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SUMMARY. The objective of the current paper is to discuss the relative strengths and weaknesses 
of the two main approaches to the diagnostic element of Structural Health Monitoring (SHM) and 
to try to indicate where they are best used in practice. Given the degree of commonality that is 
apparent, the paper will also discuss how the two approaches can support each other in the 
development of best practice and some speculation will be made as to how the approaches might 
be combined in order to exploit the strengths of both. 

1 INTRODUCTION 
Current approaches to the diagnostic problem which is central to the field of Structural Health 

Monitoring (SHM) are usually based on two main possibilities: an inverse problem formulation 
and a machine learning approach. The first of these approaches, often called the model-based 
approach is usually applied by constructing a physics-based model of the structure of interest (e.g. 
a Finite Element (FE) model) and correlating it with experimental data. Once the model is 
established, it can be used in a monitoring phase by periodically updating the parameters of the 
model, usually by linear-algebraic methods. The nature of the problem means that the linear-
algebraic formulation is often ill-posed and requires careful regularisation [1,2]. The alternative 
approach to diagnostics in SHM, often called the data-based approach, also involves the 
construction of a model, but this model is usually statistical. The model is established by means of 
machine learning or pattern recognition and may involve the use of classifiers or novelty (outlier) 
detectors [3,4]. It must be recognised that the problem of implementing a credible SHM strategy in 
any real-world context is much more wide-ranging than the choice of a diagnostic methodology. 
The broader aspects of SHM are however, not discussed here; the reader may consult [5] and [6] 
for more background; reference [7] must be considered as the current definitive guide to the 
subject. 

Both of the approaches discussed above have substantial support in the literature of SHM; 
however, they arguably have different strengths and weaknesses, which potentially make their 
domains of application problem-dependent. The methods also show a degree of commonality 
which is sometimes overlooked. In the first case, as observed above, both approaches can be said 
to be model-based. The distinction is in the type of model. If one classifies models into white, grey 
and black-box models according to their degree of a priori physical content; one would observe 
that the inverse problem approach seeks to establish a white-box model, while the machine 
learning approach uses a grey or black-box model. The advantage of the former is precisely that it 
exploits any available physical knowledge of the system of interest; the advantage of the latter is 



that it automatically accommodates any uncertainty in the specification of the system or structure. 
Another common aspect of the approaches is that they require measured features from the 
structure. In the inverse problem approach, features are generally needed in order to update the a 
priori physical model in order to bring the normal condition model into better accord with reality. 
Features are also required for the damage identification task. These may or may not be the same 
features that were employed for updating the normal condition model. The machine learning 
approach uses measured features in order to form the statistical model and to reduce the 
dimensionality of the problem as far as possible. In both cases, the selected features must be 
sensitive to the damage. For the inverse problem this is a requirement for a non-trivial update; for 
the machine learning approach, the features are essentially everything and must reflect any 
information about the damage. Feature selection, is therefore an issue for all SHM methodologies, 
but is arguably most discussed in the machine learning context. 

2 CLASSIFICATION OF MODELS 
The discussion later in the paper will require the specification of a taxonomy which allows one 

to distinguish between classes of models. The two most common means of distinguishing model 
types are covered by the following. 

2.1 Data-driven and law-driven models 
A good reference on this classification of models is [8]. A convenient way of expressing the 

differences between the two types of model is by means of ‘bullet points’. 
 

Law-driven models 
• Based on accepted laws attributed to the system – ‘physical’ in nature 
• Suited to prediction, potentially for unobserved system states. 
• May be used to inform critical data acquisition decisions 
• Typically highly-parameterised 
• Generally do not accommodate uncertainty. 

 
Data-driven models 

• Based on observed input/output relationships – ‘statistical’ in nature. 
• Suited to recovering inputs from observed outputs. 
• May be parsimoniously parameterised. 
• Naturally accommodate uncertainty. 

 
This is a useful picture; however, one should regard these statements as representing ‘extreme’ 
viewpoints; things are seldom black and white. Consider the suitability of the two paradigms for 
‘prediction’ purposes. It is well-known that data–driven models like neural networks should only 
be used in situations where the input data do not depart dramatically from those used during the 
‘training’ of the model [9]; in other words, such models can only be used to interpolate with any 
real confidence. In contrast, one would imagine that an appropriately derived law-driven or 
physics-based model could be used to extrapolate i.e. make predictions in situations removed from 
the current SHM context; physics should after all be universal. However, one should bear in mind 
that law-driven models may be the best that physics has to offer, yet still be subject to restriction; 
for example, the Navier-Stokes equation is restricted to situations where one has confidence in a 
continuum assumption. Further, when one describes the Navier-Stokes equation as a physics-based 



model one is misrepresenting the situation in terms of prediction capability as the equation has no 
known analytical solutions; prediction is only possible by passing to numerical solution methods 
which are themselves subject to limitations and represent a different class of model to the original 
partial differential equation. Finally, one can observe that a perfect specification of a deterministic 
model still does not guarantee prediction accuracy; this is one of the hard lessons learned from the 
discovery of deterministic chaos [10]. One can also consider the question of ‘parameterisation’ of 
the models. Although it is stated above that law-driven models may be ‘highly-parameterised’; this 
need not be the case. If one considers a large FE model, there may be very many parameters 
indeed; in principle, each individual element could have independent material parameters. In fact, 
only a small number of ‘substructure’ material constants will be needed. Of the huge number of 
coordinates which specify the mesh geometry; only the subset which fixes the geometry of the 
structure of interest matter in any real sense.  ‘Internal’ nodal coordinates can be varied more or 
less with impunity (as long as one does not violate aspect ratio constraints etc.). It is this fact that 
only a very small subset of the parameters ‘matters’ which allows FE model updating to be 
computationally feasible for model improvement. For SHM the additional requirement is that the 
model should be capable of representing the structure in all damage states of interest. Meeting this 
requirement while avoiding an explosion in the number of required parameters (and subsequent 
issues of ill-conditioning) is perhaps one of the greater challenges faced in the application of 
model updating based methods.  

The parallel statement that data-driven models can be ‘parsimoniously-parameterised’ is by no 
means a general rule either; neural networks may need hundreds of internal parameters in order to 
capture the input-output behaviour of a system with appropriate fidelity; this observation impacts 
considerably on the applicability of data-driven models, as it imposes severe constraints on the 
amount of data which must be available for ‘training’.  

2.2 Black, white and grey box models 
 

"Here they come, every colour of the rainbow: black, white, brown" [11]. 
 
It is informative to consider the nature of the information upon which a model is based. A 

white box model is built solely upon the best possible understanding of the underlying physics of 
the system. For a purely white model, no assumptions or approximations regarding model 
structure would be made, and the ‘whiteness’ of a given model reflects the depth to which a 
complete physical understanding is pursued. In practice, limits on our understanding of the 
physical universe preclude the existence of pure white box models. The discussion on the Navier-
Stokes equation above makes this point clear. One should also note that both the Navier-Stokes 
equation itself and the discretisation usually necessitated for solution are often brought together 
under the term ‘white box.  

Conversely, a black box model seeks to describe the behaviour of a system with no reference 
to its internal structure or ‘physics’. Such models are instead built solely around observed input-
output behaviour. This does not always present practical limitations as the universal approximation 
capability of many machine learning model paradigms means that a black-box model can in 
principal capture input-output behaviour perfectly; however, as discussed above, for predictions 
with such models it is not usually safe to stray too far away from the situations in which the 
training data were generated.  

A grey-box model is a compromise between these two extremes i.e. a model for which the 



physics dictating the input-output relationships are partially understood a priori, but which allows 
for the inclusion of approximations from empirical observations. The relative ‘whiteness’ or 
‘blackness’ of the model may be viewed as dependent upon the number and quality of the 
assumptions made in specifying the physical understanding of the system, and the degree to which 
the model relies upon approximations made from the observed data. A good example here may be 
in specifying an initially linear FE model for a structure. If experiment were to make clear that the 
actual structure was in fact nonlinear, one could add individual nonlinear elements and calibrate 
their coefficients using experimental observations. Even if the nonlinearities are non-polynomial 
in nature, they will always be approximated effectively by an appropriate high-order polynomial; 
such a ‘model’ nonlinearity is therefore non-physical and converts the initial white FE model to a 
grey box.  

3 THE MODELLING TASK FOR DAMAGE IDENTIFICATION 
The purpose of this section is to discuss the modelling capabilities of the two main approaches: 

law-based and data-based. The ‘true’ structure may be regarded as a function (or functional) of its 
inputs. This function specifies the mapping of inputs to responses for all states of the structure, 
both damaged and undamaged. For damage identification, the modelling task is to specify a model 
capable of approximating the true structure across all states of interest.  

The discussion is illustrated through consideration of a space of functions or functionals 
encompassing all possible model structures. The ‘true’ structure is denoted as T in the following 
figures. Where model updating has been employed to reduce the residual distance between model 
and structure, the ‘optimal’ model is denoted as O in the figures. In the interests of visualisation, 
the abstract concept of an infinite-dimensional functional space is presented in two dimensions. 

3.1 Physics-based modelling 
 

 
Figure 1: Functional space portrait of a linear physics-based model. 

 
Suppose one begins by considering the family of linear physics-based models as depicted in 
Figure 1. This class of models, by nature of its restrictions, forms a subset or spans a subspace of 



all the possible functional forms for a model. The particular subspace spanned is dictated by the 
model form selected and the values assigned to its parameters. The extent of this subspace (the 
modelling ‘power’ or capability) grows with the dimension of the model – as more degrees of 
freedom are added to, say, a finite element discretisation of the structure, so the number of 
possible models expands. One can specify a complexity parameter: in this case the number of 
elements is meaningful. So for linear FE models, one has a complexity parameter: Nphys = 
{Nelements}. 

The creation of a numerical model necessarily involves the discretisation of continuous 
physical laws, manifested as specification of time-steps or element sizes. The discretisation error 
arising from this process limits the capability of the model to accurately reflect the physics of the 
true system. As the step- or element-size is decreased (and thus the order of the model increased) 
convergence of the subspace to some outer limit or boundary would be expected.   

Within the spanned subspace, the ‘optimal’ model is that which minimises the distance (in 
terms of the geometry of the function space) between the model and that of the ‘true’ structure. 
This optimisation may be guided by direct measurement of parametric values and/or calibration of 
parameters through updating. Where parametric updating methods are employed for this purpose, 
the optimisation process will typically be constrained in order to ensure that the model parameters 
remain physically representative. e.g. for FE updating, a principled approach to choosing the 
‘closest’ model within the class could be based on least-squares minimisation of residual errors; 
possible constraints on the minimisation might be the requirement to preserve the sparsity 
structure of the physical matrices during updating [12]. If the true system falls within the 
explanatory range of the model class, the updating procedure will bring the distance down to zero. 
If the true system is without the model class as depicted in Figure 1, one can only hope to get as 
close as possible. 

 

            
 

Figure 2: Functional space portrait of a non-linear physics-based model where: 
a) the included non-linearities accurately reflect those of the true structure, and 

b) there are discrepancies between the included non-linearities and  those of the true structure 
 
One can now progress to, say, nonlinear FE models. Such models will have at least the 
explanatory power of linear FE models, but will clearly span a greater volume of the function 



space. Staying within the dictates of law-based modelling, adding finite numbers of specific 
nonlinearities will mean the linear FE class is only extended in certain directions in the function 
space. In general, this may well mean that the extended class still does not include the true system 
(as in Figure 2b); however, it may be that it does (Figure 2a). The complexity parameters for the 
class must also specify the number of ‘nonlinearities’ added: Nphys = {Nelements, Nnon-linearities}. Any 
given physics-based class, e.g. nonlinear FE models, will still be subject to restrictions on the 
explanatory power even if the number of elements grows without bound. This example represents 
the case discussed earlier where addition of extra terms increases the explanatory power of a white 
box model but converts it into a grey box in the process. Concentrating on a linear FE model with 
‘added’ nonlinearity is extremely relevant for SHM as many damage types will convert an initially 
linear structure into a nonlinear one. Further, the exact form of the nonlinearity relevant to a 
fatigue crack in a metal or a delamination in a composite laminate may not be precisely known.  

3.2 Data-based modelling 
 

            
 

 Figure 3: Functional space portrait of a data-based approach where:  
a) the structure of the data-based model is ‘close’ to the true structure, and  
b) the structure of the data-based model is not ‘close’ to the true structure. 

 
As in the case of physics-based models, one can regard a given data-based paradigm as spanning a 
subspace of possible functions/functionals. However, there is a critical difference. Many classes of 
data-based models can be proved capable of acting as universal approximators; these classes 
include: multi-layer perceptron neural networks, radial-basis function networks [9] and Support 
Vector Machines [13]. The universal approximation capability means that as the complexity 
parameter (number of free weights etc.) increases without bound, any function/functional can be 
represented arbitrarily accurately. In terms of the figures here, this means that as the number of 
parameters increases, any point in the space is reachable and one should always encompass the 
‘true’ point T for some complexity parameter: Ndata = {Nfree params}. Unfortunately, the greater the 
number of parameters, the greater the amount of training data that is required and this is the 
critical problem in the context of SHM. The ‘true’ function in an SHM context is often a classifier 



which maps data to a class label specifying the state of health of a given structure. If the classifier 
is a dual class (healthy/damaged) novelty detector, it may only need to be trained on examples of 
data from the healthy structure; this is called unsupervised learning. If the classifier is more 
refined and is required to indicate location or severity of damage, training data from the damage 
states will be needed; the problem is now one of supervised learning. In an engineering context, 
this presents a great problem as it may not be economically feasible to generate fault data 
exemplars from high-value structures like aircraft or bridges. Training of a complex model (many 
parameters) may demand a great deal of training data in a situation where acquiring any damage 
state data at all will be a formidable problem  

3.3 Hybrid approach 
The ‘hybrid’ approach presents a potential solution to the problem just discussed. One can use a 
physics-based approach to establish a model which explains as much as possible of the 
function/functional behaviour as possible. The situation, as depicted in Figure 4a, will be that the 
initial physics-based model will establish a point O, close to the truth. From this point, a data-
based adjunct will be able to bridge the gap between O and T because of the universal 
approximation capability of the data-based approach. The advantage here is that the data-based 
component will potentially explain the ‘residual’ between O and T with a need for fewer 
parameters (than a full data-based model) and will therefore require less training data.  

 

            
 

 Figure 4: Functional space portrait of a hybrid physics-based and data-based approach where  
a) the physics-based model is ‘close’ to the true structure, and  
b) the physics-based model is not ‘close’ to the true structure. 

 
The complexity measures in this case are Nphys = {Nelements, Nnon-linearities}, Ndata = {Nfree params }. In 

the situation shown in Figure 4b, the initial physics-based model has less explanatory power than 
that in Figure 4a and as a result the parameter count for the data-based component will be higher. 

4 PRACTICAL CONSIDERATIONS 
Each method may be considered as comprising a training phase and a monitoring phase. The 



training phase for the data-based approach is precisely as described in all the relevant texts in 
machine learning or pattern recognition. The monitoring phase comprises the application of the 
learnt ‘rules’ to newly presented data from the possibly damaged structure. In terms of the law-
based approach, the ‘training phase’ means the initial building of the physics-based model on the 
basis of all available prior information followed by updating and validation exercises using 
experimental observations to bring the model further into accord with reality. The monitoring 
phase for a physics-based approach will typically comprise further updating steps on the basis of 
newly presented data from the structure. 

For the hybrid approach the training phase is considered in the discussion below to involve the 
development of the ‘optimal’ law-based model, and the training of a data-based model using the 
(bias-corrected) predictions of this law-based model. The monitoring phase is once again the 
application of the data-based model to new data. It should be noted that the objectives of the law-
based modelling task are thus somewhat different for the hybrid approach and the purely physics-
based approach. For the hybrid approach it is advantageous for the reliance on deterministic 
updating to be superseded by application of the rather broader concept of probabilistic model 
validation. The broad aim of probabilistic model validation is the pursuit of  of quantified levels of 
confidence in prediction [14]. 

4.1 Features employed 
As observed, both approaches have a training phase which requires the availability of 

experimental data. The exact type of data used will have a critical effect on the construction of the 
diagnostic. The most important point is that the data, expressed through multivariate data vectors 
called ‘features’, must be sensitive to damage.  

For physics-based methods in general, the selection of the feature type is heavily dependent 
upon being able to identify the feature both from the model and the experimental data. In the 
model-updating literature, this has historically led to the broad adoption of modal properties 
(primarily frequencies and modeshapes) or FRFs. Comparison between experiment and the initial 
model leads to residuals that must be minimised when updating structural models. Often, the 
updating step will require analytical results, specific to given features e.g. sensitivity-based 
updating requires the formulation of derivatives of the error function with respect to the features; 
these derivatives have been computed and are available in the literature for the standard modal 
features [12]. This reliance upon modal properties has been maintained despite the insensitivity of 
modal responses to damage being well documented. It should be noted that a third category of 
modal characteristic, damping, is rarely considered for forming residuals for model improvement 
or as a feature for damage detection, due to difficulties associated with characterising and 
measuring damping.  

Despite the effort invested in reducing the residual between the responses of a physics-based 
model and the ‘true’ structure, some degree of offset will inevitably remain. This offset arises in 
part from the impossibility of achieving a true white-box level understanding of the physics of the 
structure. Bias correction techniques may be used in an effort to circumvent this error.  

The restriction to features that can be identified and correlated between model and structure is 
removed in the purely data-driven case. For the machine learning approach, ‘restrictions’ on the 
features are only to what can be measured from the structure: modal characteristics, time-domain 
data, spectral data, strain histories, images. Given this lack of restriction on the type of feature, 
emphasis is instead placed upon reducing the dimensionality of the problem as far as is possible 
(and thus reducing the requirement for infeasible amounts of training data) and selecting a feature 



set that is robustly indicative of damage.  
The degree of ‘restriction’ on the feature set falls somewhere between these two levels for the 

hybrid approach. The decision on whether a particular response of the model should be considered 
a candidate feature will largely be dictated by whether it can be predicted with a satisfactory 
degree of confidence.  

4.2 Feature selection 
It is sensible to make a distinction between feature specification and feature selection. The 

broad class of features available will be determined by the choice of sensors and their number and 
distribution; as such this must be considered at the operational evaluation stage as discussed in [5]. 
A great advantage of employing a physics-based approach is that the model may be used to guide 
the sensor placement and feature selection tasks, and it would in principle be possible to assess the 
sensitivity of each individual feature within the feature set to the presence of damage. Examples of 
this are, however, relatively rare in the published literature related to model-updating based SHM, 
although Fritzen et al. [15] have employed parameter set reduction techniques. In the inverse 
model-based approach, as discussed above, the candidate feature set used is typically specified a 
priori, and is often the same for both the model-improvement stage and the structural monitoring 
stage. This is despite the objectives of these two stages being arguably somewhat different. The 
feature set used is defined largely by convention and convenience, rather than through analysis of 
suitability for damage detection.  

In direct contrast, feature selection – the reduction of a candidate set to a maximally sensitive 
set - is very widely discussed in the machine learning context, where the features are essentially 
everything. A practical consideration here (returned to below) is that data is unlikely to be 
available for all damage states, placing a restriction on the domain for which the features are 
assessed. A solution making full use of the hybrid formulation may be to use the physic-based 
model to provide probabilistic representations of a candidate feature set, and to apply feature 
selection methods developed in the machine learning context to this set. 

4.3 Treatment of Uncertainty/Variability 
There are many potential sources of uncertainty in the SHM task. Several of these, including 

boundary condition variability and operational and environmental effects are common to both 
approaches. The use of physics-driven models introduces an additional set of model-form and 
parametric uncertainties. The two approaches handle uncertainties in markedly differing ways. 

 
There are two elements to consider when assessing the importance of uncertain factors: 
• are the features that are being observed sensitive to the uncertain factors? 
• What degree of uncertainty can be ascribed to the uncertain factors? 

 
An advantage of the machine learning approach is that it can automatically accommodate any 

uncertainty in the specification of the system or structure. This is, however, contingent upon the 
learning algorithm being presented with training data that is representative of the variabilities and 
uncertainties that are expected in practice. A common, yet non-trivial, example is that of 
environmental effects. It has been observed in numerous studies that temperature effects can have 
a significant effect upon the features employed for damage identification. In some cases, it has 
been found that the observed features display greater sensitivity to environmental effects than to 
the damage of interest [16]. The pitfalls of training a classifier using data gathered at a single 



temperature point in such a scenario are immediately apparent, and it would be expected that a 
classifier trained at one temperature point may perform poorly when extrapolating to changing 
environmental conditions. In this scenario, the possibility may exist to treat the variable factor 
(temperature) as observable, and to incorporate it into the feature vector presented to the machine 
learning algorithm. Where the variable factor is not readily observable, as may be the case for 
boundary conditions, a different approach may be taken. Effort may be directed towards recording 
training data that captures the range of variability expected in practice, for example through 
employing blocking and randomisation as appropriate in the test programme. An initial analysis of 
the sensitivity of candidate features to particular uncertain factors may aid this process. 

 In the inverse-problem approach to SHM, the rule has very largely been to build ‘crisp’ 
models which do not accommodate variation; departures from this rule have recently emerged via 
the use of stochastic FE [17] and fuzzy FE [18] etc. The quantification and propagation of 
uncertainty is in contrast a core activity in probabilistic model validation approaches. Sensitivity 
analysis is conducted using the initially-developed model to identify those factors to which model 
responses are sensitive. The experimental and modelling effort is directed at characterising the 
uncertainty in these factors, and the subsequent variability in the model outputs, The resulting 
probabilistic predictions may be used to supplement the available experimental data for machine 
learning in the hybrid approach, Even when uncertainty is explicitly handled in a law-based 
model; the form of the uncertainty must be guided or fixed on the basis of observational evidence; 
this may well change a white box model into a grey box in the same way that addition of nonlinear 
elements would 

4.4 .Practical considerations 
The discussion so far has been largely related to the advantages and disadvantages of models in 

terms of their explanatory power, their ability to encode uncertainty and other matters which have 
been discussed in largely abstract terms. The intention with this section is to look at practical 
issues including those of resourcing.  

In terms of cost (time and money), physics-based models are undoubtedly time-consuming and 
challenging to build, develop and validate. They rely on the existence of expert and talented model 
builders with considerable training, both in the generalities of model building and the specifics of 
individual software packages. The software packages themselves may be costly in terms of initial 
licensing and maintenance. Large models will require intensive computing facilities with the 
associated operation and maintenance overheads. Robustness under uncertainty can be an issue for 
law-based models; these are typically calibrated at a single design point (the normal condition), 
and validated for responses not used for updating, rather than for other input states. Robustness 
and sensitivity are often left unassessed. Also, additional epistemic uncertainties will generally be 
introduced through modelling choices and simplifications. Law-based models are typically over-
parameterised; this makes updating a typically ill-conditioned task. (In order to improve the 
stability of solution, regularisation may be employed to reduce the dimension of the parameter 
space [14]). Finally, during the monitoring phase, any assessment of integrity will require a full 
model update step. There are of course many points in favour of the law-based approach. First, 
law-based models can potentially be used to extrapolate; if the actual physical laws underlying the 
model extend beyond the initial context, then the constructed model will also extend.  Secondly, 
the actual computational cost of the update step may not be excessive. A huge advantage of the 
law-based model is concerned with the possibility of observing multi-site damage. Consider the 
situation where the structure under investigation is a cantilever beam with a potential fatigue crack. 



Once the undamaged structural model has been validated, and the crack model has also been 
validated, there is no further problem with modelling the multiple crack scenario; this is not at all 
the case for the data-based approaches. 

In discussing the disadvantages of the data-based approach, one must begin with the ‘elephant 
in the room’. Sourcing data from the structure in its damaged state is unlikely to be feasible in 
scenarios such as large-scale structures. One clearly cannot conceive of physically damaging an 
aircraft in multiple ways in order to accumulate data for supervised learning. Even if multiple 
damage cases become available, there is a potential requirement to account for statistical variation 
in the data. Finally, even is it is possible to acquire some data from damaged structures it will 
certainly be unfeasible to acquire data corresponding to multi-site damage, where the number of 
damage states for which data would be required grows factorially with the number of discrete 
damage sites identified. This is the main problem faced by data-based SHM. If only damage 
detection is required, things become much more positive as only measured data from an 
undamaged structure will be required. A related problem concerns the amount of training data 
required. If the machine learning model structure has many adjustable parameters, it may demand 
an unfeasible amount of training data – data, even from undamaged structures, does not come 
without a cost. In terms of model development; this can be accomplished using machine learning 
software which is comparatively quick to master (compared with a nonlinear dynamic FE solver 
for example). Training the model may well be time-consuming, but then runs will be extremely 
fast during the monitoring phase. 

5  CONCLUSIONS 
As the paper is essentially a discussion document, there is no real need for detailed conclusions. 

The paper simply discusses the differences and commonalities between the law-based and data-
based approaches to structural health monitoring. The main issues discussed here relate to: the 
relative explanatory power of types of models, the accommodation of uncertainty in models and 
finally, practical issues in implementing diagnostic strategies. While these issues surely do not 
exhaust issues for possible discussion, the authors feel that their importance justifies their 
prominence here. It is observed that the two approaches discussed have their own individual 
strengths and weaknesses and that a hybrid approach may be possible that exploits the capabilities 
of both. The development of such a hybrid approach is the subject of ongoing research 
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