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SUMMARY.  

The fracture pattern in stressed bodies is modeled through the minimization of a regularized 

functional of the type proposed in [2]. The variational approach is here combined with Structured 

Deformation Theory to represent that, when the material microstructure is damaged and loosened, 

particular inelastic (structured) deformations are permitted in the representative volume element. 

For different-in-type materials (ductile, brittle, quasi-brittle), the structured contribution may vary: 

by selecting different forms for the admissible class of the structured strain, diverse responses can 

be captured by the model, such as cleavage, shear, combined cleavage-shear and masonry-like 

fractures. An energetic competition is engaged between the release of elastic bulk energy and the 

energy necessary to produce the crack surface. This favors fracture localization. 

 

1 INTRODUCTION 

In a fundamental paper [1], Francfort and Marigo first introduced a variational approach to 

brittle fracture through the minimization of an energy functional, composed of a bulk and a surface 

energy term à la Griffith, and adding proper irreversibility conditions for crack opening. Later on 

the same authors, together with Bourdin [2], proposed a variational approximation of this free-

discontinuity problem with a regularized two field functional, where one field was representative 

of the macroscopic displacement in the body, while the other one played the role of a damage 

parameter varying between 0 and 1, with the 0 value in a fractured zone and 1 away from it. This 

latter formulation leaded to a pseudo spatial-dependent theory since it allows for spatial gradients 

of the damage parameter to affect the value of the stored energy functional. Extending a result 

used for the weak formulation of the Munford-Shah functional in problems of image-segmentation 

[3], it was proved in [2] for the 2-D case that as a characteristic parameter goes to zero, the 

regularized functional Γ-converges to the Griffith-like functional of [1].  

Many deep contributions have been proposed since then and the reader is referred to [4] for an 

updated survey of the relevant Literature. In general, a free discontinuity problem like that of [1] is 

difficult to solve and therefore one looks for an approximation (usually in the sense of Γ-

convergence) through regularized functionals. There are, however, two possible interpretations: 

the regularized problem may be considered just an useful approximation, or it may be regarded as 

a damage model per se, having its own physical autonomy. This issue has been explain at length in 

[5], where it has been observed that some parameters introduced in [2] mainly for mathematical 

purposes are instead important material parameters, with a precise physical significance, that are 

lost in the limit Griffith-like functional of [1]. In other words, according to this interpretation the 

regularized functional is the model, while its Γ-limit is the approximation. 

In this paper we take this second point of view and study a pseudo-spatial dependent model in 

the same category of that of [2], but from a broader viewpoint. In particular, relying upon 



Structured Deformations theory by Del Piero and Owen [6], we show that regularized functional 

of [2] can be extended to reproduce a broader scenario, which accounts for the formation of both 

mode-I or mode-II fractures, to incorporate various theories of flow and fracture of solids. 

In words, when the material is damaged, its microstructure is loosened and because of this, 

various types of inelastic (structured) deformations become permitted in the representative volume 

element. According to the material characteristic, the structure part of the deformation may be 

proportional to the whole strain, and this gives rise to cleavage-like fractures discussed in Section 

3.1, or just to the deviatoric part of the strain, producing shear-like (mode II) fractures (see Section 

3.2). In all these cases, an energetic competition is engaged between the release of elastic bulk 

energy and the energy necessary to produce the crack surface. The resulting model is identical to 

that proposed in [2] for the case of cleavage-like fractures, and to that of [5] for the case of shear-

like fractures. Both models are symmetric under tension and compression, in the sense that by 

reversing the sign of the external actions the crack pattern does not change, although the sign of 

the corresponding displacement field changes. In general, material compenetration is not avoided. 

To overcome these difficulties, a combination of the two aforementioned models can be 

introduced, accounting for cleavage-like fractures under tension and shear-like fractures under 

compression, as presented in Section 3.3. When the extended abstract of this paper was submitted 

to the AIMETA organizing committee, this model was considered a novelty by the authors but 

later on, when this contribution was still under review, a paper by Amor Marigo and Maurini [4] 

was published where this idea had been independently developed, even if from a different 

viewpoint and with diverse purposes. The main difference with the approach presented here 

consists in the numerical solving algorithm and in the proposed numerical experiments, that are 

different from those in [4].  

The present paper contains however a further case, original to our knowledge, that we have 

decided to add after the publication of [4] in order to show how our approach is amenable of broad 

generalization. This case is not mentioned in the extended abstract published in the congress 

proceedings, because such abstract had been written before the publication of [4]. The peculiarity 

of this case is that the structured part of the deformation is prescribed to be a symmetric positive 

semidefinite tensor. This means that only inelastic dilatations due to micro-crack openings are 

permitted when the material microstructure loosens. Remarkably, the variational approach allows 

to directly derive that this case, as discussed in Section 3.4, is consistent with the constitutive 

equations for a classical masonry-like materials defined in [7], i.e., the stress tensor is negative 

semi-definite, coaxial and orthogonal to the structured strain. However, in the present approach, a 

certain mechanical work has to be consumed to open a crack, so that localized rather than smeared 

fractures are energetically favorable. Material interpenetration at the crack-lips is now avoided by 

the properties of the structured part of the deformation.  

The four cases here presented are discussed and compared in the paradigmatic example of a 

prismatic solid in plane strain in a uniaxial tension or compression test. This is interesting because, 

in general, the prism may contemporaneously undergo both cleavage and shear fractures. In any 

case, the approach is feasible of further specialization. Just changing the form of the class of 

allowable structured deformation field, various models, interpreting the most various responses, 

can be obtained directly. 

2 THE MODEL 

If D, D = 2÷3, is the dimension of the Euclidean space where the problem is set, let Ω∈RD 

denote the undistorted natural reference configuration of the body B for which the reference frame 



{O, x1, …,  xD} has been defined by the orthogonal base of unit vectors {e1, … , eD}. The mapping 

y(x): Ω→RD
 is the deformation so that u(x) = y(x) − x is the displacement of x. 

2.1 Structured deformation of damaged continuum 

Under assigned actions the body B may damage and eventually fracture. The resulting 

deformation is thus the consequence of two causes: the opening of micro- or macro-cracks 

(structured part of the deformation [6]) and the distortion of the elastically bent lamellae delimited 

by the crack surfaces (elastic part of the deformation). We take a smeared view of the 

phenomenon so that the corresponding strain fields can be considered continuous and regular. 

Under the hypothesis of small strain, the global strain is the symmetric gradient of the 

displacement field, i.e., ∇s
u = (∇u+∇u

T
)/2, for which we assume a decomposition of the form  

 ( ) ( ) ( )s

e s
∇ = +u x E x E x , (2.1) 

where Ee(x) and Es(x) denote the elastic and structured part of the strain, respectively. We further 

assume that an internal state variable s(x): Ω→[0,1] ⊂ R is defined that represents a damage 

parameter that takes the 1 value in a sound zone and the 0 value in a completely damaged 

(fractured) zone. The significance of s is defined by the relation 

 ( ) [1 ( )] ( )
s c

s= −E x x E x , (2.2) 

where Ec(x) represents the structured deformation that would develop in a neighborhood of the 

particle x if, here, the material was completely damaged (s(x)= 0). Obviously, s = 0 (s = 1) implies 

Es= Ec (Es= 0), while s taking an intermediate value between 0 and 1means that the material is not 

completely damage and, consequently, cannot attain the whole reserve of structured deformation 

Ec that would be available in a completely cracked body. 

2.2 The free energy 

Let l represent the characteristic material length scale, that is associated with the characteristic 

width of the process-zone band associated with the phenomenon of crack coalescence [8]. Under 

isothermal evolution the Helmholtz free energy depends upon the displacement field u(x), the 

damage field s(x) and the structured deformation field Ec(x) according to a relationship of the type 

 [ , , ] ( , , ) ( )s

l c c l
s s d s d

Ω Ω
Π = Ψ ∇ + Γ∫ ∫u E u E x x , (2.3) 

where Ψ[∇s
u,s,Ec] represents the bulk part of the energy, whereas Γl(s) is the surface part, which 

is suppose to depend on the damage variable s and on the intrinsic material length scale l [8]. 

For the reasons explained at length in [5], we take for Γl(s) the expression 
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where γ is a parameter representative of the material fracture energy. 

The bulk energy is associated with the reversible part of the energy stored in the elastically 

bent lamellae comprised among the microcracks. If C: Sym→Sym denotes the elasticity tensor of 

the sound material, then  Ψ(∇s
u,s,Ec) = ½ C[ Ee]⋅ Ee, where Ee is defined from (2.1) and (2.2). 

Observe that, in general, if a fractured body is conveniently constrained, then the sound portions 

are sufficient to maintain the various pieces together. More precisely, suppose that in a small 



neighborhood ω(x) ⊂ Ω of x, of the same order of the representative volume element, the body is 

completely damaged (s(x) = 0). Let H = ∇u(x) and consider the problem in which the boundary 

∂ω(x) of ω(x) is subjected to the Dirichlet condition y(x)=(H + I)x, ∀x∈∂ω(x). Then, for any 

E ≡ ∇s
u(x), we define the relaxed bulk energy density through the expression 

 **

( ) 0

1
( ,0) lim inf ( ,0, )

( )
s

c

s

c
A

d
A∇ ≡ ω → ∈

ω

Ψ ∇ = Ψ
ω ∫u E E

u E E x
S

  , (2.5) 

where A(ω) denotes the measure of ω, whereas S represents the admissible class of structured 

deformations, which depends upon the material properties. It should be notice that, provided the 

problem is well-posed, in general (2.5) uniquely defines the tensor Ec = Ec
**

 associated with the 

local value of the strain ∇s
u(x). We emphasize this dependence through the notation Ec

**
 = ΘΘΘΘ(∇s

u), 

indicating that the function ΘΘΘΘ: Sym→Sym associates with the local strain ∇s
u the unique 

minimizer Ec
**

of (2.5). One can show that in the case of a linear elastic material, the problem (2.5) 

is indeed well posed because of the convexity of the stored energy. Then, for the case s ≠ 0, 

according to the assumed definition (2.2) of damage, one defines from (2.5) the relaxed bulk 

energy Ψ**
(∇s

u,s) = Ψ(∇s
u,s, ΘΘΘΘ(∇s

u) ). Therefore, Ψ**
(∇s

u,s) takes the form 

  ( )** 1
( , ) (1 ) ( ) (1 ) ( )

2

s s s s s
s s s Ψ ∇ = ∇ − − ∇ ⋅ ∇ − − ∇ u u Θ u u Θ uC� . (2.6) 

In conclusion, we consider the relaxed minimization problem defined by 

 ** ** **

( , )
min ( , ) , ( , ) ( , ) ( )s

l l l
s

s s s d s d
∈

Ω Ω

Π Π = Ψ ∇ + Γ∫ ∫u
u u u x x

A

. (2.7) 

where **( , )
l

sΠ u denotes the relaxed bulk energy defined by (2.4) and (2.6), whereas A represents 

the class of admissible functions (u,s) defined according to the specific conditions for the fields 

u(x) and s(x) on the boundary ∂Ω of Ω. Further conditions upon the minimization problem similar 

to those of [2] have to be added in order to consider irreversibility of damage. In a load history 

when the boundary data vary with the time t, the equilibrium state of the body are found through a 

sequence of minimization problems of the type (2.7), each one corresponding to a small increment 

of the boundary data, for which we impose that the value of s can never decrease in time.  

3 PARTICULAR CASES 

Different in type models can be obtained by considering various forms for the class S of 

admissible structured deformation in (2.5). For the sake of briefness, in the following we only 

report the most important results, referring to further work for a more comprehensive treatment. 

3.1 Cleavage fractures 

The simplest case is that in which the structured part of the deformation is directly proportional to 

the local value of the strain. This means that if E ≡ ∇s
u(x) represents the local value of the strain, 

then Ec =η E, η∈R. The value of η can be found from (2.5) and doing so one finds η = 1. For this 

case (2.6) reads 

 ( )** 21 1
( , ) (1 ) (1 ) [ ]

2 2

s s s s s s s
s s s s Ψ ∇ = ∇ − − ∇ ⋅ ∇ − − ∇ = ∇ ⋅∇ u u u u u u uC� C� . (3.1) 

Observe, in passing, that for this case one obtains for **( , )
l

sΠ u of (2.7) an expression which is 



substantially similar to  
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∫ ∫u u u x xC , (3.2) 

proposed by Bourdin-Francfort and Marigo [2] as a regularization of the variational formulation of 

Griffith’s theory of [1]. The difference consists in the parameter kl of (3.2), infinitesimal of higher 

order than l, which was introduced in [2] for numerical purposes but that is here irrelevant for the 

comparison. This model is capable to reproduce cleavage fractures, but it is symmetric in tension 

and compression and consequently, in general, it cannot avoid interpenetration of the crack lips. 

3.2 Shear fractures 

Having set E ≡ ∇s
u(x), let Edev and Esph denote the deviatoric and spheric part of E according 

to Esph = I trE/trI and Edev = E − Esph . Than assume that Ec =η Edev, η∈R. From (2.5) one finds 

again η = 1. The relaxed bulk energy thus takes the form 
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where (∇s
u) sph and (∇s

u) dev are the spheric and deviatoric part of ∇s
u. It is worth noticing that 

**( , )
l

sΠ u of (2.7) assumes for this case an expression identical (modulo the parameter kl ) to  

{ }
2
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∫ ∫u u u u u x xC C ,(3.4) 

proposed by Lancioni and Royer in [5] to incorporate the idea of less brittle, “deviatoric-like” 

fractures. In this case there are mainly mode II fractures, and crack-lips interpenetration is 

consequently mitigated.   

3.3 Combined cleavage-shear fractures 

The models of Sections 3.1 and 3.2 are symmetric in tension-compression, i.e., by reversing 

the sign of the boundary data one obtains exactly the same crack pattern. But experiments suggest 

that material response may be remarkably different in tension or compression. Consequently, one 

can decide to adopt the cleavage fracture model of (3.1) whenever the hydrostatic part (∇s
u) sph of 

the strain ∇s
u is non-negative and the shear fracture model of (3.3) when (∇s

u) sph < 0. Reasoning 

as in Sections 3.1 and 3.2, one obtains for Ψ**
(∇s

u,s) the expression 

 

{ }

2

**

2

1
, if ( ) 0 ,

2
( , )

1
( ) ( ) ( ) ( ) , if ( ) 0 .

2

s s s

sph
s

s s s s s

sph sph dev dev sph

s

s

s

  ∇ ⋅∇ ∇ ≥ 
Ψ ∇ = 

    ∇ ⋅ ∇ + ∇ ⋅ ∇ ∇ <   

u u u

u

u u u u u

C�

C� C�

 (3.5) 

For the isotropic-elasticity case, a similar model has been recently obtained independently by 

Amor-Marigo and Maurini [4], who proposed for the energy the expression 
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where κ0 and µ are the bulk and shear elastic moduli, while tr
−
(∇s

u) = min{ tr(∇s
u),0} and 

tr
+
(∇s

u) = max{ tr(∇s
u),0}. 

3.4 Masonry-like fractures 

Let us denote by Sym
+
 and Sym

−
 the set of all positive semidefinite and negative semidefinite 

symmetric tensors, respectively. The case at hand is characterized by the choice S ≡ Sym
+
 in (2.5). 

The detailed derivation of the function Ec
**

 = ΘΘΘΘ(∇s
u) from the minimization problem (2.5) 

requires more space than that allowed here. Consequently, only the final results are recorded. 

If E ≡ ∇s
u(x), having set T

**
:=C[E− Ec

**
], one finds that i) Ec

**
 ∈ Sym

+
; ii) T

**∈ Sym
−
; iii) 

E = C
-1

[T
**

] +  Ec
**

; iv) T
**⋅ Ec

**
 = 0. These conditions imply that T

**
 and Ec

**
 are coaxial. 

Moreover, in the case of isotropic elasticity when C = 2µI + λI⊗I, being λ and µ the Lamé’s 

elastic constants, then v) also E is coaxial with T
**

and Ec
**

. If one establish a correspondence 

between the tensor T
**

 and the Cauchy stress in completely damaged body (s = 0), these 

conditions coincide with the definition of the constitutive equations for a classical linear elastic 

masonry like material, established in [7]. For any E∈ Sym the aforementioned equations uniquely 

define the associated structured strain Ec
**

.  

The relaxed bulk energy density takes the form (2.6). Using the property iv), that is, 

C[∇s
u −−−−ΘΘΘΘ(∇s

u)]⋅ ΘΘΘΘ(∇s
u) = 0, one finds that (2.6) can be written in the equivalent forms 
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The corresponding energy functional **( , )
l

sΠ u  results from (2.7). It can also be verified that the 

Cauchy stress T, which is dual in energy with respect to the strain ∇s
u, reads 

   2 2 2(1 ) [ ( )] [ ] [ ] (1 ) [ ( )]s s s s s
s s s= − ∇ − Θ ∇ + ∇ = ∇ − − Θ ∇T u u u u uC C C C . (3.8) 

Notice that when s = 1 one finds the stress in a sound elastic material, whereas when s = 0 one 

obtains the expression for a classical masonry-like material [7]. There are however two major 

novelties of this model with respect to the classical no-tension theory. First, the surface-energy 

term (2.4) implies that the opening of fractures (i.e., s passing from 1 to 0) is associated with an 

energy consumption; second, there may be regions where the material is only partially damaged (s 

between 0 and 1). 

4 NUMERICAL EXPERIMENTS 

The potentialities of the various models are illustrated and compared through numerical 

simulations corresponding to one paradigmatic example: a simple uniaxial traction or compression 

test of a prismatic specimen. In the following, we assume the body is a linear elastic (C = 2µI + 

λI⊗I,) isotropic material under plain strain. Consequently, the functional of (2.7) has to be 



properly specialized to the 2-D case. 

4.1 The numerical implementation 

The model is numerically implemented following the same line of [2], adding an inequality 

constraint on the scalar damage field s similar to that of [5] to impose crack irreversibility. The 

adopted numerical scheme is based upon an alternate minimization algorithm which, in short, 

consists in solving a series of minimization sub-problems on u at fixed s and viceversa on s at 

fixed u up to convergence. In particular, in the cleavage and shear models of Sections 3.1 and 3.2, 

the energy functionals are quadratic in u and the elastic sub-problem reduces to the solution of a 

linear system of equations. On the contrary, for the solution of the combined-cleavage-shear-

fractures model of Section 3.3, a quasi Newton algorithm is adopted because of the non-linearity 

induced by the inequality related to the trace of the spherical part of the strain as per (3.5). For the 

masonry-like fractures model of Section 3.4, a fully Newton algorithm has been developed to 

obtain the equilibrium at each time step. The minimization on s at fixed u is reduced to the 

solution of an unconstrained quadratic problem coupled with an a posteriori projection of the 

solution on the set of admissible space of s to enforce the irreversibility condition of fracture. The 

models have been implemented in an appositely conceived program based upon the Open Source 

package deal.II [9]. 

4.2 Examples 

Consider the two-dimensional rectangular domain of Figure 1, of sides d and h, which 

represents a section of the body at hand in plane strain. The element is loaded by applying a 

vertical displacement on the upper base Γ2, thus keeping equal to zero the horizontal component. 

The lower base Γ1 is kept fixed while the vertical borders Γ3 and Γ4 are unconstrained and stress 

free. This setup may be representative of a tensile or compressive test with un-lubricated loading 

platens (perfect adhesion due to friction). Following [5] and [4], in order to avoid underestimation 

of the surface energy necessary to develop fractures at the constrained boundaries, we set s = 1 on 

Γ1 and Γ2. In summary, for this case we assume 
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where e1 and e2 are the horizontal and vertical unit vectors respectively, n is the outward normal to 

the boundary and t is scalar parameter positive in traction and negative in compression. 

We consider the case d = 50 mm, h = 100 mm, with elastic constants µ = 12500 N/mm
2
 and 

λ = 8333 N/ mm
2
 (corresponding to Young’s modulus E = 30000 N/mm

2
 and Poisson’s ratio 

ν = 0.2). Furthermore, the fracture toughness γ has been assumed equal to γ = 10
−3

 N/mm and the 

intrinsic length scale l = 1 mm. For what the discretization is concerned, we adopted a structured 

and homogeneous finite element mesh composed of 80000 quadrilaterals, with in total 3x80601 

degrees of freedoms. The size of the element is 5⋅10
−3

 d, that is 0.25 l. 

Figures 2-3, summarize the results obtained with the different models under traction (t > 0) or 

compression (t < 0). All cases are characterized by the sudden appearance of dominant cracks. In 

cleavage- and shear-fracture models there is no difference between tension or compression, except 

the sign of the displacement field.   

The cleavage-fracture model of (3.1) is characterized by the appearance of two horizontal 

cracks (figures 2a and 3a) close to the lower and upper bases; the boundary condition s =1 on Γ1 



and Γ2 avoids ruptures at the constrained contours. Fractures start at the corners where the stress 

concentration occurs, progress and eventually meet approximately in the middle of the specimens. 

Their thickness, i.e., the thickness of the strip where s ≅ 0, is of the order of l near the corners, but 

increases towards the center. Since the model is symmetric in tension and compression, there is no 

difference between figures 2a (traction) and 3a (compression). Obviously, material compenetration 

due to crack lips overlapping is not avoided under compression (fig. 3a).  

 

h

d  
 Figure 1: Section of the body in plain strain subjected to uniaxial test. 

 

In the shear-fracture model of (3.3), cracks start again at the specimen corners and propagate 

towards the center at an angle of approximately p/4 with respect to the horizontal. The model is 

again symmetric under traction and compression, presenting equal maps for the damage field. To 

better illustrate crack propagation, figs. 2b and 3b represent two different stages of the load history 

that, even though corresponding to tension and compression tests respectively, for the 

aforementioned symmetry can be considered associated with the same test.  At first, two triangular 

wedges, with bases coinciding with Γ1 and Γ2, are isolated (fig. 2b). At this stage, a very small 

shear stress occurs in the middle of specimen, so that various loading steps are necessary to 

produce a very slow widening and propagation of cracks through a gently curved shear path, 

tending to separate the prism into four pieces (fig. 3b). Notice that the model allows only for the 

slip and not for the opening of crack lips: consequently, the three pieces of fig 2b cannot separate, 

even if the prism is pulled. Moreover, in general the thickness of shear bands is higher than that of 

cleavage fractures, a phenomenon outlined in [4] and justified by the high residual stiffness of the 

model and bad numerical conditioning.  

The combined cleavage-shear fractures model of (3.5) presents under traction a crack pattern 

equal to that of the cleavage model (fig. 2c), but under compression a typical hour-glass failure 

appears (fig. 3c). The pseudo-vertical fracture in the middle of the specimen is a cleavage fracture 

provoked by the wedging action of the triangular material portions in proximity of the bases 

isolated by shear bands, a mechanism not allowed in the shear-fracture model. Notice that also 

now the thickness of the shear bands is greater than the thickness of the cleavage fracture.  

The masonry-like fracture model of (3.7) presents under tension horizontal fractures analogous 

to that predicted by the cleavage model (fig. 2d). Under compression (Figure 3d), pseudo-vertical 

fractures occur, which again do not reach the prism’s bases Γ1 and Γ2, because here the boundary 



condition s = 1 holds. More in particular, fractures under compression manifest in two successive 

steps. First, the central vertical fracture appears; second, two new vertical cracks are nucleated 

symmetrically with respect to the prism axis (fig. 3d). After this, the simulation shows numerical 

instability. Experiments on quasi-brittle materials like geomaterials or ceramics confirm that 

cracks appear in a similar way, but failure is due to a second order effect, i.e., the instability of 

material columns comprised between fractures, that our model cannot reproduce. 

 

 

    
(a)  (b) (c) (d)  

Figure 2: Uniaxial traction test (t > 0). Maps of s for different models: a) cleavage fracture; b) 

shear-fracture at first loading steps; c) combined cleavage-shear fracture; d) masonry-like fracture. 

 

 

    
(a) (b) (c) (d)  

Figure 3: Uniaxial compression test (t < 0). Maps of s for different models: a) cleavage fracture; b) 

shear-fracture at last loading steps; c) combined cleavage-shear fracture; d) masonry-like fracture. 

5 CONCLUSIONS 

The proposed variational approach to fracture passes through the minimization of a two-field 

regularized functional that, with respect to other approaches, bypasses the difficulties associated 

with the discontinuities of the displacement field and the unknown crack location (free 



discontinuity problem). Fracture is described by a regular field measuring the damage level in the 

representative volume element: a crack is not a discontinuity of the displacement field, but a 

loosening of the microstructure and the corresponding localized weakening of the material rigidity, 

with the localization of large strains in very narrow bands. The model is minimal since the only 

required material parameters are the elastic moduli, the fracture surface energy and the material 

intrinsic length scale. The latter is of particular importance because this formulation is a pseudo 

spatial-dependent theory and this parameter influences the width of the fracture bands. The gross 

response of a body may be strain-softening in type due to crack opening but, locally, the material 

is linear elastic up to fracture: consequently, the numerical implementation results mesh-

independent, not suffering the drawbacks of models with strain-softening local constitutive 

equations. 

But the main novelty here is the combination of Structured Deformation Theory within the 

variational approach.  We have showed in paradigmatic examples that just changing the form of 

the class of admissible functions for the structured strain, very different types of fracture patterns 

can be obtained. The corresponding micromechanics of cracking may vary between cases usually 

referred to as cleavage, shear, combined cleavage-shear and masonry-like fractures. However, 

although some of these classical models (such as the masonry-like solid) take a smeared view of 

the cracking phenomenon, here the competition between the release of elastic bulk energy and the 

energy necessary to produce new crack-surface renders fracture localization energetically more 

favorable than diffuse cracking. Moreover, the form of the structured strain can avoid material 

interpenetration in the damaged zone. In any case, the potentiality of the proposed approach is yet 

to be fully explored.  
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