
Non classical modal parameters identification via dynamic response 
complexification 
 
Daniele Spina1, Claudio Valente2, Stefano Gabriele3 

 
1Department of Seismic Risk, National Civil Protection, Italy 
E-mail: daniele.spina@protezionecivile.it 
2PRICOS Department, University “G. d’Annunzio” of Chieti-Perscara, Italy   
E-mail: c.valente@unich.it 
3Department of Civil Engineering, University “Roma Tre” of Rome, Italy 
E-mail: gabriele@uniroma3.it 
 
Keywords: Hilbert transform, complex modes, dynamics tests. 
 
 
SUMMARY. The paper aims to review and generalise the theoretical bases of an original 
identification method set by two of the authors. The method maps and analyzes the time domain 
response of linear dynamic systems in the complex plane. The mapping is obtained by adding the 
imaginary counterpart of the motion, provided by the Hilbert transform, to the real dynamic 
response. The formulation is specialised to deal with the problem of complex modes identification 
from quasi-harmonic test data. It is demonstrated that the complex plane representation turns out 
to be a natural framework to treat non classical damped system. An application to a reinforced 
concrete building tested in different structural conditions is presented. 

 

1 INTRODUCTION 
Experimental modal analysis is currently performed to identify the dynamic properties of 

systems and structures. Modal parameters and their changes are also valuable for damage 
assessment. Several methods are available on purpose [1]. Often, the dynamic response is mapped 
into the frequency domain to get the spectral properties of the system. This capability comes from 
the enlargement of the function space that accounts for the imaginary part of the dynamic 
response. Such a feature can be obtained also in the time domain by the help of the Hilbert 
transform [2]. 

The paper aims to review and generalise the theoretical bases of an original identification 
method [3], set by two of the authors, that provides for a time domain representation of linear non 
conservative dynamic systems in the complex plane. The Complex Plane Representation (CPR)  is 
obtained by a complex function formed by the observed real motion and its imaginary counterpart 
provided by the Hilbert transform. The CPR turns out to be a natural framework to deal with non 
classical damped systems since it allows to arrive to the same proportionality relation valid for the 
modal components of classically damped systems.  

Presently, the formulation is specialised to deal with the problem of complex modes 
identification from the analysis of the dynamic response close to resonance. The solution evolves 
mode by mode and relies upon the choice of a suitable reference degree of freedom (dof) of the 
system. A criterion for the best selection of the reference dof is given. Indices are also introduced 
to evaluate the quality of the estimates either global for the whole mode shape or local for the 



single dof. The method is applied to study the changes in the dynamic behaviour experienced by a 
reinforced concrete building tested in different structural configurations.   

2 THEORETICAL BASIS 
The Hilbert transform is the mathematical operator used to make complex the dynamic 

response of the system. This is done by adding the imaginary counterpart of the motion to the 
observed real response. In doing that some properties of the Hilbert transform are exploited. They 
are therefore shortly reported hereafter.  

The complex dynamic response of the system z(t) is defined by: 
 

 ),(~ )()( txitxtz +=  (1) 
 
where x(t) is a real time signal and )(~ tx is the Hilbert transform of x(t) given by: 
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The Hilbert transform satisfies either the Energy Conservation property and the Orthogonality 

property that are respectively defined as follows:  
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Therefore, in view of equations (3) and (4), if x(t) = x1(t) + x2(t) then: 
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A further important property comes from the Bedrossian theorem and is often referred to as the 

Modulation property. The theorem states that if a time signal x(t) is made by the product between 
an oscillatory function s(t) and an envelope function a(t) and if both functions have non 
overlapping spectra S(f) and A(f): 
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then the action of the Hilbert transform is to leave the envelope unchanged and to transform 

only the oscillatory part: 
 
 ),(~)()(~ tstatx =  (8) 

 



In the case of linear dynamic systems, harmonic signals are of interest. In this case, the 
modulation property holds strictly for monochromatic stationary signals: 
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When a(t) is a slowly varying function and s(t) is quasi-harmonic depending on a slowly 

varying frequency f(t) = (dθ/dt)/2π):  
 

 )](cos[)()( ttatx θ=  (10) 
 
it is possible to show that, under condition (7), the Hilbert transform of (10) is [4]: 
 

 )](sin[)()(~ ttatx θ=  (11) 
 
In those cases in which at least one of the two functions a(t) or s(t) has not compact support, or 

their spectra are overlapped, the Bedrossian theorem states that equation (8) can be retained valid 
only within an error related to the amount of spectra overlapping. Defined by:  
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the normalized measure of the overlapping, equation (8) is generalized as: 
 

 ),()](sin[)()(~ tttatx Δ+= θ  (11’) 
 
where the norm of the error function Δ(t) vanishes as E goes to zero. 
 

3 COMPLEX PLANE REPRESENTATION 

3.1 Harmonic excitation, proportional damping 
A linear and non conservative system endowed with proportional damping and excited by a 

harmonic force: 
 

 ),2cos()( tfFtF kπ=  (13) 
 

is initially considered. If fk corresponds to the k-th natural frequency then the k-th mode dominates 
the motion and the stationary resonant response at dof h is: 
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In equation (14) Ahk is the response amplitude (with sign) ad θ0 is 0 for displacement or 

acceleration and is π/2 for velocities. If the response qr at dof r is selected as the reference 



measure, the following simple proportional relationship between qr and the others modal 
components qh exists: 

 

 ,,....,2,1    ,            ;,....,2,1     ),()( Nh
A
A

Nhtqtq
rk

hk
hkrhkh ==== ψψ  (15) 

 
Where  [Yk]r is the k-th  real mode shape, scaled such that its r-th entry is equal to one.  

3.2 Harmonic excitation, non proportional damping 
In the case of non proportional damping the general form of the response becomes:    
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and the relationship of simple proportionality can be recovered reverting to the complex plane 
representation of qh(t): 
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Using the Hilbert properties (3) to (5), equation (17) can be rewritten through a generalized 

relationship between complex quantities:  
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Where  [Yk]r is the k-th complex mode shape, scaled such that its r-th entry is equal to one.  

3.3  Sweep excitation  
Consider now an excitation given by a quasi-harmonic forcing function with frequency 

changing linearly in time [0,DT] in the range [f0, f0+Df ]:   
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If Df/DT <<1, in view of equation (17) the system response at dof h is assumed as: 
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where the instantaneous frequency of the response coincides with excitation frequency and the 
instantaneous envelopes Ahk(t) e Bhk(t) equates time by time those of equation (17) valid for a 
constant frequency f=f(t)=f0+(Df/DT)t. Considered that D(t) in equation (11’) is negligible when 
Df/DT <<1, it is assumed that at time tk, where the instantaneous frequency f(t) coincides with the 
k-th resonant frequency fk, equation (18) holds true also in the present case. 



4 PARAMETERS ESTIMATE 

4.1 Frequency and damping 
The representation (1) in the complex plane of the dynamic response x(t) allows for a 

straightforward estimation of both the instantaneous envelope and frequency by means of equation 
(10) and (11) [5]:  
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4.2 Mode shapes 
The estimate of the mode shapes needs further development that is given below. The bases of 

the method were initially set in [3]; here a generalization is provided. In order to simulate actual 
experimental conditions a white noise eh(t) is added to qh(t) that is assumed to be known in a 
discrete set of m time instant tj spaced with constant time step Dt: 
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Using the complex plane representation (18) for the discrete signal (22) the k-th mode shape is 
identified by minimizing the following error function that measures the deviation from the 
proportionality in the complex plane between any dof h and the reference dof r: 
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Taking the derivative of εh with respect to ξhk and ηhk and introducing the Hilbert properties 

(3), (4) and (5) one gets the following two uncoupled equations that provide the estimates ξ'hk and 
η'hk to the real and imaginary part of the h-th component of the k-th mode shape: 
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Equation (24a) is used for computation, whereas equation (24b) is useful for theoretical 

considerations. Equation (24b) is the same as (18) modified to account for noise and shows that 
the estimated parameters coincide with the exact ones when the reference measurement is noise 
free. In order to get the best estimate an appropriate choice of the reference dof is hence required. 



The criterion adopted to select the best dof is to minimize the noise to signal ratio in the reference 
dof. The best dof to be used as reference is dof s for which:  
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It is noted that the index Er offers also a global evaluation of the accuracy of the estimates of 

the relevant mode shape. A local evaluation referred to the single dof is obtained as:  
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considered that in ideal condition ψrand ψs should be equal at dof h, the variance of the 

estimates among all dofs can be considered as a measure of the stability of the identification. 

5 CASE STUDY 
The CPR (Complex Plane Representation) method developed above has been used to identify 

the modal parameters of a building subjected to a large experimental campaign devoted to analyze 
changes in the modal behaviour for different structural conditions. A small sample set of results is 
reported with the purpose of illustrating the method capability. 

5.1 Building and instrumentation   
The building under test, Figure 1, is the former place of the Municipality of Vagli di Sotto 

(LU). The building has two storeys (total avg height 6.7m) and a rectangular plan of 27.25m 
(longitudinal or X direction) by 13.60m (transversal or Y direction). The structure is composed by 
plane resisting r/c frame in the transversal direction. Secondary beams in the longitudinal facade 
connect the main frames. The floors and the roof are of tile-lintel type and allow for rigid floor 
assumption.  

The dynamic response has been recorded using unidirectional piezoelectric accelerometers. 
Four accelerometers per floor have been used. The sensor placement is shown in Figure 2 by 
oriented arrows. Dynamic range, linearity range and resolution of the instruments are respectively: 
±5g, [0.3 4000] Hz and 10 μg. The acquisition has been performed via a multichannel analyzer 
endowed with a 24 bit A/D card and 124dB dynamics. The forced vibration have been obtained 
through a dynamic actuator capable to deliver a maximum force of 4180 kN at 30 Hz. 

5.2 Demolition stages and dynamic tests  
The building should be dismantled and it was decided to proceed with a controlled demolition. 

The demolition stages were aimed at studying the effects of the infillings on the overall dynamic 
behaviour of the building. The masonry panels were removed in 11 different stages starting from 
the finished building (stage 0) and ending at the bare frames (stage 11) where all the infillings 
were removed. The sequence of demolition is given in Figure 2. Stages 1 to 4 refer to ground floor 
whereas stages 5 to 11 refer to first floor. The broken masonry was left on the floor in order to 
preserve the overall mass of the building.  

It was performed a testing session for each demolition stage. The testing session is composed 
by a preliminary sweep test (fsampl = 100Hz) and by a number of subsequent harmonic tests (fsampl = 



200Hz) at resonant frequencies identified during the sweep test. Both the forced response and the 
free decay of the oscillations are recorded. During the sweep test the frequency of the forcing 
function varies linearly with a rate of 0.02 Hz/sec in the range [0 12] Hz. During the harmonic test 
the frequency of the forcing function is kept constant. 

 
 

Figure 1: General view of the building. 
 

 
Figure 2: Plan view (numbers = demolition sequence; arrows = accelerometers) 



5.3 Identification of the modal parameters 
The identification has been preceded by a sensitivity analysis aimed at evaluating changes in 

the modal parameters as a function of the time window selected for the analysis during a sweep 
test. A sample time history (accelerometer no. 8) is provided in Figure 3. The results refer to 
transversal excitation and to the first frequency for different time window around t = 194 sec, close 
to resonance. The changes in the mode shapes are measured by the MAC [6], whereas the changes 
in the frequency are given in percent. All the changes are computed with respect to the shortest 
interval I1. It is concluded that the identified mode shapes and frequencies do not depend on the 
time window processed as long as it encompasses the time instant at resonance.  
  

    changes with respect to I1 
 

Figure 3: Time intervals used for the sensitivity analysis and results 
 

The modal model of the building has been identified for all the structural states corresponding 
to the different demolition stages except for states 4 and 5 for which sweep tests are unavailable 
due to technical problems.  

The comparison between the frequencies obtained with the CPR method and conventional 
methods operating on harmonic tests is shown in Figure 4. In both cases, as expected, the first 
frequency decreases progressively as long as the demolition of the masonry panels advances. The 
major changes happen when the infillings of the ground floor are removed or when infillings 
without openings are removed. In any case, an excellent matching is observed between the two set 
of results; however, the CPR results show more regular and monotonic than those obtained with 
different identification methods.  

The tracking of changes in the mode shapes is given in Figure 5 according to a sample case 
concerning the first mode. Changes are quantified by means of the MAC index (complex 
evaluated) that is computed state by state with respect to the mode shape of state 0 (building in its 
original configuration). In the same figure, superimposed to the MAC value, the “complexity 
index” Ic is also reported. The Ic is defined as: 
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where Ψ is the generic eigenvector and Re(Ψ) is its real part. Both indices ranges from 0 to 1; 

MAC tends to zero for uncorrelated modes and Ic tends to zero for real evaluated modes. From the 
figure it appears that strong changes in MAC are associated to as many strong changes in Ic. 

 



 
Figure 4: Variation of the first frequency vs. demolition stages.  

Comparison between cpr method (sweep tests) and conventional methods (harmonic tests). 

 
Figure 5: Variation of MAC index of mode 1 vs. different demolition stages  

Index of mode complexity Ic superimposed.  
 

6 CONCLUSIONS 
It has been presented the CPR Complex Plane Representation Method for the identification of 

the modal parameters of systems endowed with non proportional damping. The method works in 
the time domain and uses the Hilbert transform to construct the imaginary counterpart of the 
system dynamics. The identification of the complex modes is decoupled in two independent 
equations each of which related to the real or to the imaginary part alone. 

The results show that the proposed formulation, in spite of its theoretical and practical 
simplicity, leads to a very precise and reliable identification of the modal parameters. In particular, 
the phase shifts of the mode shape components, hard to estimate using standard techniques, can be 
identified as well. Two indices have introduced to evaluate the quality of the estimates of both the 



eigenvectors and the modal coordinates.  
The performance of the method has been demonstrated against experimental data coming from 

a reinforced concrete building subjected to a controlled demolition of the masonry infillings. After 
each demolition step, a sequence of harmonic and sweep tests has been carried out in order to 
identify changes in the modal parameters. Harmonic tests have been processed with standard 
techniques and sweep tests have been analysed using the CPR method. The comparison of the 
results show excellent agreement between the two. 
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