundary conditions can be
easily incorporated in the theory, but they are irrelevantifhat follows.

2.1 The Principle of Virtual Work

We base the theoretical framework on the principle of virwark, in which, by following Del
Piero [18], the main assumption consists in the belief thatvirtual work on any regiofil of Q
be provided by two contributions, one consisting of volureegity of body force$ and the other
determined by contact actions on the boundardipit is assumed that such contact actions consist
of two fieldst andr associated with the displacemenand the plastic distortioty, the latter being
plastic part of the displacement gradient:

Vu = (V) + (1)

Hence, withe = é5t a compatible variation of the kinematic fieddthe virtual work oriI is defined
as:

W(H,éu,éy)z/b-&udV—i—/ (t-6u+7-57)dA )
11 o1l

By enforcing that the virtual work is left unchanged by rididdy translation and rotation, i.e.,
W(IL, ¢,0) = 0 andW(II, ¢ x ,0) = 0 for any constant vecto¢, and by using the Cauchy
tetrahedron theorem, one deduces (see, e.g., [18]) theeeeésof the standard symmetric Cauchy
stresso such that

divo+b=0 in II (3)
on =t on JII 4)
so that the virtual work can be rewritten as:
WL, du, 6v) = / o symVoéu dV + / T-0vdA (5)
11 oIl

Now, since we wish to account for the dissipation due to magtin, we danotimpose
W(L,0,w) =0 (6)

for anyconstantskew-symmetric second order tenser as instead done by Del Piero [18] in order
to obtain the model of Gurtin and Anand [5].

Hence, all the remaining (higher-order) balance equatiane to be derived by making an hy-
pothesis which allows the transformation of the area iratleigrequation (5) into a volume integral.
To this purpose, we define the following body forg®g18]:

N 1
r—0\|B(z,7)| Jop(a.m

whereB(x, r) is the sphere centered anof radiusr and volume B(x, r)|. This allows the deduc-
tion of the existence of a third-order stress tenSauch that

dvS+3=0in1I (8)



Sn =71 on Jll 9
Because of the different nature of the hypothesis used foedifrese equations with respect to that
behind the derivation of (3) and (4), one may call them psevalance equations, as proposed by

Del Piero [18].
Then, the virtual work becomes:

W(IL, 6w, ) = /

(0 . symVéu+ S -Voy—j3- 57) % (10)
1T

Now, we decomposg into the opposites of its symmetric and skew-symmetricspart

sympa3 = —¢ skwfB = —w (11)
andassumehat .S admits the decomposition
S = §deh) (o) (12)
such that
SGi” = exjntin T = T(3 (13)

in which ¢ is called the defect stress. The virtual work turns out oirea

W(IL, du, o) = /

(o’ - symVdu + ¢ - curl o~
II

+ & syméy +w - skwéy + T . symV(S'y) v (14)

By exploiting the standard definitions for the total strain

€ = symVu,
Nye'’s dislocation density tensor [7, 8]
a = curly, (15)
and plastic strain and spin
e? = sym~ 6P = skw~ , (16)

the (nternal) virtual work can be re-written in a more readable form:
W;(II) = / (0 e+ C-ba+E-0eP +w 50" +TE . 5v5p)dv 17)
I1

Finally, by defining the following stress, which will restidt be conjugated to the plastic strain rate
through the plastic potential,

p=&+ devo (18)

the equilibrium equations (3) and (8) for the whole body fireen standard body forces read:
dve=0 in Q (19)
p— deve — divT® + sym[dev(curl¢)] =0 in Q (20)
w+ skw(curl¢) =0 in Q (21)

with boundary conditions:

on =t"onSy (22)
T n + sym[dev(¢ xn) =0 on Sy (23)
skw (¢ xn) =0 on Sy (24)



Discussion The plastic spin dissipation could be accounted for also l®ams of constitutive
choices respectful of the invariance (6), as proposed ih [I8 this purpose, first of all, we im-
pose (6) and obtain tha&’ cannot directly enter the (internal) virtual work (or, irhet words, this
setsw = 0). Then, we remove the assumption (12), and replace it wétidhowing decomposition
which allows us to account for the dissipation due to the igratdf the plastic spin:

S =84 47 4 7 (25)
where i ) )
SUED = exgnGin TS =T.3) T = ~T'3) (26)

Note that there is no redundancy in this decompositioi$ dfecause of the completely different
constitutive choices that we have in mind pandT”, the former related to part of the free energy,
the latter describing part of the dissipation (analogotsihe prescriptions of next subsections 2.2
and 2.3).

The assumption (25)-(26) leads to the following form of timgrnal) virtual work, substituting
@an:

Wi (ID) = / (a e+ (St €-0eP + T . §vel + T . Wep) av 27)
I1
The pseudo-balance equation (20) remains the same, whikxjiiation (21) has to be replaced by
skw(curl¢) — divT™ =0 in Q (28)

This modelling is extremely appealing because both it retsp@) and it seems to even better fol-
low the view by which the internal work should be affected bg differentplastic rotation of two
neighboumacroscopienaterial points.

Unfortunately, our preliminary calculations (done in a ##mway as in [3], with analogous
constitutive choices for the free energy and for the digsipgotential — see also the following
subsections) have shown that this model is not as good asdhdhg from the choices leading to
(17) in representing the mechanical response of a stradiegrcrystallinestrip under simple shear.
Hence, we leave this open issue for future developments el working on the model (17)—(24),
substantially equivalent to that sketched in section 12wti@ [4].

2.2 The free energy
The free energy reads

%]L(s —¢e’)-(e—€")+D(a) (29)

whereL is the elastic stiffness arll(«) is the defect energy. Of course, the Cauchy stress and the
defect stress respectively read:

oc=L(e—-¢€" (30)
_ 9D
- da (31)

which is the transpose of what Gurtin [19] called the defeetss.
Choice (29) for the free energy makes it meaningful the fithgy form of the (internal) virtual
work, in the place of (14):

Wi(H):/(cr-(65—65”)+C-5a+p-6e”+w-60”+T(5)-§Ve”)dV (32)
II

energetic dissipative




The congtitutive choice for the defect energy The defect energy can be chosen as:

— M+1
D(e) = g7 rphlllel) (33)
in which p is the shear modulus in the case of an isotropic linear el&dgthaviour, and is an
energetianaterial length scale quantifying the size effect due to GlNilg-range interactions. The
third material paramete¥/ governs the nonlinearityd/ = 1 leads to the quadratic form exploited
by many authors (e.g., [19] and [3]), whild — 0 leads to a defect energy homogeneous of degree
1 on Nye’s tensor, as proposed by Ohno and Okumura [10] ancb@aet al. [11], even though
(i) Ohno and Okumura take a significantly different versiwhere the interactions among different
systems are unaccounted for and (ii) the reasoning of Giagtah is related to an infinite dislocation
density, never to be reached in real materials. Moreovegdeut an argument against the one-
homogeneous form of the defect energy: such a form, in fuetéash deformation modes as the
simple shear, ideally governed by scalar fields, would ptedconstant defect stress, independently
upon the Nye tensor, that is, disregarding the length obdation pile-ups; such a model, expected
to describe some strengthening, seems to be in contrastivdthurposes of the defect energy to
account for GNDs.
Choice (33) leads to
¢ =pllla))" o

Fleck and Wiillis [20] consider the free energy extensioneéalfunction ofe? andVe?, which can

in case turn out to be a function of cufl, note, as it neglects the plastic spin. In any case, Fleck
and Willis do not suggest any specific form of their free egeaxtension, while they point out that

it could even be a function of the history &f andVe?. Analogously, the defect ener@(«) could
also be chosen as a function of the history of Nye’s tensdh thie requirement thaD = ¢ - da,

but this possibility seems to us out of the physical pictuyenthich Nye’s tensor accounts for an
average of the stress field due to the jumps in displacembatént to the presence GNBsrest

2.3 The constitutive choice for the dissipative stresses
The dissipative stresses must be defined in such a way th&ltbeing “dissipative inequal-
ity” holds (see, e.g., Gurtin and Anand [5] for the analogoase related to plastically irrotational
materials):
p-0e” + w607 + T . 6VeP >0 (34)

A prescription consistent with this requirement which digualows a satisfactory description of the
evolution of the yield stress and the strain hardeningésirfig (see Gurtin and Anand [5]) reads:

. : N+1
. EP
v 9 ver) = 020 (2 35
V(e o' ven) = (o (35)
with the assumption
: 2 . 2
EP = \/§|ép|2 + 16" + §L2|Vép|2 (36)

oo, €0, N, andx are non-negative material parameters, as well dsat is adissipativematerial
length scale, so-called because related to dissipativeshigrder stresses. Of course, definition (36)
is phenomenological, and we do not see how to do anything pioysically based at this scale for
many reasons, among which the fact that it is still uncleav tmdescribe in average the relevant



features of the short-range interactions among disloggtfRoy et al. [13], Kroner [21]). In [3], it
has been shown that the parametagoverning the dissipation due to plastic spin can be ideutifi
on the basis of the comparison with an isotropic model obthinom acrystalmodel in which any
direction is assumed to be an active slip system. Such aiariigrovides:

3 g0 LN\2 -1
=|-4+—(= 37
X {2 + HEO ( Z) } 37
Of course, this may be useful if the isotropic modelling ieimded to approximate the behaviour of
a single grain in multislip. However, in other circumstasitiee effect due to the plastic spin should

be even more important.
The dissipative stresses result:

iy 2D o o\ N—
o WEOVE) 200 (BT, (38)
O€P 3E0 \ €0
oV(er, " Ver) o (EPN\NT,
_VELO L VE) oo (EPNT 39
v 08" Ya & .
o VEG'VEr) 2 Lo (BT,
T():Wsz% = VveP (40)

Standard arguments allow the plastic potential to be writiderms of an equivalent stress measure
>

Y EP

V=811

3 1 3
Y= /22 + —|w|? + — | T2 41
, \/2|p| +X|w| + 572 T (41)

Discussion  For isotropic solids the most general definitionfsf involves three dissipative length
scales instead of judt (see, e.g., Fleck and Hutchinson [17]). Moreover, Fleck ¥fildis [20]
have proposed a form (including the possibility of desargoanisotropic bodies) combining all the
relevant components of the plastic strain and its gradigata positive definite matrix. Furthermore,
as proposed by Molinari and Ravichandran [22], and receatgnsidered by Evans and Hutchison
[23], the material length scales may change with the amofiptasticity, and this is seems to be
particularly relevant in the isotropic modelling of polystal plasticity.

The so-called visco-plastic case (ensured by settihg- 0) provides a big benefit: plastic-
ity is developed at any stress level, albeit in small qugntitV is close to 0, so that there is no
need to impose any higher-order boundary condition at tterial surfaces between elastic and
plastic domains (i.e., the moving elastic-plastic bourey problem that one has to face in the rate-
independent limit (i.e.N — 0). In such a casejo may even be replaced by a hardening function
oy such that

oy = Floy)EP oy(EP =0) = 09 (42)

where the functiolF governs the strain hardening/softening in such a waydhat- 0 always and
og IS, in the caseV — 0, the value of the equivalent streSsat which yield starts (that is a sort of
internal isotropic hardening for the dissipative stresses

One can consider a more genefahorm for the definition of the rate affectiveplastic strain

[17, 23]: e
b= () () i)

7



Evans and Hutchinson [23], based on their observationsadingctrends, propose to abandon the
computationally convenient and long beaten pBth= 2, in favor of the choiceP? = 1. In[2], a
different conclusion, supporting the choife= 2, has been drawn within the framework of crystal
plasticity.

2.4 The “flow rule” in terms of kinematic quantities

By writing the stresses in terms of kinematic quantitiessistently with the foregoing constitu-
tive choices, equations (20)-(21) assume the meaning dfdierule In the viscoplastic case, in
which the extension (42) is neglected, we have:

20 [(EP\N" 7' L, .. eV
270) (2L P [2gP — L2 = P 21l
30 { ( g0 ) (E’LJ Ezj,kk) €0 7k€zj,k + /LEU

M-1 1 1
- pl® (f\/%l,wpk,l - Vpk,ﬂpk,l) {5%,1@1@ = 5 (Vikgk + Vikik) + 303 (Ver et — 7ll,kk)}
= 2u(eij — dijenr)  (43)

oo [ EP\ N
) 2
Xz, (g) 0 — nl (ﬁ\/vpz,mpk,z - ”ka.wpk,l)

Ok — %(%k,jk - 'ij,ik)} =0 (44)
Integrating the system (43)-(44) (together with the otlggragions and boundary conditions defining
the problem) is far harder than obtaining the solution ofahalogous problem within the deforma-
tion theory context. Hence, by assuming that for monotaracling the deformation theory provide
results close to those obtainable by means of the flow thdwyprmer modelling will be used next

to discuss the outcome of the theory proposed. Let us refi@] tor the precise equations of the

deformation theory, albeit the higher-order balance éqoatin terms of stresses (20)-(21) are left
unchanged in passing from the flow theory to the deformatieoty.

o

3 SIMULATIONS IN SIMPLE SHEAR AND CONCLUDING REMARKS

The concluding remarks are based on the results of the diongaof the simple shear of a
strip constrained between two bodies in which dislocaticersnot penetrate. The details of such
simulations are totally skipped here for the sake of bresitgt because most of them can be evicted
from what has been done in [3, 2].

The results show that the value of the paramegtgoverning the dissipation due plastic spin
strongly affects the capability of describing the size effe

Settingx as in (37) leads to a model where both the energetic and tkgdiwe size effects
mostly consist of strengthening, without an appreciablgatian of strain hardening with dimin-
ishing size. This is almost always the case for the dissipatffect, but it is remarkable for the
energetic effect. This result is corroborated by previowayses in multislip of single crystals [2],
which showed the same peculiarity (let us remind that eqonat87) was obtained for “infinite-
multislip”). Also, the numerical results show that this ggetic strengthening seems to hold for any
relevant value of the material paramet&fsand N governing the nonlinearity, as in the constitutive
prescriptions (33) and (35), and this was not a priori obsisince equation (37) was obtained in the
linear case.

Moreover, we have found that the behaviour is extremelyisemto the exponenfi/ in the
power-law put forward for the defect energy. Also, we haveficmed the expectation, based on
the observation after equation (33), that valuedbtlose to 0, independently upon howis set,



lead to energetic strengthening, inhibiting the capabitit describe conspicuous strain hardening
variations.

The above conclusions suggest that the actual forms of defergy and plastic potential are
of fundamental importance, and a large effort should by putrder to obtain simple and effective
forms of them, for instance, by extensively comparing tseilts of Discrete Dislocation simulations
(e.g., [24, 25]) with those obtained from a robust finite ed@tmimplementation of strain gradient
models.

Moreover, it would be interesting to investigate on the ftd the plastic spin on the mechanical
response of polycrystals, also by accounting for the behanaf grain boundaries, by appropriately
extending the technology developed by Fleck and Willis 23,
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