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SUMMARY. The effect of coatings and superficial oxide on the behavior of micro resonators 
deserves attention in view of its impact on real-life devices. To this purpose, in this work we focus 
on the thermoelastic damping in layered thin resonating beams. Including  the effect of thermally 
imperfect interfaces, the quality factor is analytically computed. The results obtained are discussed 
and compared with available data. 

1 INTRODUCTION 
In microelectromechanical systems (MEMS) with vibrating parts, such as high-frequency 

resonators, a critical requirement is often to obtain a low structural damping. If damping is not 
excessive, the fraction of energy lost per radian can be quantified by the inverse of the so called 
quality factor Q. While strong miniaturization allows the designers to increase the resonant 
frequency and thus the sensitivity of the resonators, it is difficult to increase the quality factor, as 
evidenced by several experimental studies [1]. Some sources of extrinsic dissipation can be 
controlled: for instance, if the devices are packed in a near-vacuum environment, fluid damping 
becomes negligible, but intrinsic loss mechanisms in the solid limit the quality factor. 

Solid or intrinsic damping is induced by a lot of physical and chemical processes, each 
mechanism is connected to an amount of dissipated energy and, consequently, to a value Qj. The 
overall quality factor can therefore be expressed as: 1( 1 )jQ Q −= ∑ . The thermoelastic damping 
Ψ is defined as the ratio of the energy dissipated per cycle to the stored elastic energy and is 
connected to the quality factor by a simple relation: 
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Q
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Thermoelastic loss is considered as a fundamental dissipation mechanism in micro-beam 

bending resonators. This mechanism gives an upper bound of the quality factor which can be 
evaluated by means of simplified formulae, such as the well-known Zener’s expression [2]. 

The Q factor predicted by a thermoelastic analysis is in good agreement with the quality factor 
experimentally measured on several silicon single-crystal micro-resonators [3]. On the contrary, 
the classical thermoelastic analysis is unable to interpret the size effect recently evidenced in 
resonators when the dimensions become very small, below several microns [1,4]. In [5] the 
Authors proposed a nonlocal thermoelastic model which can better interpret the observed behavior 
in a certain range of resonator dimensions. However, for sub-micron and nano-resonators, several 
causes of additional dissipation, not yet exhaustively investigated, come into play. Intrinsic 



dissipation of thin coating films and surface loss may become relevant at very small scales, as 
discussed in [4]. 

In this work we focus on the effect of the presence of superficial layers, with different thermo-
mechanical properties, on the quality factor of micro-beams. At difference with previous works on 
this subject [6, 7], we include thermally imperfect interfaces between layers: this means that a 
temperature jump is involved at the interface, with consequences on the thermal behavior of the 
beam and on the overall dissipation. The quality factor is computed through the procedure that was 
originally proposed by Zener [2] with reference to homogeneous beams. The thermal field is 
evaluated by adopting an expansion in series of spatial eigenfunctions [7]. The effect of thermal 
jump at the interface is introduced as a suitable boundary condition in the eigenvalue problem. The 
achieved results, with reference to different materials in the thin films, are critically compared 
with experimental measurement [8]. A parametric study is performed on the effect of imperfect 
interface, which is tuned by a scalar factor. A strongly non-monotonic behavior of the dissipation 
level is evidenced and, at least for some material couples, a peak of thermoelastic damping is 
observed.  

2 THERMOELASTIC PROBLEM IN LAYERED BEAMS 

2.1 Problem formulation 
In thermoelastic solids the coupling of the strain field to the temperature field induces the 

irreversible flow of heat driven by temperature gradient. This process of energy dissipation is 
called thermoelastic damping (TED) and sets an upper limit to the quality factor of resonators.  

In the special case of a thin homogeneous vibrating beam thermoelastic damping can be 
computed using Zener’s approach [2]. In this work we follow a similar analytical approach to 
calculate thermoelastic dissipation in thin layered beams, schematically shown in Figure 1. Each 
layer i (i = 1,…, N) of thickness hi is endowed with different elastic and thermal properties 
(Ei = Young modulus, αi = thermal expansion coefficient, κi = thermal conductivity, Ci = specific 
heat, ρi = density). The following assumptions are made. 
-  The cross section remains straight and orthogonal to the beam axis (Bernoulli-Euler kinematic 

hypothesis) 
-  The heat conduction is limited to the transverse direction 
-  The interfaces between the layers are not thermally perfect: they can dissipate heat by 

convection according to Newton’s law of cooling (i.e. heat transfer is proportional to the 
temperature difference between the layers). 

 

 
Figure 1:  Schematic representation of the layered beam’s geometry 
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According to the Bernoulli-Euler hypothesis axial strain is expressed in terms of the beam’s 
curvature by: 
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where v is the transversal displacement of the points on the neutral axis. The latter is a horizontal 
line which passes through the centroid of the homogenized cross-section, identified by the 
following condition: 
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Stress σ in each layer is expressed by the thermoelastic model, where ∆Ti = Ti – T0i is the 

temperature variation with respect to the reference value T0i: 
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The bending moment can be computed as follows 
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and the dynamic equilibrium equation for free vibrations reads 
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If one neglects heat conduction along the longitudinal direction of the beam, the heat equation 

in each layer is:  
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Boundary conditions should be added at the outer boundary (i.e. for y = y1 and y = yN+1) and at 
each interface (y = yi+1 with i = 1,…, N – 1). In this work we assume adiabatic boundary conditions 
at y = y1 and y = yN+1 while at the interfaces a linear combination of the temperature and of its 
normal derivative is prescribed together with the continuity of the heat flux: 
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The parameter iϕ characterizes the thermal behavior of the interface. For ∞→iϕ the case of 

thermally perfect interface is obtained, while 0=iϕ  corresponds to an adiabatic interface. 

2.2 Thermoelastic quality factor for three-layer symmetric resonators 
As shown by Zener [2] the thermoelastic quality factor can be computed as the ratio between 

the elastic deformation energy and the dissipated energy during harmonic vibrations. To this 
purpose the above formulated coupled thermoelastic problem should be solved for the case of 
harmonic vibrations of the form:  
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A particular configuration of a symmetric three-layer beam (Figure 2) will be considered, in 

view of its relevance in real MEMS resonators. 
 

 
Figure 2:  Schematic representation of a three-layer beam. 

 
Taking into account the symmetry, only the part with y > 0 can be considered. Using (9), the 

heat conduction problem (7)-(8) specializes to 
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The solution in terms of temperature is sought in the form of series of eigenfunctions [9]:  
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By introducing Eq. (11) into the boundary conditions (10), one obtains the following 

homogeneous linear system for the unknowns Ain, Bin: 
 

 

2

2

3

3

0 1 0 0
0

cos sin sin cos sin cos 0
0cos sin cos sin
0

0 0 cos sin

n
n n n n n n n n

n

n
n n n n

n

n n

Ah hH H Bh h
h h AK K

h h B

ζ γζ γζ ζ γζ γζ ηζ ηζ
δ δ

γζ γζ ηζ ηζ
δ δ

ηζ ηζ

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤
⎢ ⎥− − − ⎢ ⎥ ⎢ ⎥

+ +⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥− − ⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎣ ⎦⎣ ⎦
⎢ ⎥⎣ ⎦

C

(12)  

 
The following parameters have been introduced: 
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The eigenvalues ζn can be found by imposing that det(C) = 0; consequently, a possible solution 

of the linear system can be found by imposing that B2n = 1. The field equations (10) become:  
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The following simple operations should now be performed: multiplication of the equations 

times κiψir/λi; integration of each equation over the layer thickness; addition of the l.h.s. and r.h.s. 
of all equations. Account taken of the eigenfunction properties [7]: 
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one obtains the following set of decoupled equations, which easily yield the values Gn: 
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The introduction of Eqs. (9) and (11) into the dynamic equilibrium equation (6), account taken 
of the values Gn obtained via Eq. (16), yields the following fourth order differential equation: 
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In the above equation, due to thermal coupling, the second dissipative term arises. The 

following parameters have been introduced for the sake of clarity 
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From Zener’s definition [2], the quality factor is computed as follows: 
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It is worth mentioning that the interface dissipation ϕ influences, through the parameter H in 

Eq. (12), the eigenvalues ζn, the eigenvector components and, consequently, the values Nn, Γn, Γ∗
n. 

If one sets H = 0 (i.e. if a thermally perfect interface is considered), the analytical results obtained 
in [6] and [9] are recovered by an alternative formulation. 

3 RESULTS AND DISCUSSION 
This Section summarizes the results of some of the performed analyses, in order to assess the 

effect of interface dissipation on micro-resonators. In all the cases, silicon cantilever are 
considered with different coating materials. It is important to remind the physical and mechanical 
properties of the different materials (Table 1); special attention should be paid to the quantity Ψ0, 
which represents the maximum achievable thermo-elastic damping for homogeneous resonators. 
The maximum dissipation (and, as a consequence, the minimum quality factor Q0) is achieved for 
beams whose resonance frequency equals the relaxation frequency: 
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 E 

GPa 
ρ 

kg/m3 
C 

J/(kg · K)
k 

W/(m · K)
α 

K-1 
T0 
K 

Q0 Ψ0 

Si 160 2330 690 150 2.6E-6 300 9860 6.37E-4 
Cu 120 8900 430 400 2.0E-5 300 530 1.19E-2 
SiC 400 3200 940 70 3.0E-6 300 5560 1.13E-3 
SiO2 70 2150 740 1.3 5.0E-7 300 60610 1.04E-5 

Table 1: Physical and mechanical properties of the materials adopted in the examples 



3.1 Laminated Cu-Si-Cu resonators 
The first examples are referred to three-layer beams with silicon core and copper skins. The 

thickness of the Si layer is kept constant and equal to 2µm; the volume fraction of copper, with 
respect to the overall thickness, is Vf = 0.1, which means that the Cu layers are 0.11µm thick. By 
considering Table 1, it is possible to conclude that copper is by far more dissipative than silicon. 
Figure 3 shows the preliminary results for thermally perfect interface. As expected, the graph 
(which are in agreement with the ones reported in [6]) shows that the laminated resonators are 
more dissipative than bare silicon beams. The pairwise correspondent symbols refer to beams of 
different length and show a slight reduction of natural frequencies for the layered resonators. 

Figure 4 shows the effect of interface dissipation. The most intriguing result is represented by 
the appearance of a peak of damping for a particular value of ϕ. For ϕ → ∞ the solution for perfect 
interface is recovered; the case ϕ → 0 refers to adiabatic interface, which correspond to 
independent thermal vibration of the layers and to lower dissipation. The interaction of the two 
thermal modes yields the dissipation peak, whose value seems to be roughly independent of the 
beam length. 
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Figure 3: Thermoelastic damping for Cu-Si-Cu resonators with thermally perfect interface 

(Vf = 0.1) compared to bare Si resonators. Thickness of the Si layer is 2h = 2µm. f0 = 37MHz is 
referred to bare Si beams. Beams of various length, from 10µm to 640µm, correspond to symbols. 
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Figure 4: Thermoelastic damping vs. interface dissipation parameter in Cu-Si-Cu beams (Vf = 0.1). 
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Figure 5: Thermoelastic damping for SiC-Si-SiC resonators with thermally perfect interface and 
various volume fractions Vf. Thickness of the Si layer is 2h = 2µm. f0= 37MHz is referred to bare 
Si beams. Beams of various length, from 10µm to 640µm, correspond to symbols on the curves. 
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Figure 6: Thermoelastic damping vs. interface dissipation parameter for SiC-Si-Sic resonators (left 

hand side L = 20µm, right hand side L = 640µm). Thickness of the Si layer is 2h = 2µm. 
 

3.2 Laminated SiC-Si-SiC resonators 
The case of silicon beams with silicon carbide coatings is now considered. The Si core is 2µm 

thick. The deposition of SiC layers entails a strong increase of resonance frequency (as shown by 
the symbols in Figure 5, referred to thermally perfect interface). Even for such resonators, the 
material in the skins is endowed with higher intrinsic damping: consequently, one would expect 
that the higher the volume fraction, the higher the dissipation. This is true only in the low-
frequency region, where the damping for Vf = 0.4 is increased by a factor 20 with respect to bare 
Si; conversely, for high frequencies, a reduction of Ψ is observed, as shown also in [6].  

The results for dissipative interface are reported in Figure 6. The graph on the left is referred to 
high-frequency resonators (f = 6.69MHz for bare Si, f/f0 = 0.182): a non-monotonic trend for 
dissipation is confirmed. Moreover, the dissipation peak seems to disappear in case of high 
volume fractions. A totally different picture is sketched on the right part, which refers to 
resonators in the tens-of-kHz range (f = 26kHz for bare Si, f/f0 = 7.10E-4). The dissipation peak is 
evident for any volume fraction, with increase of 3-4 orders of magnitude. It is important to notice 
that the maximum dissipation is quite similar for the various thicknesses of SiC layers. This 



confirms, qualitatively, the experimental results obtained by Sandberg et al. [8], who evidenced 
that the deposition of a thin layer yields a significant increase of dissipation; further growth of the 
coating thickness leads only to a small variation of damping. 

3.3 Oxidized resonators. 
An important problem is represented by “nominally” homogeneous Si beams, which actually 

are covered by a very thin layer of oxide (SiO2). For perfect interface, given the intrinsic 
dissipation of SiO2, the oxidized resonators should be less dissipative than pure silicon. Figures 7 
and 8 show what happens for dissipative interface. For high-frequency beams, the dissipation peak 
is low; moreover, the increase of oxide thickness corresponds to a decrease of damping. When 
examining low-frequency resonators, one observes that the presence of thermal jump at the 
interface gives rise, even for very thin oxide layer, to a significant increase of damping. In the 
latter case, thicker oxide layers produce a steady increase of dissipation. Finally, as shown in 
Figure 8, the dissipation peak, that is almost absent for short beams, reaches a constant value for 
longer beams. This result, summarized in Figure 9, is of special importance if one considers the 
experimental measurements for ultra-thin resonators, reported e.g. in [1]. In that paper, a constant 
dissipation threshold, significantly higher than Zener’s prediction, is observed. 
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Figure 7: Thermoelastic damping vs. interface dissipation parameter for oxidized resonators (left 

hand side L = 40µm, right end side L = 640µm). Thickness of the beams is 2h = 1µm.. 
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Figure 8: Thermoelastic damping vs. interface dissipation parameter for oxidized resonators of 

various length. Oxide layer is 10nm thick. Thickness of the beams is 2h = 1µm.. 



4 CONCLUSIONS 
The problem of thermoelastic damping for layered resonators has been considered, taking into 

account the presence of dissipative interfaces between the layers. The analytical treatment of the 
problem has furnished a simple procedure for the evaluation of quality factor Q, for the special 
case of three-layer beams. Extension to different cases is straightforward and will be considered in 
a future paper. From the proposed examples, it has been highlighted the effect of interface 
dissipation, which could explain the experimental results for coated cantilevers and oxidized ultra-
thin resonators. The encouraging results will spur further research on these points. 
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Figure 9: Quality factor of oxidized Si resonators of various length, with dissipative interface at 
dissipation peak (squares), compared to Zener’s solution (solid line). Oxide layer is 10nm thick. 

Thickness of the beams is 2h = 1µm. f0 and Q0 are referred to non-oxidized Si beams. 
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