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SUMMARY. Structural control is a very promising technique for the seismic protection of strate-
gic structures and infrastructures against severe earthquakes. However, the conditions for making
structural control a key point of modern seismic engineering are still far from being satisfied. In past
years, the demand for a continuous power supply limited the number of active control applications in
the field of civil engineering. Today, having overcome this drawback by introducing the concept of
semi-active control, engineers involved in this field are increasingly called to satisfy reliability and
robustness requirements. In light of these needs, the inherent limits of classic control devices, such
as actuator saturations and stroke stops, cannot be neglected, especially when dealing with strong
seismic demands. On this respect, the paper discusses some control strategies that allow to handle a
variety of constraints directly in the control law. Applications to a case study are also presented via
numeric simulations.

1 INTRODUCTION
Structural control is an active research field in the technical literature [1, 2, 3, 4] with consid-

erable potentialities within the seismic engineering field. Particularly, active or semi-active control
strategies can be designed with the purpose of keeping fully operational those structures that are
important for civil protection, even after very strong earthquakes, as required by technical standards
(e.g. [5]). Yet, the long return period of severe earthquakes poses the problem of the system’s relia-
bility and generally limits the applicability of non-passive control strategies to the seismic protection
of structures and infrastructures. Indeed, the control system is required to perfectly operate in the
(unpredictable) moment when the seismic event occurs, after remaining in ”stand-by” for a long
time. Moreover, strong seismic events entail severe control demands that the system is not always
able to satisfy. This is, for instance, the case in which state variable constraints (such as the physical
limits to the stroke of movable masses in inertial actuators) and actuator saturations limit the opera-
tion of the control devices.

The problem of actuator saturation is well-known in system engineering as it can lead to the
so-called wind-up instability when integrators are adopted in the controller (e.g. [6]). However,
integral terms are usually not necessary to stabilize the motion of elastic structures thus making
wind-up instability a secondary task in structural control. Nonetheless, actuator saturation may sig-
nificantly reduce the control effectiveness and even cause damage in the system. On the other hand,
the problem of state variable constraints is less explored in the literature and it is usually neglected
in structural control applications.

A possible way of handling actuator saturation consists of coupling a ”low-gain” controller with
a ”bang-bang” one (e.g. [7]). However, the most general tool for handling control limitations is prob-
ably represented by the so called ”State Dependent Riccati Equation” (SDRE) (e.g. [8]) method, in
the general framework of nonlinear regulation. An application of such a method to the case of state
variable constraints can for instance be found in [9]. Here, the SDRE method is briefly reviewed, at
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first, in view of its application in active control strategies. Then, the method is applied in a typical
structural context, with the aim of handling state variable constraints and actuator saturations. A
numerical case study is finally considered to validate the proposed approaches.

2 GOVERNING RELATIONS: THE STATE DEPENDENT RICCATI EQUATION
A structural system equipped with some active or semi-active controller is considered. The

system is inherently linear but, after introducing control limitations, the dynamics of the controlled
system becomes globally nonlinear. The equations of motion of the controlled system can thus be
written as ẋ = f(x) + g(x)u, where x ∈ Rn is the state vector, u ∈ Rm is the control input vector
and f and g are suitable vector fields. The nonlinear regulator problem for the given system can be
written in standard form as the minimization of the following performance index J :

J =
1
2

∫ ∞

t0

(xT Q(x)x + uT R(x)u)dt (1)

subjected to the constraint given by the equations of motion ẋ = f(x) + g(x)u. In equation (1) the
weight matrices Q(x) and R(x) contain the penalties on state variables and control forces and must
be chosen such that Q(x) = DT (x)D(x) ≥ 0 and R(x) > 0, ∀x.

The SDRE method is a very convenient tool for obtaining suboptimal solutions for the above
stated problem. This approach simply requires the solution of a state dependent form of the Riccati
equation that can be derived by expressing the equations of motion ẋ = f(x) + g(x)u in state-
dependent coefficient form ẋ = A(x)x + B(x)u through direct parametrization. Since this last
system posses a linear structure, albeit being nonlinear, it is possible to construct a feedback as
u = −R−1(x)BT (x)P (x)x where matrix P (x) solves the SDRE given by:

AT (x)P + PA(x)− PB(x)R−1(x)BT (x)P + DT (x)D(x) (2)

As it can be recognized looking at equation (2), the SDRE method is formally similar to the classic
linear quadratic regulator, with the exception that all coefficient matrices are state dependent. This
means that the Riccati equation (2) must be solved online to calculate the feedback.

Some interesting features of the SDRE method were demonstrated in [10]. These properties
include local asymptotic stability and asymptotic satisfaction of the necessary conditions for op-
timality of the nonlinear regulator problem. It is also worth noting that the parametrization ẋ =
A(x)x + B(x)u is not unique in the multi-variable case. The performance of the system strongly
depends on such parametrization and on the peculiar choice of the control weights Q(x) and R(x).

3 ACTIVE CONTROL STRATEGIES IN PRESENCE OF CONTROL LIMITATIONS
Without loss of generality, the use of active mass dampers (AMDs) as control actuators is under

specific investigation in this work. Indeed, AMDs are widely applied in structural control strategies
due to their relative simplicity and effectiveness. Two are the main constraints that usually affect
AMDs: the stroke stops that limit the motion of the movable mass and the control force bound
umax. An example of AMD subjected to the considered kind of constraints, experimentally applied
to the protection of a mast for mobile phone networks against wind action in a previous work [1], is
shown in the picture of Figure 1.

In order to apply the considered device in a typical structural context, let us specialize the prob-
lem reported in Section 2 to the one of a single degree of freedom elastic structure equipped with
the AMD and subjected to base acceleration ẍ0. The case study is represented in Figure 2, with
obvious meaning of the structural parameters. Due to the stroke stops, the relative displacement
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Figure 1: Bidirectional active mass damper with stroke stops and actuator saturation.

Figure 2: Structure equipped with AMD subjected to base acceleration.

yr = y2−y1 between the mass and the structure is bounded by a physical constraint placed at ymax.
The equations of motion of the considered system simply read as:

mÿ1 + cẏ1 + ky1 = −mẍ0 + caẏr + kayr + φ(yr) + u
maÿr + caẏr + kayr = −maẍ0 −maÿ1 − φ(yr)− u

φ(yr) = ( yr

ymax
)(2N+1)

|u| ≤ umax

(3)

where the nonlinear force φ(yr) has been introduced to simulate the presence of the hard physical
constraint [9], N being an integer number. In the case of an unbounded control signal (umax = ∞)
a possible parametrization of equation (3) is the following:


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0
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
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0
0
−1
−1


 ẍ0 (4)

where the state vector has been defined as x = [y1, yr, ẏ1, ẏr]T and the following matrices have been
introduced:

M =
[

m 0
ma ma

]
C =

[
c −ca

0 ca

]
K(x) =

[
k −ka − ( x2N

2
ymax

2N+1 )

0 ka + ( x2N
2

ymax
2N+1 )

]
(5)

It is noteworthy that M , C and K in equation (5) do not represent the mass, damping and stiffness
matrices of the structural system because, for convenience, equations (3) are written in terms of
transformed coordinates (y1, yr = y2 − y1) instead of absolute displacements (y1, y2). This trans-
formation also explains the asymmetry of such matrices in equation (5).

According to equation (3), when the movable mass reaches the physical limits, a collision oc-
curs (reproduced by the force φ(yr)) which causes a sudden loss of control effectiveness and may
even produce damages in the system. In order to design the nonlinear controller in such a way to
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avoid penetration of the movable mass into the forbidden region (|x2| > ymax), a nonlinear state
dependent penalization on x2 = yr or on its first time derivative ẋ2 = ẏr can be introduced in the
performance index J . A possible choice of the weight matrix Q(x) appearing in equation (1) can
thus be written as suggested in reference [9]:

Q(x) =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 (x2/ymax)2N


 (6)

where, without loss of generality, the structural velocity ẏ1 is the controlled variable.
In the case of a bounded control signal (umax < ∞) it is necessary to substitute the inequality

constraint |u| ≤ umax, in equation (3), by a smooth function. This can be achieved by introducing
the saturation sine function which is defined as [10]:

u = satsin(umax, x5) =





umax, for x5 > π
2

umax · sin(x5), for − π
2 ≤ x5 ≤ π

2

−umax, for x5 < −π
2

(7)

where x5 is an additional state variable. Now, by introducing the pseudo-control u1, the equations
of motion can be easily rewritten in terms of augmented state by adding the equation ẋ5 = u1. A
convenient parametrization of this system can be written as:
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ẍ0 (8)

in which the controller regulates the pseudo-control u1. This allows to obtain suboptimal con-
trol without violating the saturation constraint. Indeed, according to equation (7), the force u =
satsin(umax, x5) effectively exerted by the control actuator does never exceed the saturation limit
umax whatever is the value of u1. In case the physical constraint on yr can be neglected a possible
choice of Q(x) is as follows:

Q(x) =




0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 r1




(9)

where r1 is a small penalty on u1 that is introduced in order to avoid a singular problem. The SDRE
also allows to handle actuator saturations and state variable constraints all at once. This can simply
be achieved through the parametrization reported in equation (8) and by defining the weight matrix
Q(x) as:

Q(x) =




0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 (x2/ymax)2N 0
0 0 0 0 r1




(10)
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Figure 3: Regularization function ε(yr) (the black line represents the Heaviside function while the
grey lines represent ε(yr) for different values of κ0, κ1 approaching κ).

4 ENHANCED NONLINEAR DAMPING APPROACH
The problem of state variable constraints can be treated as described in Section 3 by assigning a

state dependent nonlinear weight to the first time derivative of the constrained variable yr in equation
(6). Nonetheless, it must be mentioned that assuming very large exponents N in equation (6) might
reflect on numerical difficulties in solving the Riccati equation. On the other hand, if N is small, the
effectiveness of the said strategy in preventing the movable mass from attaining the limit is low. A
possible alternative way to prevent the mass from approaching the physical limits is to slow down its
motion in the vicinity of the stroke stops. This can be easily achieved by introducing in the system an
additional nonlinear derivative term in ẏr with state-dependent gain gd · ε(yr), gd being a specified
constant gain and ε(yr) being a suitable nonlinear function. Clearly, gd · ε(yr) · ẏr is a force that
must be provided, when necessary, by the actuator. Thus, this approach is obviously applicable only
when actuator saturation does not occur.

The most trivial function ε(yr) to be adopted in the controller is the Heaviside unit step function
which is nil when |yr| is less than κ times (with 0 < κ < 1) the stroke stop ymax and it is equal to
unity elsewhere. However, this function is discontinuous at |yr| = κ ·ymax which requires an abrupt
application of the breaking force which, theoretically, would need an infinite power. Practically, the
unit step function does not solve the problem of the abrupt stop of the actuator. In order to overcome
this drawback, it is necessary to define a function ε(yr) that varies smoothly between 0 and 1 within
the interval [κ0ymax, κ1ymax] with 0 < κ0 < κ1 < 1. A function of this type can be defined as
follows:

ε(yr) =





1, |yr| ≥ κ1ymax

1− exp( −1
1−(|yr|−κ0ymax)2/(κ1ymax−κ0ymax)2 + 1), κ0ymax < |yr| < κ1ymax

0, |yr| ≤ κ0ymax

(11)

A convenient parametrization of the equations of motion of the system with the enhanced nonlinear
damping term gd · ε(yr) · ẏr is formally identical to equation (3) in which matrix C is also state
dependent and it is expressed as:

C(x) =
[
c −ca − gdε(x2)
0 ca + gdε(x2)

]
(12)

It is noteworthy that the function ε(yr) defined in equation (11) is a C∞ function (it can be also
shown that it tends to the Heaviside function in the functional space L2 as κ0, κ1 → k). This ensures
a gradual application of the breaking force and the reduction of the required power (the slope of
ε(yr) is always finite). A plot of this function is shown in Figure 3.
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Figure 4: frcs of the system (uncontrolled: grey solid; ideal actively controlled: black solid; pas-
sively controlled: grey crossed; actively controlled with force saturation: black crossed).

5 NUMERICAL EXAMPLE
The reduced scale one-storey building with AMD considered by Mongkol et al. in reference

[7] is here adopted as the case study to test the effectiveness of the proposed approaches. The
following mechanical parameters characterize the considered structure-AMD system: m = 750 kg,
k = 1.76×105 N/m, ξ = 0.01, ma = 7.45 kg, ka = 1.72×102 N/m and ξa = 0.06, while umax =
250 N and ymax = 1.2 m are assumed as the control limitations. The frequency response curves
(frcs) of the system subjected to a sinusoidal base excitation with a peak ground acceleration (PGA)
of 0.35g, g being the gravity acceleration, are here numerically calculated. The frcs represent the
variations of the steady amplitudes of state variables versus the excitation frequency ratio Ω = ω/ω1,
ω being the circular frequency of the base acceleration signal and ω1 =

√
k/m being the natural

circular frequency of the structure without the AMD.

5.1 System with actuator saturation
The system subjected to the force saturation limit umax = 250 N is under attention at first.

This constraint is handled following the approach described in Section 3, which relies on the regula-
tion of the pseudo-control u1 by rewriting the equations of motion in terms of augmented state (see
equation (8)). The weight matrix adopted in the SDRE is given by equation (10). After performing
several attempts, the values R(x) = 0.0001 and r1 = 0.07 have been chosen in the simulations.
For comparative purposes, the uncontrolled, the passively controlled and the ideally controlled cases
have also been considered. The ideally controlled case (also called unconstrained solution) is here
chosen as a reference and corresponds to the unconstrained active control solution (linear system)
assuming R(x) = R = 2 · 10−6. This last value, representing the penalty on the control force in
equation (1), has been chosen in order to have a maximum required control force of about twice the
limit umax = 250 N imposed in the constrained solution. Clearly, assuming R < 2 · 10−6 would
allow to obtain as large control performances as desired at the expense of larger control forces.

Figure 4 shows the frcs of the considered systems, while Figure 5 (a) shows the frcs of the
control forces. The presented results clearly outline that, when the actuator saturates, the satu-
ration control solution allows to achieve control performances that are only slightly worse than
the unconstrained case. In any case, the constrained solution is always at least as effective as the
passively controlled case. The results presented in Figure 5, besides showing that the saturation
limit umax = 250 N is never exceeded in the constrained solution, also emphasize that this last
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Figure 5: frcs of control force u (ideal actively controlled: black solid; actively controlled with
force saturation: black crossed): (a). Periodic orbits for umax → 0 (passively controlled case in
grey): (b). Time histories of control forces for different values of umax (Ω = 0.95): (c).

solution requires much lower control forces than the unconstrained one in a wide range of the fre-
quency spectrum. It is also worth mentioning that, as the control limitation becomes more penalizing
(umax → 0), the system is always able to calculate the feedback and the control performance tends
to the one of the passively controlled case. This obviously suggests to tune the passive parameters
of the AMD to those of the optimal passive case (this choice is sometimes called ”Active Tuned
Mass Damper”). The limit of the controlled solution for umax → 0 is emphasized in Figure 5 (b)
which shows the periodic attractors of the system near resonance (Ω = 0.95) for different values of
umax approaching 0. On the contrary, likewise in the unconstrained problem, no theoretical limit to
the control performance exists for umax → ∞. Indeed, when umax → ∞, the saturation control
solution behaves as an unconstrained active solution with a very small penalty on the control force,
i.e. the vibration of the structure is highly reduced at the expense of very large control forces. Fi-
nally, Figure 5 (c) shows the time history plots of the control forces for different values of umax near
resonance (Ω = 0.95).

5.2 System with stroke stops
The system subjected to stroke stops is now worth investigating. The control limit is handled

following the approach described in Section 3, which is based on a state depending penalty on the
relative velocity ẋ2 between the mass and the structure. The weight matrix adopted in the SDRE is
given by equation (6) with N = 8 and R(x) = 2 · 10−6. The value N = 8 has been chosen after
performing several attempts. Generally speaking, a greater N entails an improved control of the rel-
ative displacement between the mass and the structure. However, as N is increased, the SDRE tends
to become ill conditioned and the controller might be unable to calculate the feedback. Clearly, an
optimum value of N must be sought.

Figure 6 shows the frcs of the uncontrolled, the passively controlled, the ideally controlled and
the constrained systems. The results emphasize that, similarly to the saturation case, the performance
of the system is intermediate between the ideal and the passive cases, at least for the considered con-
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straint severity. It is also worth noting that, as clearly shown in Figure 6 (b), the constrained solution
effectively allows to prevent x2 from exceeding the limit ymax although, in the most demanding
cases, small penetrations in the forbidden region might arise. This circumstance clearly entails that
the value ymax must be chosen in such a way to be safely below the physical limit.

The effectiveness of the enhanced nonlinear damping approach, described in Section 4, is also
worth investigating. On this respect, the results presented in Figure 7 show that such an approach
(assuming κ0 = 0.8, κ1 = 0.9 and gd1 = 20 · ca) allows to slightly improve the control perfor-
mance of the system at the expense of a lower effectiveness in preventing x2 from approaching the
limit. To better understand this mechanism, the resonant solution (Ω = 1.0) is investigated in Fig-
ure 8. Particularly, Figure 8 (a) shows the periodic attractors of the ideal case and the constrained
cases, while Figure 8 (b) shows the time histories of the control forces. These results clearly show
that the reduction of x2 with respect to the ideal active control case is obtained at the expense of
a significant increment of control force. On this respect, it is also worth noting that the enhanced
damping requires much larger control forces than the approach based on equation (6). Indeed, the
enhanced damping produces large peaks of control force which, for the sake of clarity, are even out
of the scale of Figure 8 (b). This, in fact, makes the approach based on equation (6) preferable for
technical applications.

5.3 System with both actuator saturation and stroke stops
The results presented so far essentially show that the SDRE method allows to effectively handle

force saturations and stroke stops, separately. As discussed in Section 3, it is theoretically possible
to include physical constraints and actuator saturation in the SDRE, at the same time. However,
controlling the relative displacement between the mass and the structure may require large control
forces, with the obvious consequence that the two classes of control limitations are in competition
with each other. In the presented case, assuming a force limit umax = 250 N required to choose
ymax = 1.8 m as the minimum possible constraint that did not cause numerical problems. The
results of this case are presented in Figure 9 and show that the system is capable of reducing x2, with
respect to the unconstrained case, when force saturation does not occur. Indeed, in the region of the
primary resonance, x2 is reduced at the expense of an increment of the control force with respect
to the unconstrained case. It is also worth mentioning that, assuming ymax = 1.8 m in the fully
constrained solution, reflects on maximum values of x2 appreciably below ymax (approximately
1.5 m). A similar profitable behavior is quite the opposite than the one observed in the case without
force saturation.

6 CONCLUSIONS
The results presented in this paper demonstrate that control limits, which are inherent of real

systems, can be directly considered in the nonlinear regulator design through the standard tool of the
state dependent Riccati equation. This permits to avoid, for instance, an emergency shut down of the
system which might be necessary in order to save the control devices when limits are exceeded. The
feasibility of the proposed approach is here demonstrated by application to the problem of a single
degree of freedom structure equipped with an AMD and subjected to a sinusoidal base acceleration.
However, the generalization of the proposed approach to the case of a multi-degrees-of-freedom
system with limited access to the state is straightforward.

Numerical simulations results demonstrate that state variable constraints and actuator saturations
can be effectively handled when not contemporary present. Generally speaking, as the severity of
the force limit is increased, the performance of the system reduces up to that of the passive case.
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Figure 6: frcs of the system (uncontrolled: grey solid; ideal actively controlled: black solid; pas-
sively controlled: grey crossed; actively controlled with limit stops: black crossed).

Figure 7: frcs of the system (actively controlled with limit stops: black crossed; actively controlled
with limit stops and enhanced damping: grey crossed).

Figure 8: Periodic attractors of resonant solutions (Ω = 1) (ideal actively controlled: grey solid,
actively controlled with limit stops: red solid, actively controlled with limit stops and enhanced
damping: black solid): (a). Time histories of control forces u (Ω = 1) (ideal actively controlled:
grey solid; actively controlled with limit stops: red solid; actively controlled with limit stops and
enhanced damping: black solid): (b).
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Figure 9: frcs of the system (uncontrolled: grey solid; ideal actively controlled: black solid; actively
control with actuator saturation: grey crossed; actively controlled with both limit stops and force
saturation: red solid).

Similarly, the effectiveness of the system is deteriorated as the state variable constraint becomes
more penalizing. The numerical results also confirm, to some extent, the possibility of handling the
contemporary presence of force saturation and state variable constraints. In this case, however, force
saturation is seen to strongly limit the state variable control.
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