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SUMMARY. Within the context of work-conjugate, higher-order strain gradient plasticity (see, e.g.,
[1]), it has been recently shown [2, 3] that, even in the smalldisplacement range, it may be important
to constitutively prescribe the dissipation due to the plastic spin in the isotropic modelling of strain
gradient plasticity, as earlier envisaged by Gurtin in section 12 of [4]. In this work, we wish to
further investigate on such a modelling possibility.

With reference to the so-called energetic and dissipative strain gradients (see, e.g., [5]), and
the related size effects, we mainly aim at getting an insighton the role of the material parameters
involved in both the free energy and the dissipation function.

About the form of the free energy, we are concerned with its contribution due to geometrically
necessary dislocations [6], a function of Nye’s dislocation density tensor [7, 8] also called the defect
energy (e.g., [4]): a few studies on this, providing significantly different results, are available in the
literature [9, 10, 11, 12]. Here, just to appreciate how muchthe results are influenced by different
choices, we analyse a quite simple power-law expression forthe free energy which, for appropriate
choices of its exponent particularises to the quadratic andthe one-homogeneous forms, already
exploited by various authors.

Instead, it is much more difficult to find a dissipation function (governing the isotropic hardening)
able to account, in the continuum average, for the dissipation due to the motion of dislocations [13].
We will try to reach our goal by determining the influence of the various material length scales and
parameters which is possible to include in the modelling.

For what concerns the material parameterχ ruling the influence of the dissipation due to plastic
spin, we shall show that it strongly affects the energetic size effect which is possible to describe. In
particular, ifχ is set as proposed in [3], i.e., as a function of both energetic and dissipative length
scales, and other standard material parameters, then, it turns out that the energetic size effect mainly
consists of strengthening (i.e., an increase in the initialyield stress) accompanied with diminishing
size, contrary to what usually found within strain gradientplasticity, i.e., that the energetic size effect
is related to the strain hardening variation. Actually, incrystalplasticity, while the dissipative size
effect seems always to consist of some strengthening, the energetic size effect is strongly related to
the number and relative orientations of families of active slip systems [2], and provides an increase
in strain hardening without strengthening only when plasticity develops on a very limited number
of systems (typically in single slip). Hence,χ should be set as in [3] or differently, depending on
whether theisotropic modelling is intended to approximate the multislip behaviour of crystals or
not.

1 INTRODUCTION
We consider strain gradient plasticity models for the description of the mechanical behaviour

exhibited by metallic components undergoing inhomogeneous plastic flow, in the size range between
a few tens of micrometers to a few hundreds of nanometers. As nowadays well documented in the
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literature (see, e.g., Fleck et al. [14]), diminishing sizewithin such a range leads to some peculiar
size effects (classified as “second-order” effects by Geerset al. [15]), with smaller being stronger.

Adopting the terminology of Hirschberger and Steinmann [16], we classify the theory presented
here as gradient plasticity based on the plastic strain (in contrast with the theories where also the
gradient of the elastic strain plays a role, as in Fleck and Hutchinson [17]), characterised by

• an externalvariable approach (as we define some appropriate measures ofthe plastic parts
of the first and second gradients of the displacement asprimary variables with conjugated
stresses entering the higher-order balance equations which substitute the so-called Karush-
Kuhn-Tucker conditions, not implicitly enforced)

• a compatibleformulation (as, for instance, we derive the higher-order equilibrium equations
by imposing that the plastic part of the second gradient of the displacement is the gradient of
the plastic strain).

This notwithstanding, the theory proposed does not belong to any specific category analysed by
Hirschberger and Steinmann [16], because they neglect the possibility to distinguish betweenen-
ergeticanddissipativestrain gradient dependences within the external variable approach, as we do
here, so that a dissipation inequality leading to a flow rule can be constitutively designed.

Since we believe that the defect energy should be expressed in terms of Nye’s tensor (some
reasons for this are given in [3, 2]), the observation that Nye’s tensor depends on equal footing upon
the plastic strain and plastic spin suggests that also the latter should enter the dissipative potential
(see, e.g., [4]). In fact, in [3] it has been shown that neglecting the dissipation due to plastic spin in
an isotropic strain gradient model may lead to a poor description of the micro-plasticity.

In this work, at the light of the way recently proposed by Del Piero [18] to derive the balance
equations from the principle of virtual work, we will discuss shortcomings and benefits of alternative
constitutive choices ofprimary kinematic variables employed to account for the dissipation due
to the plastic spin; moreover, we shall appreciate the strong coupling of those choices with the
constitutive assumptions for the defect energy in determining the modelling capability.

Notation We use lightface letters for scalars. Bold face is used for first-, second-, and third-
order tensors, in most cases respectively represented by small Latin, small Greek, and capital Latin
letters. In some exceptions, for the sake of clarity, we makeuse of indices, referred to an orthogonal
cartesian system. “· ” represents the scalar product of vectors and tensors (e.g., a = b · u ≡ biui,
b = σ·ε ≡ σijεij , c = T ·S ≡ TijkSijk). For any tensorρ, the scalar product by itself is|ρ|2 ≡ ρ·ρ.
“ × ” is adopted for the vector product:t = m × n ≡ eijkmjnk = ti, with eijk the alternating
symbol (one of the exceptions, as it is a third-order tensor represented by a small Latin letter), and,
for ζ a second-order tensor:ζ×n ≡ ejlkζilnk. For the composition of tensors of different order the
lower-order tensor is on the right and all its indices get saturated, e.g.: forσ a second-order tensor
andn a vector,t = σn ≡ σijnj = ti; for T a third-order tensor andn a vector,Tn ≡ Tijknk;
for L a fourth-order tensor andε a second-order tensor,σ = Lε ≡ Lijklεkl = σij . Moreover,
(∇u)ij ≡ ∂ui/∂xj ≡ ui,j , ( div σ)i ≡ σij,j , and( curl γ)ij ≡ ejklγil,k designate, respectively,
the gradient of the vector fieldu, the divergence of the second-order tensorσ, and the curl of
the second-order tensorγ, whereas( devς)ij ≡ (ςij − δijςkk/3) (with δ the Kronecker symbol),
( symς)ij ≡ (ςij + ςji)/2, and( skw ς)ij ≡ (ςij − ςji)/2 denote, respectively, the deviatoric,
symmetric, and skew parts of the second-order tensorς.
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2 THE MODEL
We are concerned with the mechanical response of a body occupying a space regionΩ, whose

external surfaceS, of outward normaln, consists of twocomplementaryparts: ST , where the
tractionst0 are known anddislocations are free to exit the body, andSU , where the displacement
u0 is known anddislocations are blocked. More general higher-order boundary conditions can be
easily incorporated in the theory, but they are irrelevant for what follows.

2.1 The Principle of Virtual Work
We base the theoretical framework on the principle of virtual work, in which, by following Del

Piero [18], the main assumption consists in the belief that the virtual work on any regionΠ of Ω
be provided by two contributions, one consisting of volume density of body forcesb and the other
determined by contact actions on the boundary ofΠ; it is assumed that such contact actions consist
of two fieldst andτ associated with the displacementu and the plastic distortionγ, the latter being
plastic part of the displacement gradient:

∇u = (∇u)el + γ (1)

Hence, withδǫ = ǫ̇δt a compatible variation of the kinematic fieldǫ, the virtual work onΠ is defined
as:

W(Π, δu, δγ) =

∫

Π

b · δu dV +

∫

∂Π

(

t · δu + τ · δγ
)

dA (2)

By enforcing that the virtual work is left unchanged by rigidbody translation and rotation, i.e.,
W(Π, c,0) = 0 andW(Π, c × x,0) = 0 for any constant vectorc, and by using the Cauchy
tetrahedron theorem, one deduces (see, e.g., [18]) the existence of the standard symmetric Cauchy
stressσ such that

div σ + b = 0 in Π (3)

σn = t on ∂Π (4)

so that the virtual work can be rewritten as:

W(Π, δu, δγ) =

∫

Π

σ · sym∇δu dV +

∫

∂Π

τ · δγ dA (5)

Now, since we wish to account for the dissipation due to plastic spin, we donot impose

W(Π,0, ̟) = 0 (6)

for anyconstantskew-symmetric second order tensor̟, as instead done by Del Piero [18] in order
to obtain the model of Gurtin and Anand [5].

Hence, all the remaining (higher-order) balance equationshave to be derived by making an hy-
pothesis which allows the transformation of the area integral in equation (5) into a volume integral.
To this purpose, we define the following body forcesβ̃ [18]:

β̃ = − lim
r→0

(
1

|B(x, r)|

∫

∂B(x,r)

τ dA

)

(7)

whereB(x, r) is the sphere centered inx of radiusr and volume|B(x, r)|. This allows the deduc-
tion of the existence of a third-order stress tensorS such that

div S + β̃ = 0 in Π (8)
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Sn = τ on ∂Π (9)

Because of the different nature of the hypothesis used to derive these equations with respect to that
behind the derivation of (3) and (4), one may call them pseudo-balance equations, as proposed by
Del Piero [18].

Then, the virtual work becomes:

W(Π, δu, δγ) =

∫

Π

(

σ · sym∇δu + S · ∇δγ − β̃ · δγ
)

dV (10)

Now, we decomposẽβ into the opposites of its symmetric and skew-symmetric parts

symβ̃ = −ξ skw β̃ = −ω (11)

andassumethatS admits the decomposition

S = S(def) + T (ε) (12)

such that
S

(def)
ijk = ekjhζih T

(ε)
ijk = T

(ε)
jik (13)

in whichζ is called the defect stress. The virtual work turns out ot read:

W(Π, δu, δγ) =

∫

Π

(

σ · sym∇δu + ζ · curl δγ

+ ξ · symδγ + ω · skw δγ + T (ε) · sym∇δγ
)

dV (14)

By exploiting the standard definitions for the total strain

ε = sym∇u ,

Nye’s dislocation density tensor [7, 8]
α = curl γ , (15)

and plastic strain and spin
εp = symγ θp = skwγ , (16)

the (internal) virtual work can be re-written in a more readable form:

Wi(Π) =

∫

Π

(

σ · δε + ζ · δα + ξ · δεp + ω · δθp + T (ε) · δ∇εp
)

dV (17)

Finally, by defining the following stress, which will resultto be conjugated to the plastic strain rate
through the plastic potential,

ρ = ξ + devσ (18)

the equilibrium equations (3) and (8) for the whole body freefrom standard body forces read:

div σ = 0 in Ω (19)

ρ − devσ − div T (ε) + sym[ dev( curl ζ)] = 0 in Ω (20)

ω + skw ( curl ζ) = 0 in Ω (21)

with boundary conditions:
σn = t0 onST (22)

T (ε)n + sym[ dev(ζ × n)] = 0 on ST (23)

skw (ζ × n) = 0 on ST (24)
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Discussion The plastic spin dissipation could be accounted for also by means of constitutive
choices respectful of the invariance (6), as proposed in [18]. To this purpose, first of all, we im-
pose (6) and obtain thatθ̇

p
cannot directly enter the (internal) virtual work (or, in other words, this

setsω ≡ 0). Then, we remove the assumption (12), and replace it with the following decomposition
which allows us to account for the dissipation due to the gradient of the plastic spin:

S = S(def) + T (ε) + T (ϑ) (25)

where
S

(def)
ijk = ekjhζih T

(ε)
ijk = T

(ε)
jik T

(ϑ)
ijk = −T

(ϑ)
jik (26)

Note that there is no redundancy in this decomposition ofS because of the completely different
constitutive choices that we have in mind forζ andT (ϑ), the former related to part of the free energy,
the latter describing part of the dissipation (analogouslyto the prescriptions of next subsections 2.2
and 2.3).

The assumption (25)-(26) leads to the following form of the (internal) virtual work, substituting
(17):

Wi(Π) =

∫

Π

(

σ · δε + ζ · δα + ξ · δεp + T (ε) · δ∇εp + T (ϑ) · δ∇θp
)

dV (27)

The pseudo-balance equation (20) remains the same, while the equation (21) has to be replaced by

skw ( curl ζ) − div T (ϑ) = 0 in Ω (28)

This modelling is extremely appealing because both it respects (6) and it seems to even better fol-
low the view by which the internal work should be affected by thedifferentplastic rotation of two
neighbourmacroscopicmaterial points.

Unfortunately, our preliminary calculations (done in a similar way as in [3], with analogous
constitutive choices for the free energy and for the dissipative potential — see also the following
subsections) have shown that this model is not as good as thatcoming from the choices leading to
(17) in representing the mechanical response of a strain gradientcrystallinestrip under simple shear.
Hence, we leave this open issue for future developments and keep working on the model (17)–(24),
substantially equivalent to that sketched in section 12 of Gurtin [4].

2.2 The free energy
The free energy reads

1

2
L(ε − εp) · (ε − εp) + D(α) (29)

whereL is the elastic stiffness andD(α) is the defect energy. Of course, the Cauchy stress and the
defect stress respectively read:

σ = L(ε − εp) (30)

ζ =
∂D(α)

∂α
(31)

which is the transpose of what Gurtin [19] called the defect stress.
Choice (29) for the free energy makes it meaningful the following form of the (internal) virtual

work, in the place of (14):

Wi(Π) =

∫

Π

(

σ · (δε − δεp) + ζ · δα
︸ ︷︷ ︸

energetic

+ ρ · δεp + ω · δθp + T (ε) · δ∇εp

︸ ︷︷ ︸

dissipative

)

dV (32)
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The constitutive choice for the defect energy The defect energy can be chosen as:

D(α) =
1

M + 1
µ(ℓ|α|)M+1 (33)

in which µ is the shear modulus in the case of an isotropic linear elastic behaviour, andℓ is an
energeticmaterial length scale quantifying the size effect due to GNDs long-range interactions. The
third material parameterM governs the nonlinearity:M = 1 leads to the quadratic form exploited
by many authors (e.g., [19] and [3]), whileM → 0 leads to a defect energy homogeneous of degree
1 on Nye’s tensor, as proposed by Ohno and Okumura [10] and Garroni et al. [11], even though
(i) Ohno and Okumura take a significantly different version,where the interactions among different
systems are unaccounted for and (ii) the reasoning of Garroni et al. is related to an infinite dislocation
density, never to be reached in real materials. Moreover, let us put an argument against the one-
homogeneous form of the defect energy: such a form, in fundamental deformation modes as the
simple shear, ideally governed by scalar fields, would predict a constant defect stress, independently
upon the Nye tensor, that is, disregarding the length of dislocation pile-ups; such a model, expected
to describe some strengthening, seems to be in contrast withthe purposes of the defect energy to
account for GNDs.

Choice (33) leads to
ζ = µℓ2(ℓ|α|)M−1α

Fleck and Willis [20] consider the free energy extension to be a function ofεp and∇εp, which can
in case turn out to be a function of curlεp, notα, as it neglects the plastic spin. In any case, Fleck
and Willis do not suggest any specific form of their free energy extension, while they point out that
it could even be a function of the history ofεp and∇εp. Analogously, the defect energyD(α) could
also be chosen as a function of the history of Nye’s tensor, with the requirement thatδD = ζ · δα,
but this possibility seems to us out of the physical picture by which Nye’s tensor accounts for an
average of the stress field due to the jumps in displacement inherent to the presence GNDsat rest.

2.3 The constitutive choice for the dissipative stresses
The dissipative stresses must be defined in such a way that thefollowing “dissipative inequal-

ity” holds (see, e.g., Gurtin and Anand [5] for the analogouscase related to plastically irrotational
materials):

ρ · δεp + ω · δθp + T (ε) · δ∇εp ≥ 0 (34)

A prescription consistent with this requirement which usually allows a satisfactory description of the
evolution of the yield stress and the strain hardening/softening (see Gurtin and Anand [5]) reads:

V(ε̇p, θ̇
p
,∇ε̇p) =

σ0ε̇0

N + 1

(
Ėp

ε̇0

)N+1

(35)

with the assumption

Ėp :=

√

2

3
|ε̇p|2 + χ|θ̇

p
|2 +

2

3
L2|∇ε̇p|2 (36)

σ0, ε̇0, N , andχ are non-negative material parameters, as well asL that is adissipativematerial
length scale, so-called because related to dissipative higher-order stresses. Of course, definition (36)
is phenomenological, and we do not see how to do anything morephysically based at this scale for
many reasons, among which the fact that it is still unclear how to describe in average the relevant
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features of the short-range interactions among dislocations (Roy et al. [13], Kröner [21]). In [3], it
has been shown that the parameterχ governing the dissipation due to plastic spin can be identified
on the basis of the comparison with an isotropic model obtained from acrystalmodel in which any
direction is assumed to be an active slip system. Such a criterium provides:

χ =

[
3

2
+

σ0

µε0

(L

ℓ

)2
]
−1

(37)

Of course, this may be useful if the isotropic modelling is intended to approximate the behaviour of
a single grain in multislip. However, in other circumstances the effect due to the plastic spin should
be even more important.

The dissipative stresses result:

ρ =
∂V(ε̇p, θ̇

p
,∇ε̇p)

∂ε̇p =
2

3

σ0

ε̇0

(
Ėp

ε̇0

)N−1

ε̇p (38)

ω =
∂V(ε̇p, θ̇

p
,∇ε̇p)

∂θ̇
p = χ

σ0

ε̇0

(
Ėp

ε̇0

)N−1

θ̇
p

(39)

T (ε) =
∂V(ε̇p, θ̇

p
,∇ε̇p)

∂∇ε̇p =
2

3
L2 σ0

ε̇0

(
Ėp

ε̇0

)N−1

∇ε̇p (40)

Standard arguments allow the plastic potential to be written in terms of an equivalent stress measure
Σ:

V =
ΣĖp

N + 1
, Σ =

√
3

2
|ρ|2 +

1

χ
|ω|2 +

3

2L2
|T (ε)|2 (41)

Discussion For isotropic solids the most general definition ofĖp involves three dissipative length
scales instead of justL (see, e.g., Fleck and Hutchinson [17]). Moreover, Fleck andWillis [20]
have proposed a form (including the possibility of describing anisotropic bodies) combining all the
relevant components of the plastic strain and its gradient into a positive definite matrix. Furthermore,
as proposed by Molinari and Ravichandran [22], and recentlyreconsidered by Evans and Hutchison
[23], the material length scales may change with the amount of plasticity, and this is seems to be
particularly relevant in the isotropic modelling of polycrystal plasticity.

The so-called visco-plastic case (ensured by settingN > 0) provides a big benefit: plastic-
ity is developed at any stress level, albeit in small quantity if N is close to 0, so that there is no
need to impose any higher-order boundary condition at the internal surfaces between elastic and
plastic domains (i.e., the moving elastic-plastic boundaries), problem that one has to face in the rate-
independent limit (i.e.,N → 0). In such a case,σ0 may even be replaced by a hardening function
σY such that

σ̇Y = F(σY )Ėp σY (Ep = 0) = σ0 (42)

where the functionF governs the strain hardening/softening in such a way thatσY > 0 always and
σ0 is, in the caseN → 0, the value of the equivalent stressΣ at which yield starts (that is a sort of
internal isotropic hardening for the dissipative stresses).

One can consider a more generalP -norm for the definition of the rate ofeffectiveplastic strain
[17, 23]:

Ėp :=

[(2

3
|ε̇p|2

)P/2

+
(

χ|θ̇
p
|2

)P/2

+ LP
(2

3
|∇ε̇p|2

)P/2
]1/P
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Evans and Hutchinson [23], based on their observations of scaling trends, propose to abandon the
computationally convenient and long beaten pathP = 2, in favor of the choiceP = 1. In [2], a
different conclusion, supporting the choiceP = 2, has been drawn within the framework of crystal
plasticity.

2.4 The “flow rule” in terms of kinematic quantities
By writing the stresses in terms of kinematic quantities consistently with the foregoing constitu-

tive choices, equations (20)-(21) assume the meaning of theflow rule. In the viscoplastic case, in
which the extension (42) is neglected, we have:

2σ0

3ε̇0

{(
Ėp

ε̇0

)N−1

(ε̇p
ij − L2ε̇p

ij,kk) − L2

[(
Ėp

ε̇0

)N−1]

,k

ε̇p
ij,k

}

+ 2µεp
ij

− µℓ2
(

ℓ
√

γpl,kγpk,l − γpk,lγpk,l

)M−1[

εp
ij,kk −

1

2
(γik,jk + γjk,ik) +

1

3
δij(γkl,kl − γll,kk)

]

= 2µ(εij − δijεkk) (43)

χ
σ0

ε̇0

(
Ėp

ε̇0

)N−1

θ̇p
ij −µℓ2

(

ℓ
√

γpl,kγpk,l − γpk,lγpk,l

)M−1[

θp
ij,kk −

1

2
(γik,jk − γjk,ik)

]

= 0 (44)

Integrating the system (43)-(44) (together with the other equations and boundary conditions defining
the problem) is far harder than obtaining the solution of theanalogous problem within the deforma-
tion theory context. Hence, by assuming that for monotonic loading the deformation theory provide
results close to those obtainable by means of the flow theory,the former modelling will be used next
to discuss the outcome of the theory proposed. Let us refer to[3] for the precise equations of the
deformation theory, albeit the higher-order balance equations in terms of stresses (20)-(21) are left
unchanged in passing from the flow theory to the deformation theory.

3 SIMULATIONS IN SIMPLE SHEAR AND CONCLUDING REMARKS
The concluding remarks are based on the results of the simulations of the simple shear of a

strip constrained between two bodies in which dislocationscannot penetrate. The details of such
simulations are totally skipped here for the sake of brevityand because most of them can be evicted
from what has been done in [3, 2].

The results show that the value of the parameterχ governing the dissipation due plastic spin
strongly affects the capability of describing the size effects.

Settingχ as in (37) leads to a model where both the energetic and the dissipative size effects
mostly consist of strengthening, without an appreciable variation of strain hardening with dimin-
ishing size. This is almost always the case for the dissipative effect, but it is remarkable for the
energetic effect. This result is corroborated by previous analyses in multislip of single crystals [2],
which showed the same peculiarity (let us remind that equation (37) was obtained for “infinite-
multislip”). Also, the numerical results show that this energetic strengthening seems to hold for any
relevant value of the material parametersM andN governing the nonlinearity, as in the constitutive
prescriptions (33) and (35), and this was not a priori obvious since equation (37) was obtained in the
linear case.

Moreover, we have found that the behaviour is extremely sensitive to the exponentM in the
power-law put forward for the defect energy. Also, we have confirmed the expectation, based on
the observation after equation (33), that values ofM close to 0, independently upon howχ is set,
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lead to energetic strengthening, inhibiting the capability to describe conspicuous strain hardening
variations.

The above conclusions suggest that the actual forms of defect energy and plastic potential are
of fundamental importance, and a large effort should by put in order to obtain simple and effective
forms of them, for instance, by extensively comparing the results of Discrete Dislocation simulations
(e.g., [24, 25]) with those obtained from a robust finite element implementation of strain gradient
models.

Moreover, it would be interesting to investigate on the effect of the plastic spin on the mechanical
response of polycrystals, also by accounting for the behaviour of grain boundaries, by appropriately
extending the technology developed by Fleck and Willis [26,20].
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