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SUMMARY. We present a reduced–order heart model aimed to introduce a novel point of view in the
interpretation of the pressure–volume loops. The novelty of the approach is based on the definition
of active contraction as opposed to that of active stress. The consequences of such assumption are
discussed with reference to a specific pressure-volume loop characteristic of a normal human patient.

1 INTRODUCTION
The heart is a specialised muscle that contracts regularly and pumps blood to the body and the

lungs. The center of the pumping function are the ventricles; due to the higher pressures involved,
the left ventricle (LV) is especially studied. The pace of the pumping action is triggered by the
diffusion of the so-called activation potential through the heart tissue. The effectiveness of the
pumping action may be evaluated through the analysis of different parameters: the stroke volume,
the ejection fraction, the end–systolic pressure–volume relationship, and many others. All of them
are well represented in the pressure–volume loop, the so-called PV loop, which, in the end, represents
a synthesis of the mechanical activity of the heart [1], [2], [3]. Ventricular chamber pressures and
volumes are strictly related to the contractile capacities of the heart due to the muscular structure
of the cardiac tissue. A qualitative and quantitative bridge between the function of the heart as a
whole and the microscopic dynamic characterizing muscle contraction would be desirable but it is
considered still unrealized [4].

Here, we present and discuss a reduced–order heart model aimed to introduce a novel point
of view in the interpretation of the pressure–volume loops. The key point is the notion of active
contraction as opposed to that of active stress (see [5]). We assume that the contraction experienced
by the walls of the left ventricle under stimulus is described at the macroscopic scale by a change in
the length of the muscular fibres, a change that we call active deformation.

The actual length of the fibres, in turn, depends on the amount of stress they sustain. So, we
associate with each element of the contractile chamber two different states: the contracted and the
visible one. The typical pressure–volume pair of the cardiac PV loop lives at the visible layer and
the volume change is measured with respect to a slack volume through a deformation that we call
the visible deformation. Nevertheless, there is a hidden layer characterized by an active deformation
which measures macroscopically the contraction of the slack volume into a volume which is still
unstressed (that is, corresponding to zero pressure). The key issue is the distinction between the
two basic components of the visible deformation: the active strain of the left chamber, due to the
activation of cardiac muscles, describing the global contraction of the ventricle; the passive strain,
due to the elastic structure of the tissue, measuring the difference between the unstressed, contracted
volume and the visible volume.
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The simplest geometric approximation of the left ventricle is the spherical surface of constant
wall thickness: it allows to write a handy relation between the pressure p inside the chamber and the
mean tension σ generated in the LV tissue. Moreover, we assume that the fibres are tightly embedded
in the tissue and do not account for any tissue anisotropy: both the passive and the active response
of the tissue are assumed to be completely isotropic. Nevertheless, the large deformations of the
ventricle make mandatory to set the modeling within the context of non–linear elasticity. As the
PV loop attains to the mechanics of the heart, the electrophysiology of the tissue does not enter the
model (see [6] for an electromechanical model of the heart based on the notion of active contraction).

In the end, we use a specific sample extracted by [7] to better illustrate and discuss our point of
view. In [7], with reference to a normal human patient, the pairs pressure–volume are measured and
the PV loop shown in figure 4 is developed. From there and with reference to our reduced–order
heart model, a discussion on the main characteristics of the PV loop is engaged.

2 THE PRESSURE-VOLUME LOOPS
Of the four chambers that comprise the whole heart, the left ventricle accomplishes the major

mechanical work, while undergoing large deformations and intense stress states. On a simplistic
level, the ventricle is an ellipsoidal chamber, whose walls are composed of muscle fibres. It is the
contraction originated in the muscles that translates into pressure and/or volume changes of the
chamber. The LV cycle may be schematized as the sequence of four steps: filling–the diastolic
phase; isovolumetric contraction; ejection–the systolic phase; isovolumetric relaxation.
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Figure 1: Phases of the cardiac cycle of a normal human patient. 1) Mitral valve closes; isovolumet-
ric contraction. 2) Aortic valve opens; ejection. 3) Aortic valve closes; relaxation. 4) Mitral valve
opens, filling. The green area represents the stroke work.
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Figure 2: EDPVR and ESPVR represent the pressure-volume relationship for a complete relaxed
state, and a highly activated state, respectively. Changes in EDP make point 1 move along the
EDPVR; changes in ESP move point 3 along ESPVR.

During the cycle, both pressure and volume vary in time, and a quite useful determinant of the
cardiac performance is the plot representing the pressure-volume relationship in the LV during the
entire cycle, that is, the PV loop; some of the many clues contained in the plot (see Fig. 1) are briefly
summarized in the following. Point 1 defines the end of the diastolic phase and is characterized by
the end–diastolic volume (EDV) and pressure (EDP); at this point the mitral valve closes and cardiac
muscle starts to contract in order to increase the blood pressure. At point 2 the systolic phase
begins: the aortic valve opens and blood is ejected outside the LV; muscles keep on contracting
in order to further the ejection, while volume decreases to a minimum. Point 3 defines the end
of the systolic phase, and is characterized by the end–systolic volume (ESV) and pressure (ESP);
starting from here, LV undergoes an isovolumic relaxation until point 4, where mitral valve opens
and filling begins. During the filling phase, muscle keep on relaxing in order to accomodate a large
increase in blood volume, while maintaining the pressure at a quite low level. Filling is completed
at point 1. The difference between maximum and minimum volume is called stroke volume (SV):
SV := EDV − ESV . Two important curves are usually represented in a PV diagram: the end–
diastolic pressure–volume relationship (EDPVR) and the end–systolic pressure–volume relationship
(ESPVR): these curves characterize the passive mechanical response of the ventricle in two quite
different states: the relaxed state, and the contracted one, respectively (see Fig. 2). Let us consider
point 1: muscles are in their most relaxed state (the slack state), and any pressure variation will cause
a volume change along the EDPVR, provided muscles stay inactive. Thus, the EDPVR provides
a lower boundary for the pressure at which the mitral valve closes, and the position of point 1

3



2.25

2.20

2.15

2.10

2.05

2.00

1.95

1.90

1.85

20 25 30 35 40

VOLUME (ml)

S
A

R
C

O
M

E
R

E
 L

E
N

G
T

H
 (

m
ic

ro
n
s
)

Filling

Preload

Ejection

Figure 3: Sarcomere length as function of volume (Elaboration from [8]).

depends on the end-diastolic filling pressure. Physiologically, the EDPVR changes as the heart
grows during childhood; most other changes accompany pathologic situations (hypertrophy, infarct,
dilated cardiomyopathy).

Let us now consider point 3: muscles are in a highly activated state, and LV behaves as a much
stiffer chamber; any pressure variation will cause a volume change along the ESPVR, provided
muscles maintain the same level of activation. Thus, the ESPVR provides an upper boundary for
the pressure at which the aortic valve close, and the position of point 3 depends on the end-systolic
ejection pressure or volume.

The interactions between the LV and the preload, the inflow conditions determined by the venus
system, and the afterload, the outflow conditions determined by the arterial system, strongly influ-
ence the arterial blood pressure and the cardiac output, which in turn constitute two key factors for
the assessment of the overall cardiovascular performance. Thus, a change in preload or in afterload
conditions may markedly alter the PV loop, and results in a shift of point 1 or point 3 along the
EDPVR or the ESPVR, respectively, as Fig. 2 shows.

A meaningful measure of the preload would probably be the sarcomeres length at end dias-
tole; due to the intrinsic difficulties related to this measurement, EDP is the most common index of
preload. Afterload is in general related to the arterial system, but also pathologic conditions, as a
leaky mitral valve, or a stenotic aortic valve, could be accounted for.

To any point in the PV loop there corresponds a specific level of muscular activation, and thus, a
specific average sarcomere length. A quantitative sampling of sarcomere lengths versus the volume
is depicted in figure 3: at the preload condition sarcomeres are slightly stretched but still not activated
and passive elasticity predominates; isovolumic contraction and ejection are the consequences of
an increasing muscle activation, and thus, an increasing sarcomere shortening; during isovolumic
relaxation and subsequent filling, sarcomere elongates, and eventually recover their initial length.

3 VENTRICULAR PRESSURE–VOLUME RELATIONSHIPS
The behavior of individual cardiac muscle cells has been extensively studied ([9], [10]) but the

integration of the muscle dynamics into a model able to produce the global behavior of the beating
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Figure 4: A typical PV loop of a normal human patient, as measured in [7], with our ESPVR and
EDPVR curves superimposed, as equation (3.7) dictates; the large blue dots correspond to the same
four key points shown in figure 1.

heart has not fully developed yet ([4], [8]). Here, we present a macroscopic model of the left ventricle
embodying the notion of muscle contraction: it is a zero dimensional model, simple enough to
enlighten the key ideas at the bases of the modeling; nevertheless, it is able to capture the important
features of the pump function of the heart which are collected in the PV loop, and it is rigorously
extendible to the full fledged non-linear 3D elasticity theory. We characterize the pump function
of the left ventricle through a macroscopic model based on a two–layer kinematics. The volume V
measured in a typical cardiac loop lives at the visible layer; the deformation ε measures the strain
of V with respect to a reference volume, here assumed to be the slack volume Vs. Then, there is
a hidden layer describing the contracted volume Vc, meant to be a coarse modelling of the muscle
contraction; the active deformation εc measures the contraction of Vc with respect to Vs. It is worth
saying that Vc is assumed stress free, that is, it models the muscular contraction prior to the loading
(that is, in correspondence to zero pressure). The key issue is the distinction between the two basic
components of ε: the active strain εc of the left chamber, due to the activation of cardiac muscles,
describing the global contraction of the ventricle; the passive strain ϕ, due to the elastic structure of
the tissue, measuring the difference between the unstressed, contracted volume Vc, and the visible
volume V ; thus, we have

ε = ϕ εc (3.1)

In the following, before turning to complex mathematical models for interrelating ventricular cham-
ber pressure and volume to a suitable measure of contraction, we deal with a simple model of the
ventricle camera which is rich enough to enlightening our ideas. The simplest geometric approxi-
mation of the left ventricle is the spherical surface of constant wall thickness h, insofar it allows to
write a handy relation between the pressure p inside the chamber and the mean tension σ generated
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in the LV tissue in the form
p = 2

σ

r
, σ = σm h , (3.2)

with σm the mean value of the hoop stress on the wall thickness [1]. The balance of a spherical
membrane of radius r is satisfied if equation (3.2) holds. As it is well known, the radius r of the
surface is related to the volume V by

V 7→ r = r̂(V ) = (
3
4

V

π
)1/3 , (3.3)

so, it is easy to re–write the balance equation (3.2) in terms of pressure and volume instead of
pressure and radius. We introduce the notion of ground volume Vc corresponding to the pair (p, V ):
it is defined as the pressure–free volume of the spherical surface which has the volume V under
the pressure p. It is worth noting that, due to the balance equation (3.2), the pressure–free volume
is a stress–free volume, too; nevertheless, it is not contraction–free. We assume that at the ground
volume Vc corresponding to the pair (p, V ) muscles have a level of activation measured by εc which
influences the stiffness of the chamber at that state. Precisely, denoted as Vs the volume associated
to the slack state1, we set

εc = (
Vc

Vs
)1/3 . (3.4)

With reference to a PV cardiac cycle, we assume that the end–diastolic state be the slack state of
the chamber and measure contraction from there: Vs = VED. Moreover, the volume V is attained
from Vc through an elastic deformation ϕ. In the following, we often refer to rc and rs as to the
radii corresponding to the ground contracted volumes Vc and to the slack volume Vs, respectively.
Of course, rc = r̂(Vc) and rs = r̂(Vs); moreover, εc = rc/rs. As in the preparatory example,
the elastic strain of the chamber is measured through the Kirchhoff–Saint Venant strain measure λ
defined as

λ =
1
2
((

r

rc
)2 − 1) . (3.5)

Hence, the elastic strain λ is zero at the ground volumes (r = rc) which are mechanically relaxed
even if places of active distortion (contraction). Moreover, we still write

σ = Y ϕ3 = Y (
1
2
((

r

rc
)2 − 1))3 , rc = εc rs , (3.6)

for the tension developed into the chamber whose slack radius is rs with Y the elastic membrane
stiffness of the chamber. Equations (3.2), (3.5), and (3.6)1 turn out a basic equation relating the
pressure p and the volume V of a spherical surface characterized by the slack radius rc and by the
elastic modulus Y :

p = 2
Y

r
(
1
2
((

r

rs
ε−1

c )2 − 1))3 , r = r̂(V ) . (3.7)

For a fixed Y , equations (3.7) give a pressure–volume relationship depending on the contraction
εc. As first, we can determine, for any Y , the contraction measure εc = rc/rs corresponding to a
specific pair (p, V ); then, to any characteristic value of εc it corresponds a specific pressure–volume
relationship which may be represented as a curve in the p − V plane. Specifically, when εc = 1,
we find the EDPVR curve; when εc attains its maximum value, we find the ESPVR curve. In
between, we find pressure–volume curves representing a transition from the EDPVR to the ESPVR.

1If one does exist.
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Figure 5: A typical pressure cycle VS time (top, measured from [7]) and the corresponding contrac-
tion (bottom) as given by equation (3.7).

Moreover, the assumption that the muscle stiffness Y does not change during contraction is just a
simplifying hypothesis which, however, does not alter the capacity of the model. So, let us get on
with a specific sample extracted by [7]. There, with reference to a normal human patient, the pairs
pressure–volume are measured and the PV loop shown in figure 4 is generated. Precisely, points
from 1 to 2 describe the isovolumic contraction; points from 2 to 3 describe the ejection phase;
points from 3 to 4 describe the isovolumic relaxation; and points from 4 to 1 describe the filling
phase. For a better comprehension, in figure 5, top, we represent with different colours the time
course of the pressure corresponding to the four characteristic phases of the cardiac cycle: blue for
isovolumic contraction, red for ejection, green for isovolumic relaxation, and black for ventricular
filling.

We assume that the points labelled 1 and 3 correspond to the end–diastolic and the end–systolic
pressure–volume pairs, respectively. Following our idea, we recovered the contraction measures as-
sociated to every (p, V ) state in the loop. Figure 5, bottom, shows the time course of the contraction
cycle as it turns out from equations (3.7) for a fixed value of the elastic stiffness of the chamber.

As figure 5 shows, the end–diastolic state corresponds to εc = 1 and the end–systolic state to
εc = 0.72. In correspondence of these values, equations (3.7) gives the EDPVR and ESPVR curves
which are represented in figure 4 (blu and green solid line, respectively) as superimposed on the PV
loop.

Moreover, the transition from EDPVR to ESPVR may be derived through a generalization to
any point during the cardiac cycle of the procedure used to extract the EDPVR and the ESPVR
relationships from equation (3.7). Figure 6, left, shows the contraction–volume loop corresponding
to the PV loop we are examining; it is worth saying that our model captures the experimental loop
shown in figure 3. Of course, all our results depend strongly from the elastic modulus Y here set to a
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Figure 6: Contraction (left) and elastic deformation (right) along the cardiac cycle as function of
volume.

fixed value. In the end, it is worth noting the trend of the elastic deformation associated to the cardiac
loop shown in figure 6, right. As expected, the elastic deformation increases when pressure increases
and decreases when pressure decreases, along the isovolumic contraction and relaxation, respectively
(it is worth remind that along the latter phases, it is the visible volume of the left chamber to be
constant). Along the intermediate states (ejection and filling) the elastic deformation is substantially
constant.

4 CONCLUSIONS AND FUTURE DIRECTIONS
A novel point of view is introduced in the modeling of the activable nature of cardiac tissue

defining the muscle contraction as an active deformation of the tissue. Here, with reference to a
simple heart model, a mechanical interpretation of cardiac PV loops is proposed based on the notion
of active deformation.

In our opinion, the simplicity of the model helps to enlighten the basic characteristics of the
PV loop and, as will be shown in future works, to discuss typical heart dysfunctions detectable
through the PV loop. Nevertheless, a less simple heart modeling would be more fit to account for
the complex material structure of the walls of the left chamber as well as for the interaction between
the mechanics and the electrophysiology of the cardiac tissue. In these directions, further work must
be done following the lines already identified in [6], [11], [12].
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